科学网

 找回密码
  注册

tag 标签: 量子优势

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]谷歌量子优势文章正式在Nature发表
quantumchina 2019-10-24 07:51
雷锋网 AI 科技评论按:在九月下旬,「谷歌实现量子优越性(quantum supremacy)」的消息占据了各大媒体的头版头条。 (注:国内大多媒体将 quantum supremacy 翻译成「量子霸权」,无疑相比来讲后者更能博大众的眼球,谷歌官方认为“量子优越性”的翻译更为准确,下文将全部使用“量子优越性”) 据英国《金融时报》等媒体报道 称,谷歌在一台 53 比特的量子计算机上仅用 3分 20 秒便完成了在超级计算机上需要一万年的计算,这是量子计算领域的一次巨大突破,一些圈内人士纷纷表示 「有一种即将亲历 2012 年 Hinton 发表 AlexNet 文章的感觉」、「或将迎来下一波科技浪潮」。 图注:谷歌发表文章中,对量子优越性的证明。a)验证基准测试方法。根据测得的位串和经典模拟预测的相应概率,计算出补丁电路,消除电路和完整电路的验证值。尽管在复杂性方面存在巨大差异,但所有四个曲线之间的紧密对应关系证明了它们在优越性领域( supremacy regime)中的使用是正确的。b)对于电路深度为20时,在量子处理器上获得一百万个样本需要200秒,而在一百万个内核上进行等保真度经典采样将花费10,000年,对保真度的验证将花费数百万年。 针对这些报道,一个多月来,谷歌并没有作出任何回应,且在新闻报道之前便从网上撤掉了相应的论文。10月21日,IBM发表博文 以及arXiv文章 称谷歌的实验存在缺陷,作为对比的超算计算时间其实只需要2.5天。 图注:IBM对谷歌的回应。分析预期的经典计算运行时间与“ Google Sycamore Circuits”的电路深度。蓝色线估计了一个53量子位处理器的经典运行时间(电路深度为20时,运行时间为2.5天),而橙色线则估计了一个54量子位处理器的经典运行时间。 作为一切吹捧和质疑的回应,谷歌终于在今天(10月23日)正式在Nature上发表了他们的这项工作《Quantum supremacy using a programmable superconducting processor》 。 不仅如此,谷歌CEO 桑达尔·皮查伊(Sundar Pichai)还为此专门撰写一篇文章,谈论「量子计算里程碑的意义」 。 皮查伊与谷歌量子计算机 @ Santa Barba 皮查伊在文中称,“对于我们从事科学技术工作的人们来说,这项工作正是我们一直在等待的「hello,world」,是迄今为止使量子计算成为现实的最有意义的里程碑”。他表示,从今天的实验室试验到明天的实际应用可能还有很长的路要走,但这项工作的意义在于,它代表了量子计算世界的“一个可能的时刻”(a moment of possibility)。 雷锋网注意到,除了皮查伊的文章外,谷歌量子人工智能实验室首席科学家 John Martinis (量子硬件)与Sergio Boixo(量子理论)还联合发表了一篇关于「量子优越性」的技术博客 ,简要介绍了他们的工作内容,包括实验、处理器硬件、测试、应用以及接下来的目标。 那么「谷歌实现量子优越性」,是谷歌带给人类的又一次革命,还是仅仅一次媒体炒作?或许时间将给出证明。 延伸阅读:使用可编程超导处理器的量子优越性 物理学家谈论“量子计算能做什么”这个问题已经超过 30 年了,但问题一直存在:研究它真的有用吗?值得为此研究进行投资吗?正像计算机的发明一样,量子计算的研究也是一个大规模的研究,因此去制定一系列具有决定性的短期目标,以此来证明设计是否朝着正确的方向发展,是一个良好的工程实践。谷歌所提出的这项“短期目标”就是他们所称之为的“量子优越性”(quantum supremacy)实验,并以此作为指导来制造可编程且功能强大的量子计算机。 谷歌今天在《自然》杂志的“使用可编程超导处理器的量子优越性”(Quantum Supremacy Using a Programmable Superconducting Processor)一文中发布了他们在“量子优越性”实验中的最新结果。他们开发了一种名为“ Sycamore”的新型 54比特处理器,该处理器由快速、高保真量子逻辑门组成,以执行基准测试。由此构建的机器能够在200秒内完成目标计算,而作为对比,要想产生类似的输出将需要世界上最快的超级计算机一万年的时间。 图注:a)处理器的布局,显示一个54量子位的矩形阵列(灰色),每个矩形都用耦合器(蓝色)连接到最近的四个上。可以显示不可操作的量子位。b,Sycamore 处理器的实物照片。 1、实验内容 为了帮助理解实验的内容,首先想象有一群刚刚入门的量子计算爱好者来到谷歌的量子计算实验室参观,然后想在谷歌的新量子处理器上运行一个量子算法试试效果。实验室给他们提供了一张表,上面有处理器可以执行的最基础的门操作,他们可以组合这些操作来编写算法。由于每个门都有一定概率出错,这些爱好者编写的算法就需要有一定的规模限制,整个操作序列中参与的门加起来不可以超过1000个。假设这群人此前并没有什么编程经验,那么他们设计的操作序列看起来就很有可能是在一列随机的门里走了一圈;可以把这个看作是量子计算机的“hello world”程序。由于这样形成的随机电路里没有什么结构可以供经典算法利用,想要用经典计算机模拟这样的量子电路的话就通常避免不了用超级计算机进行长时间计算。 量子计算机上的这些随机量子电路的每次运行都会产生一串二进制数字,比如 0000101. 由于量子相干性的存在,即便量子电路是随机的,只要重复这个实验足够多次,它们产生的二进制数字的出现的概率就会显出一定的模式,有一些结果会更经常出现。想要找到这种随机量子电路的输出模式,在量子计算机上只不过是普通的任务,但如果想要用经典计算机模拟这种计算的话,随着量子比特数量(宽度)的增加和门循环次数(深度)的增加,计算难度会以指数速度增加。 图注:演示量子优越性的实验过程 在实验中,谷歌首先分别运行了12位量子比特到53位量子比特的随机简单电路,保持电路深度固定。他们测量了用经典计算机模拟时的计算性能,并和理论模型进行了对比。一旦确认了系统能正常工作,他们就会运行53位量子比特的随机困难电路并增加深度,一直到经典模拟已经变得不可行为止。 图注:根据 薛定谔-费曼算法绘制的量子优越性电路实验结果示意图,图中自变量为量子比特数目和运行循环数量。图中的红色星是用经典计算验证对应的实验电路所需的时间。 这个实验结果也成为了经过拓展的邱奇-图灵论题(Church-Turing thesis)的首个反对证据。邱奇-图灵论题指出,经典计算机可以高效地实现任何合理的计算模型。而在这个实验中,谷歌已经首次证明了存在无法被经典计算机合理地模拟的量子运算,这也可以看做是谷歌已经打开了一个计算的新世界,等待我们进一步探索。 2、Sycamore 处理器 谷歌的量子优越性实验是在Sycamore处理器上运行的,这是一个完全可编程的、具有54位量子比特的处理器。它具有二维的网格结构,其中每一个量子比特都和四个其它的量子比特相连接。受益于密集的连接,处理器芯片有很好的连接性,其中的量子比特的状态可以很快地在整个处理器上传递、互动;处理器的整体状态也就已经完全没办法用经典计算机做高效的仿真了。 谷歌设计的量子优越性实验之所以能够成功,还是要归功于他们改进过的含有两位量子比特的门,它具有更高的并行能力,即便当许多个门同时运行时也能可靠地带来目前为止最高的性能。谷歌采用了一种新的控制节,它能够关闭相邻的量子比特之间的互动。这大大减少了这样的多连接量子比特系统中的错误的数量。谷歌还优化了芯片的设计降低串扰,以及开发了新的控制校准方法,可以避免量子比特的缺陷;这都进一步提升了芯片的性能。 电路的结构是一个二维矩形网格,其中每一个量子比特都和四个其它的量子比特相连接。这个架构也带有前向兼容性,可以和量子纠错一共使用。54位量子比特从数量上已经相当惊人,但在谷歌看来,这也只不过是越来越强大的量子处理器之路上的第一步而已。 图注:a)泡利误差(黑色、绿色、蓝色)和读出误差(橙色)的积分直方图(经验累积分布函数,ECDF),在隔离的量子位上(虚线)以及同时操作所有量子位时(实线)进行测量。每个分布的中值出现在垂直轴上的0.50处。平均值(平均值)如图所示。b)热图,显示了位于处理器布局中的单比特和二比特泡利误差e1(cross)和e2(bar), 显示了同时运行的所有量子位的值。 3、验证量子物理 为了确保量子计算机未来也能持续地发挥作用,谷歌需要现在就确认它采用的量子机理没有什么基础性的问题。通过实验来探索理论的边界是物理学研究中悠久的优良传统,因为特殊的物理参数往往会勾勒出新的物理学范式,从而在实验中体现为新的物理学现象。在之前的实验中,谷歌的量子计算团队已经发现,一直到大约1000维的状态空间,量子机理的实际运行情况都符合他们的期待。 这次,他们把实验的规模扩大到了 10^16 维,然后发现所有机理仍然可以正常运转。他们也测量了基础的量子理论,他们测量了具有2位量子比特的门的错误率,发现它可以准确地预测完全达到了量子优越性的电路的测试结果。这说明,他们没有遇到什么会导致谷歌的量子计算机性能下降的意外的物理现象;也就是说,他们的实验提供了有力的证据,表明更复杂的量子计算机也可以遵循现有的理论运行。这也让谷歌的量子计算团队更有信心构建出更大规模的量子计算机。 4、应用 Sycamore量子计算机完全可编程,而且可以运行通用的量子算法 。自从去年做出了量子优越性的结果以来,谷歌量子计算团队就一直在努力做出近期应用方面的成果,包括量子物理模拟计算、量子化学方面,以及生成式机器学习和其它很多别的领域。 5、未来展望 谷歌这支量子计算团队未来有两个主要的目标,两个目标也都是要为量子计算找到有价值的应用领域。首先,未来他们希望让其他的合作者、学术研究人员都有机会使用这样的计算能力足以展现量子优越性的量子处理器,他们也同样欢迎有兴趣为今天的 NISQ 处理器开发算法、寻找应用场景的企业参与进来。创新的最重要来源永远是有创意的研究人员们,在谷歌看来,如今他们已经有了新的计算资源,就希望能够有更多的研究人员也加入到这个领域中来,并把创造出一些有用的东西作为他们的目标。 其次,谷歌也会在团队和技术方面做长期持续的投资,尽快建造出一个具备容错能力的量子计算机。这样的设备能给许多有价值的应用带来机会,比如,未来量子计算机有可能可以帮助我们设计新的材料,包括为电动汽车和飞机设计更轻的电池、可以更高效地生成化肥的催化剂(目前化肥生产的过程造成了全球碳排放的2%)、也可以找到更有效的药品。真正达到这些任务所需的计算能力肯定还需要很多年的扎实的工程和科学研究,但在谷歌看来,这条道路已经非常清晰,他们已经迫不及待地迈步前行。 参考资料: 英国金融时报在9月20日对谷歌“量子优越性”的报道, https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17 IBM 对谷歌“量子优越性”的回应博客 On “Quantum Supremacy”, https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/ IBM对谷歌“量子优越性”论文的验证,发表在arXiv上, https://arxiv.org/pdf/1910.09534.pdf 量子优越性论文, https://www.nature.com/articles/s41586-019-1666-5 谷歌CEO皮查伊撰写文章“量子计算里程碑的意义”, https://www.blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means/ 量子优越性技术博客, https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html 来源: http://baijiahao.baidu.com/s?id=1648194058952134876wfr=spiderfor=pc 更多: https://tech.qq.com/a/20191023/008916.htm 谷歌实现量子优势论文中文翻译(1) http://blog.sciencenet.cn/home.php?mod=spaceuid=3364677do=blogid=1199384
个人分类: 量子计算|2313 次阅读|0 个评论
谷歌实现量子优势论文中文翻译(2)
quantumchina 2019-10-5 13:08
用一个可编程超导 处理器 实现量子优势 Google AI Quantum and collaborators 本文由谷歌公开发布在网上的英文论文翻译而来,也参考借鉴了网上发布的中文介绍文章,翻译者为四川大学锦城学院电子信息学院的同学,我们将分成几部分陆续发布,以便广大中国科研工作者参考。 翻译: 彭欣怡 李琦 钟玥 邓涛 杨松瑞 肖鑫 李生华 漆国华 指导教师: 刘勤 (获取完整pdf版可联系邮箱:qinliu@scujcc.cn) 研究者核实了采用一种被称为交叉熵基准测试(XEB) 的方法可以使量子处理器有效工作, 它比较了在实验中观察到每个比特串的频率,以及在经典计算机上通过模拟计算出的相应的理想概率。对于给定的电路,研究者收集测量的位串 ,并计算线性XEB保真度 ,这是研究者测量的位串的模拟概率的平均值: 其中, n 是量子比特数, 是理想量子电路计算的位串 的概率,并且平均值超过所观察到的位串。直观地说, 与研究者采样高概率比特串的频率相关。当量子电路中没有错误时,对概率分布进行采样将产生 。另一方面,来自均匀分布的采样将给出 ,并 产生 。 的值从0到1对应于电路运行时没有错误发生的概率。概率 必须从经典模拟量子电路中获得,因此计算 在量子优势的机制中是棘手的。然而,通过一定的电路简化,研究者可以获得运行宽和深的量子电路的全操作处理器的定量保真度估计。 研究者的目标是为具有足够宽度和深度的电路实现足够高的 ,从而使经典计算成本大得令人望而却步。这是一个困难的任务,因为研究者的逻辑门是不完善的,研究者打算创造的量子态对错误是敏感的。算法过程中的一个位或相位翻转将完全洗牌散斑图案并导致接近0的保真度 。因此,为了宣称量子优势,研究者需要一个以足够低的错误率执行程序的量子处理器。 建造和表征高保真的处理器 研究者设计了一个名为Sycamore的量子处理器,包含一个由 54 个 transmon 量子比特组成的二维阵列,每个量子比特都以可调的方式与周围四个最近邻的量子比特耦合。连接是向前兼容的,使用表层代码进行误差修正 。该设备的一个关键系统设计突破是实现高保真的单和双量子比特运算,这不仅是在隔离的情况下,而且在对多个量子比特同时进行门运算的情况下,还能进行实际的计算。论文将讨论以下要点;扩展的细节可以在附件材料中找到。 谷歌实现量子优势论文中文翻译(1) http://blog.sciencenet.cn/blog-3364677-1199384.html 自然杂志:什么是量子计算霸权? http://blog.sciencenet.cn/blog-3364677-1077943.html
个人分类: 量子计算|1282 次阅读|0 个评论
谷歌实现量子优势论文中文翻译(1)
quantumchina 2019-9-30 21:27
用一个可编程超导 处理器 实现量子优势 Google AI Quantum and collaborators 本文由谷歌公开发布在网上的英文论文翻译而来,也参考借鉴了网上发布的中文介绍文章,翻译者为四川大学锦城学院电子信息学院的同学,我们将分成几部分陆续发布,以便广大中国科研工作者参考。 翻译: 彭欣怡 李琦 钟玥 邓涛 杨松瑞 肖鑫 李生华 漆国华 指导教师: 刘勤 (获取完整pdf版可联系邮箱:qinliu@scujcc.cn) 摘要: 量子计算机的诱人前景在于量子处理器上执行某项计算任务的速度要比经典处理器快指数倍,而根本性的挑战是构建一个能够在指数级规模的计算空间中运行量子算法的高保真度处理器。在这篇论文中,谷歌研究者使用具有可编程超导量子比特的处理器来创建 53 量子比特的量子态,占据了 2^53~10^16 的状态空间。重复性实验得到的测量值对相应的概率分布进行采样,并利用经典模拟加以验证。谷歌的量子处理器大约只需 200 秒即可对量子电路采样 100 万次,而当前最优的超级计算机完成同样的任务大约需要 1 万年。这相对于所有已知的经典算法有了巨大的速度提升,是在计算实验任务中实现的量子优势,预示着下一个万众瞩目的计算范式的到来。 引言 20 世纪 80 年代早期,Richard Feynman 提出,量子计算机将成为解决物理、化学难题的有效工具,因为用传统计算机模拟大规模量子系统的开销呈指数级增长 。实现 Feynman 所描述的愿景需要面临理论和实验方面的重大挑战。首先,量子系统能否被设计为一个足够大的计算(希尔伯特)空间来执行计算并且错误率够低、速度够快呢?其次,我们能否提出一个对经典计算机来说很难但对量子计算机来说很容易的问题?谷歌的研究者通过一个超导量子比特处理器 在一个新的基准任务中解决了上面两个问题。该实验是迈向 全集成 量子计算的一个里程碑事件:量子优势 。 谷歌的研究者通过实验证明,量子加速可以在现实世界的系统中实现,而且不受任何潜在物理定量的限制。量子优势也预示着有噪声的中等规模量子(Noisy Intermediate- Scale Quantum,NISQ)技术的到来。该基准任务可以直接应用于生成可证明的随机数 ;这种计算能力也可以用于优化 、机器学习 、材料科学及化学 等领域。然而,完全实现量子计算还需要设计具有容错能力的逻辑量子比特 。 为了实现量子优势,研究者在误差校正方面也实现了许多技术突破。他们开发了快速、高保真门,可以在二维量子比特阵列上同时执行。研究者使用交叉熵基准(XEB)在组件和系统层面校准了用到的量子计算机,并对其进行了基准测试。最后,他们使用组件级的保真度来准确预测整个系统的性能,进一步表明量子信息在扩展至大型系统时表现与预期一致。 一个计算任务证实量子优势 为了展示量子优势,研究者在一个伪随机量子电路输出的采样任务中将他们的量子计算机与当前最强的超级计算机进行了比较 。随机电路是进行基准测试的一个合理选择,因为它们没有结构,因此可以保证有限的计算难度 。研究者通过重复应用单量子比特和双量子比特逻辑运算来设计一组量子比特纠缠的电路。对量子电路的输出进行采样,可以产生一组比特串(bitstring),如 {0000101, 1011100, ...}。由于量子干涉,比特串的概率分布类似于激光散射中的光干扰产生的斑点强度模式,因此,一些比特串比其他比特串更容易出现。随着比特数(宽度)和门循环数量(深度)的增加,用经典计算机计算这种概率分布的难度呈指数级增加。 论文链接: https://drive.google.com/file/d/19lv8p1fB47z1pEZVlfDXhop082Lc-kdD/view
个人分类: 量子计算|3421 次阅读|0 个评论
[转载]Scott Aaronson:只有谷歌实现了量子优势
quantumchina 2019-9-26 12:52
注:文中的“量子霸权” 也译为 “量子优势” 著名理论计算机科学家、量子计算专家 Scott Aaronson 在个人网站就谷歌的“量子霸权”研究进行了 FAQ 解答,他认为谷歌的正式论文可能会在一个月内在某知名期刊(哪本期刊?选项可以缩小到 2 个)发表。Scott Aaronson 分析了谷歌的量子霸权实验、量子霸权本身是否有任何应用、谷歌下一步是什么等问题。 一、Scott Aaronson 何许人也? Scott Aaronson,美国理论计算机科学家,德州大学奥斯汀分校计算机科学教授,量子信息中心主任。 此前曾与麻省理工学院电子工程与计算机科学系任教多年,研究领域包括量子计算机的性能与局限,更广义的计算复杂度理论等。在 MIT 期间,Scott 曾是姚班学霸陈立杰的导师。 Scott Aaronson Aaronson 在康奈尔大学获计算机科学专业学士学位,在加州大学伯克利分校获博士学位,在加拿大滑铁卢大学量子计算研究所做博士后研究员。2007-2016 年在麻省理工学院任教,2007 年秋任助理教授,2013 年春晋升为副教授。2016 年至今在德州大学奥斯汀分校任教,任全职教授。著有《德谟克利特以来的量子计算》。 他的个人博客 “Shtetl-Optimized” 经常从科普向角度解答一些关于量子计算的问题,一直广受欢迎。他撰写的《谁可以命名更大的数字?》一文在计算机科学学术界中得到了广泛传播,文中使用了 Tibor Radó 所描述的 Busy Beaver Numbers 的概念来说明在教学环境中可计算性的局限性。 他讲授的面向研究生的调查课程《自德谟克利特以来的量子计算》的讲义已由剑桥大学出版社出版。 书中将关于量子计算的不同主题编成一个整体,其中涵盖量子力学、复杂度、自由意志、时间旅行、人类准则等内容。 知名科普期刊《科学美国人》曾发表了他的《量子计算机的局限性》一文,他的观点和言论也经常被大众主流媒体所引用。 二、“量子霸权”15 问:没有破解不了的密码了吗?非也 Q1:什么是量子计算霸权? 通常缩写为“量子霸权”(quantum supremacy),这个术语指的是利用量子计算机来解决一些定义明确的问题,而这些问题如果使用现有的经典计算机和已知算法来解决,需要的时间是数量级更长的。这不是偶然的原因,而是由于渐进量子复杂性。 这里的重点是,要尽可能确定这个问题确实已经被量子计算机解决了,并且确实对于经典计算机而言是棘手的,并且在理想情况下能够很快实现加速。如果这个问题对某件事也有用,那就更好了,但这完全没有必要。莱特飞行器和费米堆本身并没有什么用处。 Q2:如果谷歌真的实现了量子霸权,是否意味着正如民主党总统候选人安德鲁・杨(Andrew Yang)最近在推特上所说的那样,现在“没有什么密码是不可破解的”? 不是这样。(但我仍然喜欢杨。) 这里有两个问题。首先,目前由谷歌、IBM 和其他公司制造的设备具有 50-100 个量子比特,而且没有纠错功能。运行 Shor 算法来破解 RSA 密码系统将需要数千个逻辑量子比特。使用已知的纠错方法,可以很容易地转换成数百万个物理量子比特,而且这些量子比特的质量比目前存在的任何一种都要高。我认为现在没有人能做到这一点,我们也不知道需要花多长时间。 但第二个问题是,根据我们目前的理解,即使未来拥有可扩展的、有纠错功能的量子计算机,它们也只能破解某些密码,而不是全部。不幸的是,他们能够破解的公钥密码包括了我们目前用来保护互联网安全的大部分内容:RSA、Diffie-Hellman、椭圆曲线加密等等。但是私钥密码受到的影响应该很小。甚至还有一些候选的公钥密码系统(例如,基于 lattices 的),经过 20 多年的尝试,仍然没有人知道如何进行量子破解。现在正在进行的一些工作,已经开始迁移到这些系统了。 Q3.:谷歌计划进行或已经完成了哪些通常认为经典计算机很难做到的计算? 它计算的是:一个“challenger”生成一个随机量子电路C(即一个由 1 个量子比特和最近邻的 2 个量子比特组成的随机序列,深度为 20,作用于n=50 至 60 qubits 的二维网格上)。然后,challenger 将C发送到量子计算机,并要求它将C应用于全部为 0 的初始状态,以{0,1}为基础来测量结果,并返回所观察到的所有n-bit 字符串,并重复数千次甚至数百万次。最后,challenger 利用统计检验来来检查输出是否与量子计算机所做的一致。 所以,这不是一个因式分解问题。电路C在n-bit 字符串上产生了一些概率分布,称为 DC,问题是从这个分布中输出样本。事实上,通常会有2^n个字符串支持 DC,如此之多,以至于如果量子计算机按预期工作,将永远不会观察到相同的输出两次。然而,关键的一点是,DC 的分布并不均匀。虽然我们只会观察到与2^n相比很小的样本,但我们可以检查样本是否优先地聚集在预测更有可能的字符串中,从而建立起我们对完成传统上棘手的事情的信心。 一句话总结: 量子计算机只是被要求应用一个随机(但已知的)量子操作序列 ——不是因为我们关心结果,而是因为我们试图证明它能在一些定义明确的任务上击败经典计算机。 Q4:但是,如果量子计算机只是执行一些随机的电路,其唯一的目的就是经典计算机难以模拟,那么有什么意义呢?这不是过度宣传吗? 不,当然有意义。 要对我们在这里所谈论的巨大规模,以及使它成为现实所需要的可怕的工程,有一点尊重。达到量子霸权之前,量子计算机怀疑论者可以嘲笑,因为花了数十亿美元、20 多年,仍然没有一台量子计算机能比笔记本电脑更快地解决一个问题。在后量子霸权的世界,情况将不再是这样。 我再次提到莱特飞行器,因为我们正在谈论的内容与我在互联网上见到的人们的不屑一顾之间的鸿沟,对我来说非常令人惊讶。就好像,如果你坚信空中旅行从根本上就是不可能,那么看到一架木制螺旋桨飞机保持在高空飞行不会改变你的信念,但也不会让你感到放心。 Q5:几年前,你批评大众对D-Wave 过于兴奋,而它声称通过量子退火可以极大地加速优化问题。但现在,你又批评大众对量子霸权不够兴奋。这是为什么? 因为我的目标不是朝着大众偏爱的方向发展“兴奋水平”,而是朝着正确的方向!事后看来,你会承认我对D-Wave 的看法基本上是正确的,即使那让我在一些圈子里非常不受欢迎。我也在努力证明我对量子霸权的观点是正确的。 Q6:如果量子霸权的计算只涉及从概率分布中采样,你如何验证它们是否正确? 好问题!这是我和其他人在过去十年中发展起来的大量理论的主题。我已经在我对 Q3 的回答中给出了一个简短的版本:通过对 QC 返回的样本进行统计来验证,检验它们优先聚集在混沌概率分布 DC 的“峰值”。有一个简便的方法,谷歌称为“线性交叉熵检验”,就是将量子计算机返回的所有样本 s1,…, sk 的 Pr 相加,然后求和。当且仅当总和超过某个阈值(例如 bk/2^n, 常数b介于 1 和 2 之间)时,才声明测试 “成功” 。 诚然,为了应用这个测试,你需要在经典计算机上计算 Pr 的概率,而唯一已知的计算它们的方法需要蛮力,并且需要大约2^n的时间。如果n是 50,并且你是谷歌,那么是有能力处理2^50 这样的数字的。通过运行一个巨大的经典内核集群(比方说)一个月,你最终可以验证量子计算机几秒钟内生成的输出——同时还可以计算量子计算机快了多少个数量级。然而,这确实意味着基于采样的量子霸权实验几乎是专为目前正在建造的 50 量子比特设备而设计的。如果有 100 个量子比特,我们可能就不知道如何使用地球上所有可用的经典计算能力来验证结果了。 Q7:等等,如果经典计算机只能检验量子霸权实验的结果,在一个经典计算机仍能模拟实验(尽管速度极慢)的体制下,那么你怎么能宣称“量子霸权”呢? 对于一个 53 量子比特的芯片,在一个仍然可以直接验证输出结果的系统中,你完全有可能看到速度增加了数百万倍,同时你也可以看到速度随着量子比特的数量呈指数增长,这与渐近分析所预测的完全一致。 Q8:是否有数学证据证明没有任何快速的经典算法能够欺骗基于采样的量子霸权实验的结果? 不,目前没有。但这并不是量子霸权研究人员的错!只要理论计算机科学家不能证明P≠NP 或P≠PSPACE 这样的基本猜想,就不可能无条件地排除快速经典模拟的可能性。我们所能期望的最好结果是 conditional hardness。 我们确实成功地证明了一些这样的结果——例如玻色子采样那篇论文,或者 Bouland 等人关于随机电路中振幅计算的平均情况#P-hardness 的论文,或者我与陈立杰合著的论文(“Complexity-Theoretic Foundations of Quantum Supremacy Experiments”)。在我看来,这方面最大的理论开放问题是证明更好的 conditional hardness 结果。 Q9:基于采样的量子霸权本身有什么应用吗? 人们第一次想到这个问题时,答案显然是“毫无用处”!不过,最近情况发生了变化,例如,由于认证随机性协议,显示了一个基于采样的量子霸权实验几乎可以立即被重新利用,从而生成可以被怀疑是随机的比特(在计算假设下)。反过来,这可能适用于持有量证明加密货币(proof-of-stake cryptocurrencies)和其他加密协议。我希望在不久的将来能发现更多这样的应用。 Q10:如果量子霸权实验只是产生随机比特,那不是很无趣吗?仅仅通过测量就能把量子比特转换成随机比特,这不是很简单吗? 关键是量子霸权实验不会产生均匀的随机比特。相反,它从一些复杂的、相关的、超过 50 或 60 位字符串的概率分布中采样。 Q11:数十年的量子力学实验——例如,那些违反贝尔不等式的实验——难道还没有证明量子霸权吗? 这纯粹是文字上的混淆。其他的实验证明了“量子霸权”的其他形式:例如,在违反贝尔不等式的情况下,你可以称之为“quantum correlational supremacy”。他们没有展示量子计算的优势,这意味着是不可能用经典计算机模拟的事情(在经典计算机模拟中没有空间局域性或其他类似的限制)。今天,当人们使用“量子霸权”这个短语时,它通常是量子计算霸权(quantum computational supremacy)的缩写。 Q12、即便如此,目前仍然有无数材料和化学反应无法用经典方法实现模拟,而且现在也出现大量特定用途的量子模拟器。 为什么这些都不算是实现了 “量子霸权”? 如果按照一些人对 “量子霸权” 的定义,确实已经实现了!这次谷歌实现的与他们的主要区别在于,有了完全可编程的设备,可以通过传统计算机发送适当的信号,使用任意序列的最近邻的 2 - 量子比特门进行编程。 换句话说,这下量子计算的怀疑论者肯定会不高兴了,可以肯定的是,有些量子系统很难用经典方法模拟,但这仅仅是因为大自然确实很难模拟,而且你不能把发现的什么化学物质随意重新定义为 “可以自我模拟的计算机。” 现在,在任何正常的定义下,谷歌、IBM 和其他公司正在建造的超导设备都的确是 “计算机”。 Q13、“量子霸权” 的概念是你发明的吗? 不是,但我在开发上发挥了一些作用,这导致萨宾・霍森费尔德(Sabine Hossenfelder)等人误以为整个概念都是我提出的。“量子霸权” 一词是约翰・普雷斯基尔(John Preskill)在 2012 年提出的,尽管从某种意义上说,其核心概念可以追溯到 1980 年代初的量子计算本身。1994 年,使用 Shor 算法来分解大量数据成为 “量子霸权” 实验的手段,不过即使在现在,这个实验仍然很难执行。 使用采样问题来证明 “量子霸权” 的关键思想是由 Barbara Terhal 和 David DiVincenzo 在 2002 年发表的一篇有远见的论文中首次提出的。当时出现了一批论文,不仅表明 “简单的” 非通用量子系统可以解决看似困难的采样问题,而且面向相同采样问题的有效经典算法将意味着多项式层次结构的崩溃。即使是近似量子采样问题,用经典方法解决也是非常困难的。 据我所知,“随机电路采样” 的思路源于我在 2015 年 12 月发起的一次电子邮件对话,参与成员还包括 John Martinis,Hartmut Neven,Sergio Boixo,Ashley Montanaro,Michael Bremner,Richard Jozsa,Aram Harrow,Greg Kuperberg 等人。该对话的标题为 “40 量子比特的硬采样问题”。 当时我们讨论了三种基于采样方法的 “量子霸权” 方法的优缺点:(1)随机电路,(2)通勤哈密顿量,以及(3)Boson Sampling。在 Greg Kuperberg 提出支持方案(1)的意见后,我们迅速达成共识,即从工程学的角度来看方案(1)确实是最好的选择,即使理论分析仍不能令人满意,也可以补救。。 之后,Google 团队对理论和数值上的随机电路采样进行了大量分析,而 Lijie Chen、Bouland 和我则对此进行了分析,从理论上证明了用经典方法解决这类问题的难度。 Q14、如果量子霸权真的实现了,对于量子计算的怀疑论者而言意味着什么? 我现在可不想成为他们的一员!他们当然可以退一步说,量子霸权是可能实现的(谁敢说绝对不可能?),其实真正的问题一直是 “量子纠错”。确实,这些人中有些人始终保持这个立场。但是其他人,包括我的好朋友吉尔・凯莱(Gil Kalai)在内都曾经预测过,说出于根本原因,量子霸权不可能实现。现在把话收回去好像有点晚了。 Q15、下一步呢? 如果实现了量子霸权,那么我认为 Google 团队已经有了必要的硬件来执行我提出的协议,生成认证的随机比特了。他们下一步确实计划这么做。 除此之外,显而易见的下一个里程碑将是可编程量子计算机的应用(如 50-100 量子比特),可以比任何已知的经典方法更快执行一些有用的量子模拟任务(如凝聚态系统)。此外,“量子纠错” 将走向应用,可以使编码的量子比特存活时间长于基础物理量子比特的存活时间。毫无疑问,谷歌,IBM 等领跑者将朝着这两个重要里程碑迈进。 三、谷歌“量子霸权”的论文究竟讲了什么?MIT 量子物理博士生专业解读 尽管 NASA 在上线谷歌“量子霸权”的论文不久后悄悄撤下,这篇论文仍通过各种渠道流传出来。MIT 量子物理专业博士生(知乎 ID:少司命)从专业角度,以通俗的语言解释了谷歌这篇论文的主要内容。新智元经授权转载如下: 毫无疑问的是,这会是量子计算领域一个里程碑一样的大新闻. 9 月 20 号刚刚看到这个消息,据说是 NASA 发布到官网上而后又迅速删掉,但是内容已经在网上大规模流传开了。文章写的非常简单易懂,我尽量用简单的语言陈述一下这个新闻的主要内容吧 (蹭热度),如果没有任何背景可以只看加粗字体部分。如果哪里不准确欢迎指正补充。 首先一个概念, 所谓的 quantum supremacy,有人翻译为量子优势也有人翻译为量子霸权,一般指的是量子计算在某一个问题上,可以解决经典计算机不能解决的问题或者是比经典计算机有显著的加速 (一般是指数加速)。 回到文章,在硬件方面,谷歌家一直用的是超导电路系统,这里是 54 个物理比特 (transmon) 排成阵列, 每个比特可以与临近的四个比特耦合在一起,耦合强度可调 (从 0 到大概 40MHz),实物图和示意图分别如下。 图中一个灰色的叉号就代表一个量子比特,蓝色的则是可调的耦合装置 有了硬件就要衡量其性能的好坏,所以首先要知道对这些量子比特进行操作时发生错误的概率 (error rates)。 这里他们用 cross-entropy benchmarking (XEB) 的方法测量这些 error。XEB 早就有了我记得 google 在今年 3 月会议时候就讲过,跟 randomized bechmarking 很像都是加一系列随机的门操作,然后从保真度衰减信号中提取出 error rates. 下图是他们最终得到的结果,在没有并行时候单比特 0.15% 的错误率其实不算高,而双比特 0.36% 的错误率 e2 有 0.36% 则还不错,像 google 另一个 18 比特的 Gmon18 我记得两比特的有 0.8%. 上面列了各个 error rate, 下面是 error 分布的 heat map. 下面是文章最重要的部分,google 在多项式时间内实现了对一个随机量子电路的采样,而在已知的经典计算机上需要的时间则非常非常之久,像文中实现的最极端的例子是,对一个 53 比特 20 个 cycle 的电路采样一百万次,在量子计算机上需要 200 秒,而用目前人类最强的经典的超级计算机同样情况下则需要一万年。亦即 在这个问题上,量子实现了对经典的超越。 这里的 cycle 指的是对这些比特做操作的数目,一个 cycle 包含一系列单比特操作和双比特操作,可以近似理解为电路的深度 (circuit depth)。对于最大的电路,即 53 个比特 20 个 cycle 的情况,在量子处理器上做一百万次采样后得到 XEB 保真度大于 0.1% (5 倍置信度),用时大概 200 秒。而要在经典计算机上模拟的话,因为比特数目很多整个的希尔伯特空间有 而且还有那么多电路操作,这已经超出了我们现在超级计算机的能力 (within considerable time),就像文中举的另一个例子,用 SFA 算法大概需要 50 万亿 core-hour (大概是一个 16 核处理器运行几亿年吧), 加 Wh 的能量 (也就是一万亿度电...),可以想见是多么难的事情了。而量子这个问题上为啥会比经典好也非常容易理解,用到的就是量子运算的并行性,即量子态可以是叠加态可以在多项式时间内遍历整个希尔伯特空间,而经典计算机模拟的话需要的资源则是随着比特数目指数增加的。 左边图 a 是经典计算机可以模拟的区域,右边图 b 则是量子有优势的区域。红色数据点为最复杂的电路,绿蓝代表两种稍作简化后的电路。 当然有没有可能是有些更好的经典采样算法和量子的差不多,只是我们没有找到呢?文中没有给出很直接的回答,他们认为从复杂度分析来讲经典算法总是会随着比特数和 cycle 指数增加的,而且即使未来有一些更好的经典算法,到时候量子的处理器也发展了所以还是会比经典的好。 最后个人的一点 comment, 振奋的同时也要保持清醒,我们离着实现量子计算的完全功力还有很远的距离。 硬件上有集成化的问题,比如这里的超导比特系统要加微波 control 要谐振腔 readout,比特数目增加后有空间不足和 cross-talk 等各种问题,远远不止我们图中看到的一个小芯片那么简单;再一个比特数多了电路深度大了怎么继续提高保真度也是很大问题,像这篇文章里 53 个比特到第十几个 circuit cycle 时候保真度只有 10 的负二次方量级了,怎么 decorrelate error 实现量子纠错,最终实现容错量子计算等等,这些都是硬件上的挑战; 算法上,除了这里的采样问题(由此延伸的可以解决的问题其实是非常有限的),又有哪些问题是可以证明量子比经典有显著优势的,可不可以设计一些算法使得量子计算机能解决经典不能解决的问题,或者量子比经典有显著的加速,就像文章最后所说的: ...As a result of these developments, quantum computing is transitioning from a research topic to a technology that unlocks new computational capabilities. We are only one creative algorithm away from valuable near-term applications. 在 NISQ (noisy-intermediate scale quantum computer) 的时代 (如下图),虽然我们离绿色真正的容错通用量子计算机还很远,但是现在已经开始进入到蓝色区域相信在未来几年会有一些有趣的 near-term 的应用出现。 横坐标比特数目越大越好,纵坐标错误率越小越好 回答一下大家关心的问题吧,以下是个人观点: 一个是中国在这方面有什么进展,我们国家在近些年在量子方面投入很大,很多组也做出了许许多多非常突出的贡献,但必须承认的是,至少在我们在文中提到的用超导比特去做通用量子计算机这方面确实还有着比较明显的差距,但是道路是曲折的前途是光明的,我相信国内一定会迎头赶上并在很多领域做出超越的。现在无论学校科研院所还是大企业都有投入和发力,只不过具体方向会不一样很多优秀的成果也没有得到媒体的关注。 再一个问题就是很多同学表示还是看不太懂,确实没有相关背景了解起来会比较吃力,既准确又通俗的科普是件很难的事...anyway, 还是我在文中强调的,文章的内容是量子计算重要的一步但是其应用是非常非常有限的,以后的路仍道阻且长,我们离着可以破解 RSA 密码离着量子计算机的大规模普及还很远,而且量子计算机也是不可能取代现在用的经典计算机的,这些应该是现在的业内共识。 文章来源: https://news.cnblogs.com/m/n/640386
个人分类: 量子计算|2062 次阅读|0 个评论
[转载]IBM研究主管:谷歌的“量子优势”是宏伟的时刻
quantumchina 2019-9-24 14:40
IBM研究主管:谷歌的“量子优势”是宏伟的时刻,但不算是计算领域一个开创性时刻。 IBM研究主管吉尔说:“这项研究只是一个实验室实验,基本上,几乎可以肯定地说,它完全是为了实现一个非常具体的量子采样程序,没有实际应用。” 图注:谷歌声称其量子芯片在3分20秒内完成了一次计算,而这一次计算让世界上最强大的超级计算机来完成则需要1万年的时间 腾讯科技讯 谷歌近日宣称自己实现“量子优势”(quantum supremacy,也称“量子霸权”)后有多种评论,这究竟是一个重大的科学突破,代表着计算机的第二个时代的曙光?还是仅是一项几乎没有实际应用的引人注目的研究。据外媒报道,对于前一种说法,IBM研究主管接受采访时称其“浮夸”。 谷歌的研究人员表示,他们已经建造了第一台量子计算机,该量子计算机的计算能力,即使按照传统或经典路线建造的最强大的机器,已无法与其匹敌。这么看的话,人们期待已久的“量子优势”的壮举像是已经实现。 但并不是所有人都认为这是计算机科学的转折点。IBM研究主管达里奥·吉尔(Dario Gil)表示,谷歌的说法“站不住脚,它完全错了”。IBM是这场量子计算竞赛的参与竞争者之一。 在赞扬谷歌的一些技术进步的同时,吉尔驳斥了“这是计算领域一个开创性时刻”的说法,但他认为这应该被称为一个宏伟的时刻。 吉尔说:“这项研究只是一个实验室实验,基本上,几乎可以肯定地说,它完全是为了实现一个非常具体的量子采样程序,没有实际应用。” 然而,在该领域工作的其他人更愿意支持谷歌的说法。IBM前高管、量子计算初创企业负责人查德·里格蒂(Chad Rigetti)说,这项研究意义深远。“对于这个行业来说,达到这个里程碑是非常重要的。这对人类和科学来说都是一个重大时刻。” 谷歌在一篇题为《使用可编程超导处理程式的量子优势》(Quantum supremacy using a programmable superconducting processor)的研究论文中宣布了它的突破。英国一家媒体首先报道了这一消息,上周该消息被短暂发布在美国宇航局的一个网站上,随后被删除。而谷歌公司尚未表示何时将论文进行正式出版。 数字计算机中的比特不是1,就是0,与此不同的是,量子比特之下,两者可以是同时存在的。再加上另一种被称为纠缠的量子现象,量子比特可以通过纠缠影响其他甚至没有连接的量子,这为系统处理更复杂的大量问题开辟了道路。 计算机界的部分争议在于“量子优势”一词。这个词由理论物理学家约翰·普莱斯基尔(John Preskill)于2012年创造,指的是利用新技术构建的系统能够解决某个问题的时刻,而这“某个问题”是指即使是最强大的超级计算机也无法处理的问题。 这个术语意味着,从现在开始,量子计算机将占据优势,而几乎可以肯定的是,谷歌的说法已经引发了争议。 据一位熟悉该公司的知情人士透露,谷歌的研究人员担心,声称“量子优势”会让他们显得傲慢。他们考虑过为自己的成就创造一个不同的解释短语。 谷歌的优势地位是基于一个在规模或范围上有限的技术测试,即创建一个能够证明随机数生成器生成的数字是真正随机的数字的系统。该公司为此设计的量子芯片代号为Sycamore,在3分20秒内就完成了计算。研究人员估计,世界上最强大的超级计算机需要1万年才能达到同样的结果。 看到这项研究的里格蒂等专家表示,在这个有限的演示背后,是一系列将具有更广泛应用的技术突破,这为全面量子计算指明了道路。 由于难以控制量子比特,今天所有的基本量子系统都受到了影响。它们的量子态只维持了不到一秒钟的时间,在构建有用的系统时,纠正这些系统中的错误是最大的问题。然而,谷歌研究人员声称,他们已经做了足够的工作,产生了显著的结果。 根据南加州大学工程学教授丹尼尔·雷达(Daniel Lidar)的说法,真正的突破是大大降低了量子位相互干扰的程度,即一个叫做“串扰”(crosstalk)的问题。这使得研究人员能够在他们的系统中达到0.1%的保真度。丹尼尔说,尽管看起来很低,但相对于其他团队的成果,这仍然代表着非常低的错误率。 丹尼尔补充称,谷歌还能够展示,其系统中的误差是清楚的并且彼此不相关,而这也意味着它所使用的纠错技术总有一天会适用于更复杂的系统。 “他们已经展示了一条可扩展量子计算的道路,”丹尼尔说道。“一旦你有了一台完全纠正了错误的量子计算机,你将前途无量。” 然而,IBM的吉尔表示,谷歌该“系统”是一种专门用来处理单个问题的硬件,它远不是一台真正可编程的通用计算机。“执行这个任意的程序是一件非常具体的事情,”吉尔说道。 吉尔补充说,这意味着谷歌的优势证明并不是全面量子计算之旅的开始。吉尔认为IBM自己在这一领域的工作是与众不同的。 虽然谷歌的研究仅限于科学实验室,但IBM一直在与许多公司合作,试图为这项技术开发第一批应用程序。IBM一直在使用量子系统,而这些系统的设计初衷并不是为了显示其至高无上的地位,而是试实现“量子优势”,也就是说,实现量子优势时,该技术也就具有了实际用途时,将使其在处理某些问题上优先于经典系统。 不过,丹尼尔表示,即使谷歌的系统还不能完全控制,它也是可编程的。马特·奥奇科(Matt Ocko)是一位风险资本投资者,他支持过许多与量子相关的初创企业,将其与数学家查尔斯·巴贝奇(Charles Babbage)在19世纪早期设计的分析机(analytical engine)进行比较。虽然理论上一个通用的系统可以执行不同的任务,但是引擎的硬件必须被设置来执行特定的计算。 找到为系统编程的方法只是摆在面前的任务之一,这意味着量子计算的实际应用还需要数年时间。但旧金山Data Collective公司的合伙人奥奇科表示,对投资该领域的人来说,谷歌的演示仍然是一个重要的检验。 虽然IBM希望在十年内将量子计算引入主流商业应用,但谷歌已经把目光放得更高了。谷歌希望在解决远远超出当今计算机的问题上取得飞跃,比如蛋白质折叠模型或设计新材料。举个更具体的例子,比如设计出新材料以为更高效的太阳能发电系统提供动力。 对于世界上现有的超级计算机来说,在争夺最强大计算系统的竞赛中,他们并不会因此暗淡而走向终点。丹尼尔等专家提醒道,为这些经典机器编程的新技术,可能使它们能够达到谷歌的水平。但目前至少谷歌站在计算机世界的顶端,没有受到挑战。(腾讯科技审校/羽佳) 原文来源: https://tech.qq.com/a/20190923/009860.htm
个人分类: 量子计算|1523 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-27 23:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部