科学网

 找回密码
  注册

tag 标签: 傅立叶变换

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]我所理解的快速傅里叶变换(FFT)
wxs4ever 2019-3-27 17:46
1.历史放在最前头 首先FFT是离散傅立叶变换(DFT)的快速算法,那么说到FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的? 傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 2.傅里叶变换的意义: 为什么我们要用正弦曲线来代替原来的曲线呢?如果我们也还可以用方波或三角波来代替,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单, 因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 傅立叶变换的物理意义在哪里? 傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。当然这是从数学的角度去看傅立叶变换。 那么从物理的角度去看待傅立叶变换,它其实是帮助我们改变传统的时间域分析信号的方法转到从频率域分析问题的思维,下面的一幅立体图形可以帮助我们更好得理解这种角度的转换: 所以,最前面的时域信号在经过傅立叶变换的分解之后,变为了不同正弦波信号的叠加,我们再去分析这些正弦波的频率,可以将一个信号变换到频域。 有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。 这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 傅立叶变换提供给我们这种换一个角度看问题的工具,看问题的角度不同了,问题也许就迎刃而解! 3.FFT是怎么样完成的? 首先,按照被变换的输入信号类型不同,傅立叶变换可以分为 4种类型: 1、 非周期性连续信号傅立叶变换(Fourier Transform) 2、 周期性连续信号傅立叶级数(Fourier Series) 3、 非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform) 4、 周期性离散信号离散傅立叶变换(Discrete Fourier Transform) 下面是四种原信号图例: 这里我们要讨论是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用, 对于计算机来说只有离散的和有限长度的数据才能被处理, 对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,我们要讨论的FFT也只不过是DFT的一种快速的算法。 DFT的运算过程是这样的: 可见,在计算机上进行的DFT,使用的输入值是数字示波器经过ADC后采集到的采样值,也就是时域的信号值,输入采样点的数量决定了转换的计算规模。变换后的频谱输出包含同样数量的采样点,但是其中有一半的值是冗余的,通常不会显示在频谱中,所以真正有用的信息是N/2+1个点。 FFT的过程大大简化了在计算机中进行DFT的过程 ,简单来说,如果原来计算DFT的复杂度是N*N次运算(N代表输入采样点的数量),进行FFT的运算复杂度是N*lg10(N),因此,计算一个1,000采样点的DFT,使用FFT算法只需要计算3,000次,而常规的DFT算法需要计算1,000,000次! 典型的时域2分裂算法图示如下: 4.变换前后信号的对应关系 以一个实际的信号为例来说明: 示波器采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢? 假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析精确到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析精确到0.5Hz。如果要提高频率分辨率,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 下面这幅图更能够清晰地表示这种对应关系: 变换之后的频谱的宽度(Frequency Span)与原始信号也存在一定的对应关系。根据Nyquist采样定理,FFT之后的频谱宽度(Frequency Span)最大只能是原始信号采样率的1/2,如果原始信号采样率是4GS/s,那么FFT之后的频宽最多只能是2GHz。时域信号采样周期(Sample Period)的倒数,即采样率(Sample Rate)乘上一个固定的系数即是变换之后频谱的宽度,即 Frequency Span = K*(1/ΔT),其中ΔT为采样周期,K值取决于我们在进行FFT之前是否对原始信号进行降采样(抽点),因为这样可以降低FFT的运算量。如下图所示: 可见,更高的频谱分辨率要求有更长的采样时间,更宽的频谱分布需要提高对于原始信号的采样率,当然我们希望频谱更宽,分辨率更精确,那么示波器的长存储就是必要的!它能提供您在高采样率下采集更长时间信号的能力! 5.几种典型周期函数的频谱图 频谱泄露: 所谓频谱泄露,就是信号频谱中各谱线之间相互干扰,使测量的结果偏离实际值,同时在真实谱线的两侧的其它频率点上出现一些幅值较小的假谱。产生频谱泄露的主要原因是采样频率和原始信号频率不同步,造成周期的采样信号的相位在始端和终端不连续。简单来说就是因为计算机的FFT运算能力有限,只能处理有限点数的FFT,所以在截取时域的周期信号时,没有能够截取整数倍的周期。信号分析时不可能取无限大的样本。只要有截断不同步就会有泄露。如下图所示: 上图的信号频率为2.1MHz,采集时间内没有截取整数倍周期的信号,FFT运算之后谱线的泄露现象严重,可以看到能量较低的谱线很容易被临近的能量较高的谱线的泄露给淹没住。 因此,避免频谱泄露的方法除了尽量使采集速率与信号频率同步之外,还可以采用适当的窗函数。 不同的窗函数对频谱谱线的影响不同,基本形状可以参看下图: 可以看到,不同的窗函数的主瓣宽度和旁瓣的衰减速度都不一样,所以对于不同信号的频谱应该使用适当的窗函数进行处理。 矩形窗(Rectangular):加矩形窗等于不加窗,因为在截取时域信号时本身就是采用矩形截取,所以矩形窗适用于瞬态变化的信号,只要采集的时间足够长,信号宽度基本可以覆盖整个有效的瞬态部分。 汉宁窗(Von Hann):如果测试信号有多个频率分量,频谱表现的十分复杂,且测试的目的更多关注频率点而非能量的大小。在这种情况下,需要选择一个主瓣够窄的窗函数,汉宁窗是一个很好的选择。 flattop窗:如果测试的目的更多的关注某周期信号频率点的能量值,比如,更关心其EUpeak,EUpeak-peak,EUrms,那么其幅度的准确性则更加的重要,可以选择一个主瓣稍宽的窗,flattop窗在这样的情况下经常被使用。 6.总结 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在我就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号最高频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方(参见FFT原理)。FFT运算量:Nlog2N(2为对数的底) 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率F0=Fs/N。假设频率分辨率F0=Fs/N限定,采样频率Fs也给定,也已知信号最高频率Fh,那么由采样定理:Fs》=2Fh得到:N=Fs/F0=2Fh/F0,即采样点必须满足这样一个关系式。 如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,相应的采样点也为原来2倍,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即延长采样时间,所以频率分辨率和采样时间是倒数关系,就是说,要想分辨出频率间隔越小的频率(频率分辨率越高),采样时间越长越好。 --------------------- 作者:沈子恒 来源:CSDN 原文:https://blog.csdn.net/shenziheng1/article/details/52891807 版权声明:本文为博主原创文章,转载请附上博文链接!
个人分类: 扫盲知识库|14289 次阅读|0 个评论
[转载]小波无罪Shannon采样定理也没有违法
热度 1 SciteJushi 2015-11-22 08:42
原载 http://blog.sina.com.cn/s/blog_729a92140102vz7w.html 由于某些原因,人们在应用实践中,常未明确考虑基于连续时间小波基函数的被处理数据初始化问题,或无交代,甚至有人误以为Mallat算法就已解决了这一问题。有研究者,对此状况,持较严厉的批评态度,于是有“小波罪恶(wavelet crime)”之说,如图片1的顶部所示。 把离散变换和连续时间信号联系起来,可以更好地理解和开拓应用,但这样常不得不接受近似处理。在与Mallat算法有关的小波变换中,过渡联系的麻烦,表现得尤其突出,难被消除。严格地说,在很多实践中,紧支集连续时间小波基函数,还不算真有用。 习惯于傅立叶分析时,可能想,用矩形窗截取FIR低通滤波器序列的傅立叶变换的一个周期,然后利用频谱的伸缩以获得不同的低通带宽度,就得意味着不同分辨率的子空间簇。然而实际上,在Mallat等的连续时间能量有限信号空间的多分辨分析理论中,尺度函数以及嵌套子空间列,有非直观的特殊的定义方式。人们常难由FIR滤波器组用闭式表达连续时间基函数,只知在极限意义上存在,一个具有某些性质的连续时间尺度函数和小波函数系。 即使,可用解析式表示被处理信号,也不一定容易计算出它与某个紧支集基本函数的平移系的内积,更何况,实际应用中常常只知离散序列 (名著“十讲”第五章后的注释 12,是研究初始化滤波的引子), 难确定其对应的合适函数子空间。这个内积,是连续时间基函数的应用解释的严密性的关键,而也反使数字频率与模拟信号物理频率的精确联系变得麻烦。 如果什么都已知的话,也许 人们 就不需离散小波变换,来做压缩或降噪等事情了。 见到Matlab小波工具箱通过数字计算画个小波函数曲线时,也不清楚其中局部扭结小尖峰,正是好的性质的体现,还是有了较多数字误差。 居士脱离连续时间,直接讨论离散小波包变换,可以使计算理论更独立严谨。这正如,离散傅立叶变换及其快速算法,不必依赖于,连续时间和连续频率概念。由离散时间滤波器组,进入某些函数空间,在其中做理论分析等,是其它的故事。不同的部分,各有价值。 某些问题还未解决好,或未被意识到,或者论述行文失误,都是研发中较常见的事,不意味着“犯罪或邪恶”。这正如,不能说,应用傅立叶变换或Shannon采样定理时的不都定量的近似,是“违法”行为。现代的傅立叶变换理论,已包括很多部分,在数字计算中实际常用的是FFT。各部分连接的关键基础,在长时间的大量文献中 , 同样可能有“不尽人意”之处。当然,批评与自我批评,有事说事,努力解决问题,这是正道。 在傅立叶让他的级数出世后,人们用了相当长的时间,理清傅立叶级数的收敛性问题。 图片1.中关于采样定理的描述,取于国内外的著名教科书或著作,并不是研发初学者之作。 看起来,不算“明确而精辟”。 为什么不用开区间,表示信号的频谱?直观地看:采样使频谱周期延拓时,闭区间有重叠点,使“离散谱”混叠、消失、或不能区分两个边界频率;而且,理想滤波器的频响,在边界频率处不连续,使人感到,不确定、不安全、宜避开。开区间,至少从形式上就排除了麻烦:在边界频率上的正弦信号一个周期内,正好都采到零。 为什么不用半开半闭区间,表示信号的频谱?直观地看:频谱周期延拓时,可无重叠点,也包括了整个频率轴,更像是在频谱的采样离散化时单个周期的两端点中只取一侧。 早期的采样定理中的信号及其傅立叶变换,到底需要什么严格条件? 维基百科,并不排除,定理适用于频率在边界以内的正弦信号(如文后附1.)。“教育部研究生工作办公室推荐研究生教学用书”《数字信号处理》,有专节讨论正弦信号抽样的问题。更一般地讲,定理要面对离散频率成分的问题。 绝对可积函数的傅立叶积分变换,或连续频谱函数,不适用于正弦波。像Dr.Daubechies那样,把带限信号集,视为能量有限 (无穷时间) 信号空间的子空间,陈述采样定理时,也排除了正弦函数等功率有限而能量无限的周期信号。 使用冲激函数串来推演采样定理,这意味着引入了广义函数的傅立叶变换。统一表达了离散谱线和连续区间上的频谱之后,定理就包括了正弦函数。 现在相信,实际信号都是能量有限的,不存在无始无终的永动机式的精确单频率运动过程,人们天天做的采样、数-模转换、滤波都是现实的。然而,信号分析实验中常用的三角函数模型和采样定理中的sinc插值重建函数,都不是物理可实现的。 即使,认为现实中能记录的信号,都既是时限的也是带限的,也不都很精确每个实际问题中的误差,一般也不随Slepian等研究“时-频限”。很多时候,也未必明确所谓的冲激函数串的理想化抽象近似的量度。 Shannon采样理论,用sinc函数做 理想 插值重建(Whittaker–Shannon interpolation formula),违背因果律。很强调了带限,削弱了对现实时限的注意。实际上,采样率变化了,那么,某给定时间区间内的重建信号,受该区间外的样本点影响的程度,也就不同了。假如对插值函数做截断近似,则还需要兼顾函数值的量化误差。 至此,容易注意到,过采样的采样率很高时,可以认为很多“插值函数、重建基函数”都可“更近似于冲激函数”,其差别减小了。这样,使用多分辨分析子空间的小波变换的初始化时,误差也可能减小。 记得当年老师说,凭经验,实用电路中,采样频率一般大于信号成分的最高频率的2.5倍,因为低通模拟滤波器的过渡带不是理想的。田边顽童,不识定理,更无非均匀采样理论,而可能用小石子或谷粒拼出些自以为像人头的图案,指指点点,叫这个狗娃,称那个胖仔。 新浪赛特居士SciteJushi-2015-11-22。 图片 1.小波罪恶之说与采样定理的表述 附 1:Wikipedia中的采样定理(Nyquist–Shannon sampling theorem) 部分的摘录 Sampling is the process of converting a signal (for example, a function of continuous time and/or space) into a numeric sequence (a function of discrete time and/or space). Shannon's version of the theorem states: If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2 B ) seconds apart. A sufficient sample-rate is therefore 2 B samples/second, or anything larger. Equivalently, for a given sample rate f s , perfect reconstruction is guaranteed possible for a bandlimit B ≤ f s /2. When the bandlimit is too high (or there is no bandlimit), the reconstruction exhibits imperfections known as aliasing. Modern statements of the theorem are sometimes careful to explicitly state that x ( t ) must contain no sinusoidal component at exactly frequency B , or that B must be strictly less than ½ the sample rate. The two thresholds, 2 B and f s /2 are respectively called the Nyquist rate and Nyquist frequency . And respectively, they are attributes of x ( t ) and of the sampling equipment. The condition described by these inequalities is called the Nyquist criterion , or sometimes the Raabe condition . The theorem is also applicable to functions of other domains, such as space, in the case of a digitized image. The only change, in the case of other domains, is the units of measure applied to t , f s , and B .
1129 次阅读|2 个评论
重修微积分6——微分
热度 10 xying 2015-5-1 08:05
芝诺“飞矢不动”的悖论说:飞行的箭,每个时刻都占据了一个确定的位置,这意味着它不会同时存在其他的位置,箭矢的位置固定,所以它在这时刻是静止的。依此推理,飞行的箭在任何时刻都是静止的,所以运动在逻辑上是不可能的。 对于这个悖论,有不同的解答。黑格尔认为运动就是一对矛盾,每个时刻飞矢是既在这个位置又不在这个位置上,用辩证法回避了形而上学的挖掘。康德认为时间和空间并非事物的属性,而是我们感知事物方式的属性,这个矛盾是我们过去时空观念的疵瑕。休谟否认时空的无限可分性,以此也可以给出有穷时空的离散化解释。而牛顿坚持了时空无穷可分的观点,用微积分给予近代的解释。从而也让时空无穷可分的假设变成了公认的真理。 运动在直观上是个时间段上位移的现象,当一个物体在时刻 t 0 到 t 1 的时段,从位置 x 0 到了 x 1 ,如果Δ t = t 1 -t 0 ≠ 0 时Δ x = x 1 -x 0 ≠ 0 ,我们说它是在运动。物体在这时段的速度为Δ x / Δ t ,意思是位移对时段里时间流逝的变化率。物体时刻 t 1 在位置 x 1 ,这个信息,不足以判定它是静止还是运动的。只要Δ t 0 ,速度Δ x/ Δ t ≠ 0 ,在 ,那么 D 的特征向量集合 $\{e_k=\frac{1}{\sqrt{2\pi}}e^{-ikt} \; | \; k \in \mathbb{Z} \}$ 便是这空间上的一个正交归一基。 让我们首先来验证正交归一性。对于 L 2 空间,它的内积定义是 $ \left \langle f{(\cdot)},g(\cdot) \right \rangle = \int_0^{2\pi}f(t)\overline{g(t)}dt$ ,对于任意整数 m,n ,我们有: $\left \langle \frac{1}{\sqrt{2\pi}}e^{-imt},\frac{1}{\sqrt{2\pi}}e^{-int}\right \rangle =\frac{1}{2\pi}\int_0^{2\pi}e^{-imt}e^{int}dt =\frac{1}{2\pi}\int_0^{2\pi}e^{-i(m-n)t}dt = \delta_{mn}$ 这就证明了它们是正交归一的。空间中向量 $f(\cdot)\in L^2 $ 在 e k 上的投影是: $\left \langle f(\cdot),e_k \right \rangle = \frac{1}{\sqrt{2\pi}}\int_0^{2\pi}f(t)e^{ikt}dt$ 这是大家熟悉的函数 $f(\cdot)$ 傅立叶系数的复数形式(若将复数展开成余弦和正弦正交基,则系数乘一个常数因子)。函数 $f(\cdot)$ 对这组向量的分解是傅立叶级数,不难证明这个傅立叶级数收敛于 $f(\cdot)$ 。所以它们构成了 L 2 空间上的基。经典的傅立叶级数,就是建立在微分算子 D 一组在 L 2 空间正交归一的特征向量上。这组可数的基张成了 L 2 希尔伯特空间。 注意到微分算子 D ,有不可数的特征向量 $e^{-iat}$ ,所以它们在无穷序列表达下可能是线性相关的。这取决于它们所在的空间。 是不是所有希尔伯特空间中的点都能表达成无穷级数?也就是说,是不是它们都有可数的基?答案是否定的。 例如:对于函数定义内积为$\left \langle f(\cdot),g(\cdot) \right \rangle = \lim_{T\rightarrow \infty}\frac{1}{T}\int_{-T\pi}^{T\pi} f(t)\overline{g(t)}dt$,它构造了一个希尔伯特空间$L^2(-\infty, \infty)*$,对所有的实数s,t的函数$e_s(t) = \frac{1}{\sqrt{2\pi}}e^{-ist} $都是这空间上线性算子D的特征向量,不难验证它们是正交归一的,这组向量是不可数的。 $L^2 $ 是可分的希尔伯特空间,里面的函数可以用傅立叶级数来表达(在 L 2 积分意义下收敛,级数展开几乎处处逐点收敛于它)。而 $L^2(-\infty, \infty)*$ 这希尔伯特空间是不可分的,所以这里的函数不能用傅立叶级数来表达。例子里那组向量是个不可数的正交归一基,这空间里的函数可以用积分变换来表达对这组基的分解和线性组合。从内积公式得到傅立叶变换,即是对这组基分解的分布函数;对基向量分布性分解的线性组合可直接写出傅立叶变换的反演。这提供了一个通俗的直观解读。更深入的探讨,诸如无穷区域的积分,无穷小分解系数分布函数的表达,积分的线性组合表示,及扩充到广义函数等等数学细节,在Sobolev空间可以得到更严谨的解读。 数学是直观想象在逻辑上精确化的学问。希尔伯特空间的研究,源自狄拉克对量子力学算符的表达。狄拉克非常注重数学上形式的美,简洁的美,他以此扩充了许多直观概念的应用场合,取得十分漂亮的结果。但在无穷世界的想象,还是需要用精确的逻辑来校正。 1927 年冯·诺依曼、希尔伯待和诺戴姆的论文《量子力学基础》,纠正了狄拉克缺乏严谨的不足。 在早期的泛函分析研究,特别是在物理应用中,希尔伯特空间指的是可分的完备的内积空间,即这空间有可数的稠集。上面的例子说明并非都是如此的。 大家已经熟悉在 $\mathbb{R}^n$ 空间上的微分,怎么将它推广到往整体看不是那么“平整”的空间?先看看平面几何是怎么使用的。我们生活的大地实际上是地球球面上的一部分,把这个局部当作 2 维的欧几里德空间,或者说映射到 $\mathbb{R}^2$ 空间。每一个局部地方在映射下对应着一个平面地图,球面上每个地点对应着平面地图上一个坐标,我们可以用坐标进行这个球面局部的各种计算。用几张平面地图覆盖了全球,就可以计算地球的各处。 对高维和更一般情况,也可以类似地,把拓扑空间 X 的一个局部开集,一一映射到 $\mathbb{R}^n$ 空间上来计算。 X 空间上的一个点 x 对应着 $\mathbb{R}^n$ 空间上的一个点,称为 x 的坐标, x 的邻域对应着坐标的邻域以保持对应的收敛关系。所以这个映射必须是同胚的,也就是这个一一对应的映射双向都是连续的,就像 X 中的这个开集通过伸缩变形展平成 $\mathbb{R}^n$ 空间的开集一样。如果有一族这样的开集覆盖了 X ,都能做到这样的映射,那么 X 上的每个点都有了 n 维实数的局部坐标。这样的 X 空间便称为 流形 。覆盖开集的重叠部分,流形上的点在不同映射的局部坐标系上,可以进行坐标变换。因为这样的映射是定义在开集上,所以 x 点总有一个足够小的邻域是完全在一个映射的局部坐标系上, x 点与它坐标的收敛关系是一一对应的,如果交集之处的坐标变换是连续可导的,整个流形通过这些映射的坐标系,便可以有对应的微积分计算,这时称为 微分流形 。 当然并非任何的拓扑空间都能做到这一点。流形 X 的拓扑不能太粗,对于两个点必须有能够分开的邻域,即是 T2 或者称为 Hausdorff 空间;拓扑也不能太复杂,要有可数的拓扑基(其元素的并能够生成所有开集,即是第二可数的)。局部映射必须与相同维数的 $\mathbb{R}^n$ 空间同胚。下面是用数学语言描述的定义。 X 是第二可数,T2的拓扑空间,若在一个覆盖X的开集族中的每个开集,都有一个嵌入$\mathbb{R}^n$的同胚映射,X可以称为 n维拓扑流形 ,这个映射称为 坐标图 。在拓扑流形上,两个坐标图交集部分的点在不同的坐标图上映成不同的(坐标)点,如果这两个坐标变换函数有r阶连续导数,则称它们是C r 相容的坐标图。如果所有坐标图都是C r 相容的,则称这个流形为 C r 微分流形 。r为无穷大时称为 光滑微分流形 。 对于一般的距离空间,它是 T2 ,但只是第一可数的。如果它还是可分的,则它是第二可数的,这个拓扑中任何的开集都能由一组可数开球,用它们的并集来构成。可分的距离空间满足第二可数和 T2 的条件,只要每点的开邻域都有同维数的同胚坐标映射,就可以是流形。 两个维数分别为 m 和 n 的 C r 微分流形间的映射称为 C r 映射,它可以表示为对应点局部坐标上的 C r 函数。对这个函数的求导和积分,对应着这两个流形间的映射在这局部区域上的相应的运算。比如说, n 维光滑微分流形 X 到 $\mathbb{R}$ 的函数,在 X 中点 x 的邻域对应着 $\mathbb{R}^n$ 空间上一段光滑曲线。这条光滑曲线,对应着 x 点的切线(用方向导数表示)是一个 n 维向量,所有这些切向量形成的空间称为 X 在 x 处的切空间。虽然上述的切空间是由某一局部坐标系下定义的,可以证明不同的坐标系导出的切空间是相同的。直观上可以想象成二维 X 曲面在 x 这一点上的切平面。如果一个映射 F 将 C r 微分流形 X 上每一点都对应着它切空间上的一个向量, F 称为 C r 向量场,在局部坐标下表示如下,其参数都是 C r 函数。 $F = \sum _{i=1}^n a_i(x)\frac{\partial }{\partial x_i}$ 纤维丛 的定义了包含三个拓扑空间 B , M , Y 和一个投影映射 p :基空间 M 是全空间 B 的投影 p(B)=M ;基空间上每一个点 x 对应着这个投影在全空间 B 里的原像 p -1 (x) ,这原像与丛空间 Y 同胚,称为这点上的丛;基空间上每一点存在着一个邻域 U ,直积空间 UxY 与 U 的投影原像 p -1 (U) 同胚。在直观上可以想象二维曲面 M ,每一点 x 上都有一根 p -1 (x) 的纤维,这些纤维互不相交,全体构成三维空间 B 。 B 中的每一点都可以沿着纤维对应到 M 的同一个点上(称为投影),全空间上点的邻域在纤维上和投影到基空间上仍然是它们的邻域。不要把基空间 M 想象成一把刷子的底部, M 应该看成是全空间的一个横截面,密实的纤维集束穿过这个横截面向两边无限延伸。每根纤维都像直线 Y 的弯曲变形。纤维丛的数学模型也可以用来描述物理空间中的场。 微分流形和纤维丛,若以欧几里德三维空间中的曲面和纤维集束几何体来看,都不难想象其图像。不过它们是在抽象的点集拓扑空间上有严格的定义,从而能够在上面推广微积分的应用。这些都是现代微分几何课程的内容,这里的简略介绍,希望通过较精确的数学定义,让大家可以想象这些概念。 (待续) 【扩展阅读】 冯·诺依曼关于量子理论的数学基础,算子环,遍历理论的研究 http://www.kepu.net.cn/gb/basic/szsx/2/25/2_25_1008.htm 钱诚德,高等量子力学 http://course.zjnu.cn/huangshihua/book/%E9%92%B1%E8%AF%9A%E5%BE%B7_%E9%AB%98%E7%AD%89%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6.pdf 关肇直等,张恭庆,冯德兴,线性泛函分析入门,上海科学技术出版社, 1979 维基百科,流形 http://zh.wikipedia.org/wiki/%E6%B5%81%E5%BD%A2 程代展,系统与控制中的近代数学基础,北京:清华大学出版社, 2007 http://product.dangdang.com/9350967.html
个人分类: 科普|9769 次阅读|16 个评论
[转载]傅立叶变换的原理、意义以及如何用Matlab实现快速傅立叶变换
sanshiphy 2014-9-16 17:02
以下内容转载自 http://hi.baidu.com/cathy199005/item/d623d4ec06ec9305560f1d9b,大家可以和我的博文 经典谱分析(Power Spectrum Analysis)对照理解http://blog.sciencenet.cn/blog-200199-242357.html 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: http://www.dspguide.com/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别: 1 非周期性连续信号 傅立叶变换(Fourier Transform) 2 周期性连续信号 傅立叶级数(Fourier Series) 3 非周期性离散信号 离散时域傅立叶变换(Discrete Time Fourier Transform) 4 周期性离散信号 离散傅立叶变换(Discrete Fourier Transform) 下图是四种原信号图例: 这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。 但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。 每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。 还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。 四、傅立叶变换的物理意义 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。任意的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 五、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其狊谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。 六、一个关于实数离散傅立叶变换(Real DFT)的例子 先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图: 9个正弦信号: 9个余弦信号: 把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图: 上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x 表示每种频率的副度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X ,另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。 七、用Matlab实现快速傅立叶变换 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。 从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看: 1点: 512+0i 2点: -2.6195E-14 - 1.4162E-13i 3点: -2.8586E-14 - 1.1898E-13i 50点:-6.2076E-13 - 2.1713E-12i 51点:332.55 - 192i 52点:-1.6707E-12 - 1.5241E-12i 75点:-2.2199E-13 -1.0076E-12i 76点:3.4315E-12 + 192i 77点:-3.0263E-14 +7.5609E-13i 很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下: 1点: 512 51点:384 76点:192 按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。 然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。 总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
个人分类: 学习笔记|8823 次阅读|0 个评论
《数理同源》-5-数学的诗篇
热度 11 tianrong1945 2014-4-4 07:37
4. 数学的诗篇 欧拉 - 拉格朗日方程是泛函有极值的必要条件,它的建立 使变分法与微分方程联系起来,变分法与欧拉 - 拉格朗日 方程代表的是同一个物理问题。因此,这两种方法可以互相转化。通过解微分方程能得到变分问题的解,而当微分方程的边值问题难以求出解析解的情形下,变分原理给出的数值近似解提供了一种切合实际的应用方式,比如现在在物理及工程中应用广泛的有限元法便是一例。 之后,对各种偏微分方程的研究导致了数学物理方程的建立,偏微分方程成为各个物理领域的基石。什么是偏微分方程?未知函数只含一个自变量的导数的方程叫做常微分方程,如果方程中包含多于一个自变量的导数的话,则就是偏微分方程。 历史上研究最早的偏微分方程是波动方程,从研究乐器中弦的微小横振动开始。那个时代的大多数数学家和物理学家也喜欢音乐,对音乐的爱好促成了他们对弦线振动规律的研究。好几位数学家都对弦振动问题作出过贡献,达朗贝尔 1747 年向柏林科学院提交的论文《弦振动形成曲线的研究 》【 1 】 被视为此领域的经典。 法国人达朗贝尔( Jeanle Rond d ’ Alembert , 1717 — 1783 )有一个悲惨的身世。他是一位军官和法国女作家、当时颇为著名的沙龙女主人唐森的私生子,出生后数天便被母亲遗弃在教堂的台阶上,所以以教堂的名字而命名。后来,达朗贝尔的生父安排一个装玻璃工人的家庭收养了他的儿子,并一直暗中资助,给予抚养费,使达朗贝尔从小能受到良好的教育。 达朗贝尔兴趣广泛,除了数学和物理之外,还研究过心理学、哲学、及音乐理论,并都有所建树。后来,达朗贝尔致力于编纂法国《百科全书》,是法国百科全书派的主要首领。尽管达朗贝尔对科学的许多方面都做了杰出贡献,是法国当时的著名人物,但因为他生前反对宗教,死后巴黎市政府拒绝为他举行葬礼。 弦线的运动不同于当时研究最多的牛顿经典力学中单个粒子的运动轨迹,而是要研究一条弦线上所有(无穷多个)质点的运动轨迹。所幸当时已经有了微积分的概念,因而可以抽象地把一条弦想象成由很多段极微小的部分组成。如图 1a 所示,这些部分的 x 位置各不相同。运动时,每个 x 位置不同的一小段弦线的高度 U 随时间变化的规律也不一样,因此,整条一维弦线的运动可以用一个两个变量的函数 U ( x , t )来描述。 图 1 :( a )弦线( b )弦上波动的传播( c )不同的初始条件 1727 年,英国数学家布鲁克·泰勒和约翰·伯努利都分别得到了弦振动的方程,也就是一维的波动方程: U tt - α 2 U xx =0 , ( 1 ) 这儿 U tt 和 U xx 分别表示 U 对 t 的二阶偏微分和 U 对 x 的二阶偏微分。 弦振动方程中包含了未知函数对两个自变量的微分: U 对 t 的微分,以及 U 对 x 的微分,因而,它是一个偏微分方程。 1747 年,达朗贝尔给出了弦振动方程( 1 )的通解: U = φ (x+ α t)+ Ψ (x- α t) ( 2 ) 所谓通解,就是说实际解有无穷多个,必须由一些附加条件(初始条件和边界条件)来决定具体物理问题的具体解。 公式( 2 )后来被称为达朗贝尔解,其中的φ、Ψ为任意函数,而φ (x+ α t) 和Ψ (x- α t) 分别代表沿 -x 方向和沿 +x 方向以速度α传播的波。函数φ、Ψ的具体形式可以由振动的初始条件决定。比如,对乐器上的弦来说,初始条件就是演奏者拨动琴弦的方式。对同样的弦乐器,用薄片拨动和用弓在弦上拉动,效果是不一样的,这就是因为两种方法给出了两种不同的初始条件(图 1c ),然后,初始扰动沿着琴弦传播,如图 1b 所示,使人听起来便有了不同声音的感觉。 我们在日常生活中对波动的传播早有体会,“一石激起千层浪”描述的是水波的传递,振动在琴弦上的传播可以类似于在一根绳子上传递的扰动:当我们用力上下抖动一条另一头固定了的绳子,就会发现在绳子上形成一个又一个向前传播的波,抖得越快波浪就越密,也会传得越快。 继达朗贝尔得出弦振动方程的通解之后,欧拉在 1749 年考虑了当弦线的初始形状为正弦级数时的特解,那是正弦级数的叠加。 1753 年,丹尼尔·伯努利在欧拉结果的基础上,对此提出一个新观点,他猜测弦线的任何初始形状都可以表示成正弦级数,因而弦振动所有的解都可以用正弦周期函数的线性组合来表示。现在看来,这不就是傅立叶变换的思想吗,但当时这个观点却招到欧拉和达朗贝尔的强烈反对,在数学家中引起了激烈的争论。 1759 年,拉格朗日也对谐波叠加表示信号的想法提出强烈反对。他认为这种方法没多大用处,他的理由是:要知道实际信号并不像绳子和琴弦啊,信号是会中断的!就好比是正在演奏时突然断了的一条弦,拉格朗日说,你怎么用三角函数来分析断了的弦呢? 长江后浪推前浪,又过了差不多 50 年,拉格朗日的学生傅里叶登场了。 现在回顾起来,微积分创立之后的 18 、 19 世纪欧洲数学界,的确群雄聚集,热闹非凡。在微积分的两位祖师爷牛顿和莱布尼茨当初吵得不可开交的时代里,牛顿的威望不可一世。但在微积分理论被完善发展的年代,却大多数都是莱布尼茨的门徒们的功劳,如前面我们叙述过的约翰•伯努利和雅各布•伯努利,都是莱布尼茨的学生。后来的欧拉、丹尼尔•伯努利,以致法国的达朗贝尔、拉格朗日、拉普拉斯、傅里叶……等等,都是莱布尼茨这边一脉相承的后继之人。相形之下,牛顿下面很有出息的门徒甚少,颇似孤家寡人,见图 2 。 为何莱布尼茨一派桃李芬芳,牛顿旗下却后继无人呢?其原因一方面与英国的保守观念有关,另一方面也与两位大师的风格相联系。英国一派坚持牛顿所用的几何方法,甚至坚持使用牛顿“流数术”的语言,大有固步自封的味道。而莱布尼茨一派后来则朝分析的方向大步向前发展。几何方法虽然直观易懂,发展毕竟缓慢且有限。由莱布尼茨创立,欧拉、拉格朗日等发展的分析学( analysis ),促成当时非英国派数学家作出了不少开拓性的贡献。所以,要学好数学和物理,不能只靠几何和直观,分析还是要学,数学公式还是少不了的。 图 2 :十七 - 十九世纪欧洲几个主要的数学精英 那个时代的有名数学家中,不少是法国人,法国是一个注重数理演绎、具有数理科学传统的国家。约瑟夫•傅里叶( JosephFourier , 1768 - 1830 )也是法国数学家。他出身贫民, 9 岁时父母双亡,由教会提供他到军校就读,在学校里傅里叶表现出对数学的特别兴趣和天分,但法国大革命中断了他的学业。大革命中,他曾经热衷于地方行政事务,也曾经跟随拿破仑远征埃及,后来被拿破仑授予男爵称号。在几经仕途沉浮之后,傅里叶最后于 1815 年,拿破仑王朝的尾期,辞去了爵位和官职,返回巴黎全心全意地投入数学研究。 不过,傅里叶的最重要成果,广为人知的傅立叶级数和傅立叶变换,是他在大革命期间从政当官时业余完成的。他当时热衷于热力学的研究,为了表示物体的温度分布,他提出任何周期函数都可以用与基频具有谐波关系的正弦函数来表示。现在我们得知,这个结论不是十分正确的,他的学生狄利克雷后来对此结论进行修正,并给出了完整的证明。狄利克雷将“任何周期函数”修正为满足狄利克雷条件的周期函数,即对有限区间上只有有限个间断点的函数。 1807 年,傅立叶就他的热力学研究结果向法国科学院呈交了一篇长长的论文。但这篇文章遭到当时几个数学权威的反对未曾发表。这其中特别是拉格朗日,仍然坚持他 50 年前的观点。傅立叶将文章改了又改,最后得以发表,并最后形成了《热的解析理论》这部划时代的著作 【 2 】 。 傅立叶的理论源于音乐,从描述琴弦振动开始,后来由于对热传导的研究而发展建立,但它的效果和影响远远不止于此。傅立叶等,甚至包括当代的数学家、物理学家、工程师们,将这个理论扩展完善成了一个庞大的家族:从傅立叶级数、傅立叶变换,到傅立叶分析;从周期函数开始,到非周期的、连续的、离散的、模拟的、数值的、快速的、短时的、时间的、空间的、多维的……。当代的文明社会,各种“信息”漫天遍地,无所不在;而为了处理“信息”、以支撑这个文明大厦的科学技术领域中,傅立叶的家族成员也比比皆是,无所不在! 图 3 :信息工程中经常使用的:将矩形波信号展开成傅立叶级数 傅立叶在他的热理论中所用的分析方法,包括傅立叶理论,无疑是数学物理中一首绝美的诗篇。 刚才还说过莱布尼茨底下人才济济,牛顿则比之不足。不过,傅立叶的工作对英国人格林( Green,George, 1793-1841 )的影响很大,格林把数学分析应用到静电场和静磁场现象的研究。之后又有哈密顿( Hamilton,WilliamRowan, 1805- 1865 )、斯托克斯( Stokes, George Gabriel, 1819- 1903 )、威廉·汤姆孙( WilliamThomson, , 1stBaron Kelvin , 1824-1907 )等人,剑桥学派的崛起为英国人争了一口气,扳回了战局! 与傅立叶同时代(晚十年左右),有另一位法国数学家泊松( Siméon Denis Poisson , 1781-1840 ),是拉格朗日最欣赏的学生。泊松也对数学物理做出了非凡的贡献,在理论物理中留下不少他的大名:泊松分布、泊松括号等等。此外还有泊松方程,是数学物理中除了波动方程及热传导方程之外的另一类常见的二阶偏微分方程。 泊松方程(椭圆型):α 2 U xx + b 2 V yy = 0 , 波动方程(双曲线型): U tt - α 2 U xx =0 , 热传导方程(抛物线型): U t - kU xx = 0 , 类比于用系数判别式将平面上的二次函数归类为椭圆、双曲线和抛物线,线性二阶偏微分方程也可以由其系数判别式的性质而被分类为椭圆型、双曲线型和抛物线型。上面所写的泊松方程、弦振动方程和热传导方程便是这几种类型偏微分方程的最简单例子。 参考资料: 【 1 】 D'Alembert(1747) Recherches sur la courbe que forme une corde tenduë mise envibration (Researches on the curve that a tense cord forms setinto vibration), Histoire de l'académie royale des sciences et belles lettresde Berlin, vol. 3, pages 214-219. http://books.google.com/books?id=lJQDAAAAMAAJpg=PA214#v=onepageqf=false 【 2 】 JosephFourier, The Analytical Theory of Heat (Dover Phoenix Editions) (1878). http://www3.nd.edu/~powers/ame.20231/fourier1878.pdf 上一篇:数学家的绝招 系列科普目录 下一篇 :狄多女王的智慧
个人分类: 系列科普|12816 次阅读|14 个评论
[转载]为什么要进行傅立叶变换
sinxcao 2013-8-4 18:26
一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: http://www.dspguide.com/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别: 1 非周期性连续信号 傅立叶变换(Fourier Transform) 2 周期性连续信号 傅立叶级数(Fourier Series) 3 非周期性离散信号 离散时域傅立叶变换(Discrete Time Fourier Transform) 4 周期性离散信号 离散傅立叶变换(Discrete Fourier Transform) 下图是四种原信号图例: 这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。 但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。 每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。 还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。 四、傅立叶变换的物理意义 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 五、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。 六、一个关于实数离散傅立叶变换(Real DFT)的例子 先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图: 9个正弦信号: 9个余弦信号: 把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图: 上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x 表示每种频率的副度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X ,另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。 七、用Matlab实现快速傅立叶变换 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。 而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如 某点n所表示的频率为:Fn=(n-1)*Fs/N 。由上面的公式可以看出, Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz 。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下: S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。 式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们 以256Hz的采样率对这个信号进行采样,总共采样256点。 按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。 从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看: 1点: 512+0i 2点: -2.6195E-14 - 1.4162E-13i 3点: -2.8586E-14 - 1.1898E-13i 50点:-6.2076E-13 - 2.1713E-12i 51点:332.55 - 192i 52点:-1.6707E-12 - 1.5241E-12i 75点:-2.2199E-13 -1.0076E-12i 76点:3.4315E-12 + 192i 77点:-3.0263E-14 +7.5609E-13i 很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下: 1点: 512 51点:384 76点:192 按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。 然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。 总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。 八、 让傅立叶变换从理性蜕变到感性,从抽象升华到具体 ( 应不少网友反应说以上7部分还是不够浅显而另加的一部分,希望对大家有所启发 ) 1、我们都知道,LTI系统对谐波函数的响应也是相同频率的谐波函数,只是幅度和相位可能不同罢了,因此我们用谐波函数来表示信号正是为了导出频域的概念。那你就会问为什么我们要在频域来分析信号,它比时域分析究竟好在哪里呢?这个问题非常好,我来回答你,第一,在频域观察和分析信号有助于揭示系统的本质属性,更重要的是对于某些系统可以极大地简化其设计和分析过程。这一点想必大家都知道,我不再啰嗦!第二,从数学上来看,系统从时域到频域的转换就意味着系统的微分或差分方程将转变为代数方程,而系统的分析也将采用描述系统的复系数代数方程而不是微分或差分方程。既然如此,那么请问?童鞋,你是喜欢跟微分差分方程玩儿呢还是喜欢跟代数方程玩儿呢?假若你说你更喜欢跟微分差分方程玩儿。那我也无话可说啦! 可能你还是觉得以上所述只是一个很理性的认识,那么接下来,满足你的感性需求。其实,在生活中,我们无时无刻不在进行着傅立叶变换。(什么?我没有听错吧?!)对的,请相信你的耳朵,你完全没有听错。我们来看人类听觉系统的处理过程:当我们听到一个声音,大脑的实际反应是什么?事实上耳朵感觉到一个时变的空气压力,这种变化也许是一个类似于口哨声的单音。当我们听到一个口哨声时,我们所关心的并不是气压随时间的振动(它非常非常快!),而是声音的三个特征:基音、声强以及音长。基音可以理解为频率的同义词,声强不是别的,它就是幅度。我们的耳朵—大脑系统能有效地将信号表示成三个简单的特征参数:基音、声强以及音长,并不理会气压的快速变化过程(一个重复的变化过程)。这样耳朵—大脑系统就提取了信号的本质信息。傅立叶变换的分析过程与此类似,只不过我们从数学意义把它更加精确化和专业话罢了。 2、不要把傅立叶变换想得那么高深莫测,其实它就是对傅立叶级数的一种拓展。我们知道,傅立叶级数能描述无限时间的周期信号。那么,傅立叶级数能不能描述某些特殊的无限时间的非周期信号呢?答案是,不能。但我们经常要分析处理这样的信号啊!于是傅立叶变换这个家伙现身啦!傅立叶变换就是为了使傅立叶级数能够描述所有(没错!就是所有!)周期和非周期的无限时间信号而导出的,因而傅立叶变换是对傅立叶级数的一种拓展。 可能你还是觉得以上所述只是一个很抽象的认识,那么接下来,满足你的具体需求。我们先不管是怎么进行拓展的。我们先关注另外两个概念:周期信号和非周期信号。他们的显著区别就在于:周期信号每隔一个有限的时间即基波周期To重复一次。它自始至终都将以这个基波周期To重复。而非周期信号则没有一个确定的或固定的周期,可能在一段时间内他将重复某一段波形很多次,但不会在整个无限长时间范围都如此。我们找到一个周期信号的傅立叶级数,然后让这个信号的基波周期趋于无限,就完成了从傅立叶级数到傅立叶变换的演变过程。因为当周期信号的基波周期趋于无限时,它的波形在有限长时间内都不会重复,这时它就不具有周期性啦!也就是说,说一个信号具有无限长的周期和说它是一个非周期信号实际上是一回事!
2373 次阅读|0 个评论
《硅火燎原》-8-倒格子空间
热度 8 tianrong1945 2013-6-24 08:53
8.倒格子空间 两位布拉格同时被授予诺贝尔物理奖,自然地引起了人们的质疑:这个工作恐怕主要是由父亲做的吧?这种说法不知是否也曾经使小布拉格苦恼过?他可能并不在乎,因为他有独自发表的第一篇论文,强烈地、毫无疑问地证明了他对这个领域的贡献和能力 【 2】 。 早在 6岁的孩童时代,1896年,小布拉格因为骑自行车摔跤 而受伤。父亲带儿子用当时澳大利亚新装配的第一台 X 射线发生器,拍了一张儿子肘部受伤部位的 x 射线照片。也许从那时候开始, 小布拉格就牢牢地记住了这位能干的 x-射线‘女士’? 1912 年,劳厄发表有关 X 射线衍射的论文时, 小布拉格正在剑桥大学做研究。 劳厄的工作立刻引起了 小布拉格的兴趣,不到四个月之后,他就以《晶体对短波长电磁波的衍射》为题向剑桥哲学学会报告了他的研究成果。 文章中,小布拉格成功地解释了劳厄的实验事实,提出了晶体衍射的布拉格方程,巧妙而方便地借用镜面反射规律来描述晶体中各原子对电磁波的衍射效应。不过,他在文章标题中用的是‘短波长电磁波’,而不是‘ X-射线’一词,这是为什么呢?其原因与老布拉格当时对X-射线的看法有关。开始时,老布拉格认为X-射线不是波,而是一种微粒,他试图用微粒理论来解释劳厄的照片,但失败了。布拉格一家人夏天在海滨度假的时候,父子俩讨论过这个问题。小布拉格回到剑桥后发现,如果用某种‘短波长电磁波’的概念,能够完美地解释劳厄观察到的现象。但是,受父亲观点的影响,小布拉格尚未确定这个短波长的电磁波,到底是入射的X-射线本身,还是X-射线通过晶体时激发产生出来的另一种次级电磁波。后来,老布拉格用实验观察证实了衍射后的出射波也是X-射线,才接受了X-射线就是一种电磁波的理论,转而和儿子一起,潜心研究晶体结构分析的实验方法,并对多种晶体进行了测试,奠定了用X-射线衍射来确定晶体结构的理论基础。 图 7 ( a )是晶体衍射的示意图。 根据布拉格衍射条件: 2 d sin θ = n λ ,这儿, d 是晶格常数, θ 是衍射角。 如果我们将波长 λ 用波矢量 k= 2p/l 来代替的话, 经过简单的代数变换后,很容易将 衍射条件 写成: k sin θ = n ( p/ d ) ( 7.1 ) 仔细观察图 7 ( a ),我们发现,不难从几何上理解公式( 7.1 )。它描述了满足衍射加强条件的波矢 k 与晶体结构中原子间距 d 之间的关系。满足衍射加强条件的波矢 k 的方向,也就是能打在衍射屏幕上而出现亮点的电磁波方向。所以,换言之,公式( 7.1 )描述了衍射图像亮点的位置与 d 之间的某种关系。什么样的关系呢?公式的右边是变量 ( p/ d ) 的整数倍,这个变量与原子间距离 d 的倒数有关。 图 7 再进一步引伸下去,说得更清楚一些。图 7(a)所示的衍射实验,得到如(b)图所示的衍射图像,这个图像看起来是某种格点空间的映像。这个新格点空间不是晶格本身,但是又和原来的晶格有关系:新格点间的距离正比于原来晶格原子间距d的倒数。而且,新格子空间的量纲也倒过来了。原来的晶格是在真实空间中,点间的距离d是长度(米)的量纲,而新格点间的距离 ( p/ d ) 的量纲是‘米’的倒数( 1/ 米)。 既然数值和量纲都是倒数的关系,人们便把这个虚拟的空间叫做 ‘倒格子’空间,见图 7(c)。 从数学的观点看,倒格子是原来周期性晶格的傅立叶变换 【 3】 。说到傅立叶变换,大家比较熟悉的是从时间空间到频率空间的变换,时间的周期函数变换成频谱。比如,我们用光谱来研究光线中包含的各种颜色,用乐谱来表示音乐。对晶体来说,傅立叶变换将通常的坐标空间变换成了波矢空间。而原来坐标空间中的晶格,则变换成了波矢空间中的‘倒格子’。无论是正格子,还是倒格子,都属于我们在前一节中提到过的‘ 布拉菲点阵’。并且, 正格子和倒格子在对称性方面互相关联,产生许多有趣的特性,在此不再赘述,读者可参考有关文献 【 4】 。 现在,我们知道晶体的衍射图像对应于倒格子,就更加明白了布拉格父子工作的重要意义。因为固体中原子的晶格结构,是很难用显微镜直接观察到的。但是, X射线的衍射图像却已经可以得到。从X射线的衍射图像,我们可以计算出倒空间的几何结构,然后,再从倒空间,反过来又能计算出正晶格的相关常数,这样,晶体的结构不就一目了然了吗。因此,波矢空间及倒格子的概念,对研究固体物理的意义非常重大。 探测晶体结构,不仅使用 X-射线,也能用电子或中子衍射,从量子力学的观点,这些粒子(或电磁波)都具有波粒二象性,波矢反映了波动性,粒子性则可用动量表示。波矢与动量之间只相差一个常数因子,因此,波矢空间有时也称为动量空间。 固体的晶格结构清楚了,就方便于从理论上求解薛定谔方程,从而研究电子在固体中的运动规律。这样,下一节我们又将返回到固体中电子能带的问题。 参考资料: 【 1】Bravais, A. (1850). Mémoiresur les systèmes formés par les points distribués régulièrement sur un plan oudans l'espace. J. Ecole Polytech. 19: 1–128 (English: Memoir 1,Crystallographic Society of America, 1949.) 【 2】Bragg, W.L. (1913). TheDiffraction of Short Electromagnetic Waves by a Crystal. Proceedings ofthe CambridgePhilosophical Society 17: 43–57. Bragg's Nobel lecture ''The diffraction of X-rays by crystals'' is at http://diamond.kist.re.kr/knowledge/nobel-physics/1915/wl-bragg-lecture.pdf The Nobel Prize in Physics 1915. Nobel Foundation。 【 3】B. E. Warren (1969/1990) X-raydiffraction (Addison-Wesley, Reading MA/Dover, Mineola NY). 【4】 《固体物理学》,黄昆、韩汝琦著,高等教育出版社出版, 2005, 上一篇:能级和能带(2) 系列科普目录 下一篇: 布洛赫波和布里渊区 8-x-diff.jpg
个人分类: 系列科普|23030 次阅读|15 个评论
[转载]傅立叶变换
dwd0826 2013-2-26 22:09
[转载]傅立叶变换
一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: http://www.dspguide.com/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别: 1 非周期性连续信号 傅立叶变换(Fourier Transform) 2 周期性连续信号 傅立叶级数(Fourier Series) 3 非周期性离散信号 离散时域傅立叶变换(Discrete Time Fourier Transform) 4 周期性离散信号 离散傅立叶变换(Discrete Fourier Transform) 下图是四种原信号图例: 这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。 但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。 每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。 还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。 四、傅立叶变换的物理意义 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 五、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。 六、一个关于实数离散傅立叶变换(Real DFT)的例子 先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图: 9个正弦信号: 9个余弦信号: 把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图: 上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x 表示每种频率的副度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X ,另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。 七、用Matlab实现快速傅立叶变换 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。 而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如 某点n所表示的频率为:Fn=(n-1)*Fs/N 。由上面的公式可以看出, Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz 。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下: S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。 式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们 以256Hz的采样率对这个信号进行采样,总共采样256点。 按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。 从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看: 1点: 512+0i 2点: -2.6195E-14 - 1.4162E-13i 3点: -2.8586E-14 - 1.1898E-13i 50点:-6.2076E-13 - 2.1713E-12i 51点:332.55 - 192i 52点:-1.6707E-12 - 1.5241E-12i 75点:-2.2199E-13 -1.0076E-12i 76点:3.4315E-12 + 192i 77点:-3.0263E-14 +7.5609E-13i 很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下: 1点: 512 51点:384 76点:192 按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。 然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。 总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。 八、 让傅立叶变换从理性蜕变到感性,从抽象升华到具体 ( 应不少网友反应说以上7部分还是不够浅显而另加的一部分,希望对大家有所启发 ) 1、我们都知道,LTI系统对谐波函数的响应也是相同频率的谐波函数,只是幅度和相位可能不同罢了,因此我们用谐波函数来表示信号正是为了导出频域的概念。那你就会问为什么我们要在频域来分析信号,它比时域分析究竟好在哪里呢?这个问题非常好,我来回答你,第一,在频域观察和分析信号有助于揭示系统的本质属性,更重要的是对于某些系统可以极大地简化其设计和分析过程。这一点想必大家都知道,我不再啰嗦!第二,从数学上来看,系统从时域到频域的转换就意味着系统的微分或差分方程将转变为代数方程,而系统的分析也将采用描述系统的复系数代数方程而不是微分或差分方程。既然如此,那么请问?童鞋,你是喜欢跟微分差分方程玩儿呢还是喜欢跟代数方程玩儿呢?假若你说你更喜欢跟微分差分方程玩儿。那我也无话可说啦! 可能你还是觉得以上所述只是一个很理性的认识,那么接下来,满足你的感性需求。其实,在生活中,我们无时无刻不在进行着傅立叶变换。(什么?我没有听错吧?!)对的,请相信你的耳朵,你完全没有听错。我们来看人类听觉系统的处理过程:当我们听到一个声音,大脑的实际反应是什么?事实上耳朵感觉到一个时变的空气压力,这种变化也许是一个类似于口哨声的单音。当我们听到一个口哨声时,我们所关心的并不是气压随时间的振动(它非常非常快!),而是声音的三个特征:基音、声强以及音长。基音可以理解为频率的同义词,声强不是别的,它就是幅度。我们的耳朵—大脑系统能有效地将信号表示成三个简单的特征参数:基音、声强以及音长,并不理会气压的快速变化过程(一个重复的变化过程)。这样耳朵—大脑系统就提取了信号的本质信息。傅立叶变换的分析过程与此类似,只不过我们从数学意义把它更加精确化和专业话罢了。 2、不要把傅立叶变换想得那么高深莫测,其实它就是对傅立叶级数的一种拓展。我们知道,傅立叶级数能描述无限时间的周期信号。那么,傅立叶级数能不能描述某些特殊的无限时间的非周期信号呢?答案是,不能。但我们经常要分析处理这样的信号啊!于是傅立叶变换这个家伙现身啦!傅立叶变换就是为了使傅立叶级数能够描述所有(没错!就是所有!)周期和非周期的无限时间信号而导出的,因而傅立叶变换是对傅立叶级数的一种拓展。 可能你还是觉得以上所述只是一个很抽象的认识,那么接下来,满足你的具体需求。我们先不管是怎么进行拓展的。我们先关注另外两个概念:周期信号和非周期信号。他们的显著区别就在于:周期信号每隔一个有限的时间即基波周期To重复一次。它自始至终都将以这个基波周期To重复。而非周期信号则没有一个确定的或固定的周期,可能在一段时间内他将重复某一段波形很多次,但不会在整个无限长时间范围都如此。我们找到一个周期信号的傅立叶级数,然后让这个信号的基波周期趋于无限,就完成了从傅立叶级数到傅立叶变换的演变过程。因为当周期信号的基波周期趋于无限时,它的波形在有限长时间内都不会重复,这时它就不具有周期性啦!也就是说,说一个信号具有无限长的周期和说它是一个非周期信号实际上是一回事! http://v.163.com/special/opencourse/fouriertransforms.html 网易公开课 本课程的目的在于让学生获得灵活使用傅里叶变换,包括总体原则及特定技巧,并了解何时、在什么情况下、如何应用傅里叶变换。本课强调联系理论原则,以解决各种实际的工科理科问题。 名称: Brad Osgood 职业: 斯坦福大学电子工程系教授,教授并运用从分析、几何、到各种工程学各方面的解疑技巧。其研究兴趣领域为成像、模式识别、和信号处理。 大家可以共同学习。这门课程有很多举例和基础理论讲解,相信对 帮助都非常大。
4697 次阅读|0 个评论
[转载]魅力无穷的傅立叶变换
热度 1 tumigsse 2012-7-24 15:21
最近忙着用傅立叶变换来做三维建筑物模型的综合,想起很久以前收藏的一个东西,关于傅立叶变换的,原作者不记得是谁了,贴在这里,给感兴趣的人分享一下。 1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文 Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达为一系列不同频率的简谐振动(即简单的三角函数)的叠加。有趣的是,这结论是他研究热传导问题的一个副产品。这篇论文经拉格朗日 (J. Lagrange)、拉普拉斯 (P-S. Laplace) 和勒让德 (A-M. Legendre) 等人审阅后被拒绝了,原因是他的思想过于粗糙且极不严密。1811 年傅立叶递交了修改后的论文,这一次论文获得了科学院的奖金,但是仍然因为缺乏严密性而被拒绝刊载在科学院的《报告》中。傅立叶对此耿耿于怀,直到 1824 年他本人成为了科学院的秘书,才得以把他 1811 年的论文原封不动地发表在《报告》里。 用今天的语言来描述,傅立叶的发现实际上是在说:任何一个信号都可以用两种方式来表达,一种就是通常意义上的表达,自变量是时间或者空间的坐标,因变量是信号在该处的强度,另一种则是把一个信号「展开」成不同频率的简单三角函数(简谐振动)的叠加,于是这就相当于把它看作是定义在所有频率所组成的空间(称为频域空间)上的另一个函数,自变量是不同的频率,因变量是该频率所对应的简谐振动的幅度。 这两个函数一个定义在时域(或空域)上,一个定义在频域上,看起来的样子通常截然不同,但是它们是在以完全不同的方式殊途同归地描述着同一个信号。它们就象是两种不同的语言,乍一听完全不相干,但是其实可以精确地互相翻译。在数学上,这种翻译的过程被称为「傅立叶变换」。 傅立叶变换是一个数学上极为精美的对象: 它是完全可逆的,任何能量有限的时域或空域信号都存在唯一的频域表达,反之亦然。 它完全不损伤信号的内在结构:任何两个信号之间有多少相关程度(即内积),它们的频域表达之间也一定有同样多的相关程度。 它不改变信号之间的关联性:一组信号收敛到一个特定的极限,它们的频域表达也一定收敛到那个极限函数的频域表达。 傅立叶变换就象是把信号彻底打乱之后以最面目全非的方式复述出来,而一切信息都还原封不动的存在着。要是科幻小说作家了解这一点,他们本来可以多出多少有趣的素材啊。 在傅立叶变换的所有这些数学性质中,最不寻常的是这样一种特性:一个在时域或空域上看起来很复杂的信号(譬如一段声音或者一幅图像)通常在频域上的表达会很简单。这里「简单」的意思是说作为频域上的函数,它只集中在很小一块区域内,而很大一部分数值都接近于零。例如下图是一张人脸和它对应的傅立叶变换,可以看出,所有的频域信号差不多都分布在中心周围,而大部分周边区域都是黑色的(即零)。 这是一个意味深长的事实,它说明一个在空域中看起来占满全空间的信号,从频域中看起来很可能只不过占用了极小一块区域,而大部分频率是被浪费了的。这就导出了一个极为有用的结论:一个看起来信息量很大的信号,其实可以只用少得多的数据来加以描述。只要对它先做傅立叶变换,然后只记录那些不接近零的频域信息就可以了,这样数据量就可以大大减少。 基本上,这正是今天大多数数据压缩方法的基础思想。在互联网时代,大量的多媒体信息需要在尽量节省带宽和时间的前提下被传输,所以数据压缩从来都是最核心的问题之一。而今天几乎所有流行的数据压缩格式,无论是声音的 mp3 格式还是图像的 jpg 格式,都是利用傅立叶变换才得以发明的。从这个意义上说来,几乎全部现代信息社会都建立在傅立叶的理论的基础之上。 这当然是傅立叶本人也始料未及的。
4501 次阅读|1 个评论
通俗地介绍《信号与系统》【转载整理】
JRoy 2012-5-28 20:12
引子 工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。 也许更多人和我一样,原本不是电子专业的 却后来走入这个行业。如我是机械电子专业,对信号与系统知识当初根本就不是重点学习内容,很多知识甚至概念都模糊了。而现在做的研究却是信号处理领域的,如何快速建立信号与系统的一个大体的知识印象库呐?等到具体应用那些部分的时候能够知道所云?所需与相关?下面转载网上一个比较有名的通俗讲义,修改了部分语言错误。 讲一个故事 : 张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。 然后,经理让张三测试当输入sin(t)(t1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。 "很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!" 这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?" 于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。 上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!" 张三照办了,"然后呢?" 上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。" 张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?" 上帝说:"叫 卷积 !" 从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了! ---------------------------------------- 张三愉快地工作着,直到有一天,平静的生活被打破。 经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你来测试以下,连到我们的设备上,会产生什么输出波形!" 张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?" 经理怒了:"反正你给我搞定,否则炒鱿鱼!" 张三心想:"这次输入信号连公式都没给出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?" 及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来" "宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。" "我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了" "同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看" "计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!" 张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做 傅利叶 ,什么什么... ... ---------------------------------------- 再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学 拉普拉斯 了...... 后记: 不是我们学的不好,是因为教材不好,老师讲的也不好。 很欣赏Google的面试题: 用3句话向老太太讲清楚什么是数据库。这样的命题非常好, 因为没有深入的理解一个命题, 没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。 做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲 ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗? 第二课 到底什么是频率 什么是系统? 这一篇,我展开的说一下傅立叶变换F。注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x-y的问题都可以用x-f(x)-f-1(x)-y来得到。 1. 到底什么是频率? 一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。相信中学生都能理解这个。 那么,不同的频率模型其实就对应了不同的圆周运动速度。圆周运动的速度越快,sin(t)的波形越窄。频率的缩放有两种模式 (a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。 (b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。 2. F变换得到的结果有负数/复数部分,有什么物理意义吗? 解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。 3. 信号与系统这们课的基本主旨是什么? 对于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特性,通常不同传输介质对于不同频率段的信号有不同的处理能力。以太网线处理基带信号,广域网光线传出高频调制信号,移动通信,2G和3G分别需要有不同的载频特性。那么这些介质(空气,电线,光纤等)对于某种频率的输入是否能够在传输了一定的距离之后得到基本不变的输入呢? 那么我们就要建立介质的频率相应数学模型。同时,知道了介质的频率特性,如何设计在它上面传输的信号才能大到理论上的最大传输速率?----这就是信号与系统这们课带领我们进入的一个世界。 当然,信号与系统的应用不止这些,和香农的信息理论挂钩,它还可以用于信息处理(声音,图像),模式识别,智能控制等领域。如果说,计算机专业的课程是数据表达的逻辑模型,那么信号与系统建立的就是更底层的,代表了某种物理意义的数学模型。数据结构的知识能解决逻辑信息的编码和纠错,而信号的知识能帮我们设计出码流的物理载体(如果接受到的信号波形是混乱的,那我依据什么来判断这个是1还是0? 逻辑上的纠错就失去了意义)。在工业控制领域,计算机的应用前提是各种数模转换,那么各种物理现象产生的连续模拟信号(温度,电阻,大小,压力,速度等) 如何被一个特定设备转换为有意义的数字信号,首先我们就要设计一个可用的数学转换模型。 4. 如何设计系统? 设计物理上的系统函数(连续的或离散的状态),有输入,有输出,而中间的处理过程和具体的物理实现相关,不是这们课关心的重点(电子电路设计?)。信号与系统归根到底就是为了特定的需求来设计一个系统函数。设计出系统函数的前提是把输入和输出都用函数来表示(例如sin(t))。分析的方法就是把一个复杂的信号分解为若干个简单的信号累加,具体的过程就是一大堆微积分的东西,具体的数学运算不是这门课的中心思想。 那么系统有那些种类呢? (a) 按功能分类: 调制解调(信号抽样和重构),叠加,滤波,功放,相位调整,信号时钟同步,负反馈锁相环,以及若干子系统组成的一个更为复杂的系统----你可以画出系统流程图,是不是很接近编写程序的逻辑流程图? 确实在符号的空间里它们没有区别。还有就是离散状态的数字信号处理(后续课程)。 (b) 按系统类别划分,无状态系统,有限状态机,线性系统等。而物理层的连续系统函数,是一种复杂的线性系统。 5. 最好的教材? 符号系统的核心是集合论,不是微积分,没有集合论构造出来的系统,实现用到的微积分便毫无意义----你甚至不知道运算了半天到底是要作什么。以计算机的观点来学习信号与系统,最好的教材之一就是 Structure and Interpretation of Signals and Systems ,作者是UC Berkeley的Edward A.Lee and Pravin Varaiya----先定义再实现,符合人类的思维习惯。国内的教材通篇都是数学推导,就是不肯说这些推导是为了什么目的来做的,用来得到什么,建设什么,防止什么;不去从认识论和需求上讨论,通篇都是看不出目的的方法论,本末倒置了。 第三课 抽样定理是干什么的 1. 举个例子 ,打电话的时候,电话机发出的信号是PAM脉冲调幅,在电话线路上传的不是话音,而是话音通过信道编码转换后的脉冲序列,在收端恢复语音波形。那么对于连续的说话人语音信号,如何转化成为一些列脉冲才能保证基本不失真,可以传输呢? 很明显,我们想到的就是取样,每隔M毫秒对话音采样一次看看电信号振幅,把振幅转换为脉冲编码,传输出去,在收端按某种规则重新生成语言。 那么,问题来了,每M毫秒采样一次,M多小是足够的? 在收端怎么才能恢复语言波形呢? 对于第一个问题,我们考虑,语音信号是个时间频率信号(所以对应的F变换就表示时间频率)把语音信号分解为若干个不同频率的单音混合体(周期函数的复利叶级数展开,非周期的区间函数,可以看成补齐以后的周期信号展开,效果一样),对于最高频率的信号分量,如果抽样方式能否保证恢复这个分量,那么其他的低频率分量也就能通过抽样的方式使得信息得以保存。如果人的声音高频限制在3000Hz,那么高频分量我们看成sin(3000t),这个sin函数要通过抽样保存信息,可以看为: 对于一个周期,波峰采样一次,波谷采样一次,也就是采样频率是最高频率分量的2倍(奈奎斯特抽样定理),我们就可以通过采样信号无损的表示原始的模拟连续信号。这两个信号一一对应,互相等价。 对于第二个问题,在收端,怎么从脉冲序列(梳装波形)恢复模拟的连续信号呢? 首先,我们已经肯定了在频率域上面的脉冲序列已经包含了全部信息,但是原始信息只在某一个频率以下存在,怎么做? 我们让输入脉冲信号I通过一个设备X,输出信号为原始的语音O,那么I(*)X=O,这里(*)表示卷积。时域的特性不好分析,那么在频率域 F(I)*F(X)=F(O)相乘关系,这下就很明显了,只要F(X)是一个理想的,低通滤波器就可以了(在F域画出来就是一个方框),它在时间域是一个钟型函数(由于包含时间轴的负数部分,所以实际中不存在),做出这样的一个信号处理设备,我们就可以通过输入的脉冲序列得到几乎理想的原始的语音。在实际应用中,我们的抽样频率通常是奈奎斯特频率再多一点,3k赫兹的语音信号,抽样标准是8k赫兹。 2. 再举一个例子, 对于数字图像,抽样定理对应于图片的分辨率----抽样密度越大,图片的分辨率越高,也就越清晰。如果我们的抽样频率不够,信息就会发生混叠----网上有一幅图片,近视眼戴眼镜看到的是爱因斯坦,摘掉眼睛看到的是梦露----因为不带眼睛,分辨率不够(抽样频率太低),高频分量失真被混入了低频分量,才造成了一个视觉陷阱。在这里,图像的F变化,对应的是空间频率。 话说回来了,直接在信道上传原始语音信号不好吗? 模拟信号没有抗干扰能力,没有纠错能力,抽样得到的信号,有了数字特性,传输性能更佳。 什么信号不能理想抽样? 时域有跳变,频域无穷宽,例如方波信号。如果用有限带宽的抽样信号表示它,相当于复利叶级数取了部分和,而这个部分和在恢复原始信号的时候,在不可导的点上面会有毛刺,也叫吉布斯现象。 3. 为什么傅立叶想出了这么一个级数来? 这个源于西方哲学和科学的基本思想: 正交分析方法。例如研究一个立体形状,我们使用x,y,z三个互相正交的轴: 任何一个轴在其他轴上面的投影都是0。这样的话,一个物体的3视图就可以完全表达它的形状。同理,信号怎么分解和分析呢? 用互相正交的三角函数分量的无限和:这就是傅立叶的贡献。 第四课 傅立叶变换的复数 小波 说的广义一点," 复数 "是一个"概念",不是一种客观存在。 什么是"概念"? 一张纸有几个面? 两个,这里"面"是一个概念,一个主观对客观存在的认知,就像"大"和"小"的概念一样,只对人的意识有意义,对客观存在本身没有意义(康德: 纯粹理性的批判)。把纸条的两边转一下相连接,变成"莫比乌斯圈",这个纸条就只剩下一个"面"了。概念是对客观世界的加工,反映到意识中的东西。 数的概念是这样被推广的: 什么数x使得x^2=-1? 实数轴显然不行,(-1)*(-1)=1。那么如果存在一个抽象空间,它既包括真实世界的实数,也能包括想象出来的x^2=-1,那么我们称这个想象空间为"复数域"。那么实数的运算法则就是复数域的一个特例。为什么1*(-1)=-1? +-符号在复数域里面代表方向,-1就是"向后,转!"这样的命令,一个1在圆周运动180度以后变成了-1,这里,直线的数轴和圆周旋转,在复数的空间里面被统一了。 因此,(-1)*(-1)=1可以解释为"向后转"+"向后转"=回到原地。那么复数域如何表示x^2=-1呢? 很简单,"向左转","向左转"两次相当于"向后转"。由于单轴的实数域(直线)不包含这样的元素,所以复数域必须由两个正交的数轴表示--平面。很明显,我们可以得到复数域乘法的一个特性,就是结果的绝对值为两个复数绝对值相乘,旋转的角度=两个复数的旋转角度相加。高中时代我们就学习了迪莫弗定理。为什么有这样的乘法性质? 不是因为复数域恰好具有这样的乘法性质(性质决定认识),而是发明复数域的人就是根据这样的需求去弄出了这么一个复数域(认识决定性质),是一种主观唯心主义的研究方法。为了构造x^2=-1,我们必须考虑把乘法看为两个元素构成的集合: 乘积和角度旋转。 因为三角函数可以看为圆周运动的一种投影,所以,在复数域,三角函数和乘法运算(指数)被统一了。我们从实数域的傅立叶级数展开入手,立刻可以得到形式更简单的,复数域的,和实数域一一对应的傅立叶复数级数。因为复数域形式简单,所以研究起来方便----虽然自然界不存在复数,但是由于和实数域的级数一一对应,我们做个反映射就能得到有物理意义的结果。 那么 傅立叶变换 ,那个令人难以理解的转换公式是什么含义呢? 我们可以看一下它和复数域傅立叶级数的关系。什么是微积分,就是先微分,再积分,傅立叶级数已经作了无限微分了,对应无数个离散的频率分量冲击信号的和。傅立叶变换要解决非周期信号的分析问题,想象这个非周期信号也是一个周期信号: 只是周期为无穷大,各频率分量无穷小而已(否则积分的结果就是无穷)。那么我们看到傅立叶级数,每个分量常数的求解过程,积分的区间就是从T变成了正负无穷大。而由于每个频率分量的常数无穷小,那么让每个分量都去除以f,就得到有值的数----所以周期函数的傅立叶变换对应一堆脉冲函数。同理,各个频率分量之间无限的接近,因为f很小,级数中的f,2f,3f之间几乎是挨着的,最后挨到了一起,和卷积一样,这个复数频率空间的级数求和最终可以变成一个积分式:傅立叶级数变成了傅立叶变换。注意有个概念的变化:离散的频率,每个频率都有一个"权"值,而连续的F域,每个频率的加权值都是无穷小(面积=0),只有一个频率范围内的"频谱"才对应一定的能量积分。频率点变成了频谱的线。 因此傅立叶变换求出来的是一个通常是一个连续函数,是复数频率域上面的可以画出图像的东西? 那个根号2Pai又是什么? 它只是为了保证正变换反变换回来以后,信号不变。我们可以让正变换除以2,让反变换除以Pi,怎么都行。慢点,怎么有"负数"的部分,还是那句话,是数轴的方向对应复数轴的旋转,或者对应三角函数的相位分量,这样说就很好理解了。有什么好处? 我们忽略相位,只研究"振幅"因素,就能看到实数频率域内的频率特性了。 我们从实数(三角函数分解)-复数(e和Pi)-复数变换(F)-复数反变换(F-1)-复数(取幅度分量)- 实数,看起来很复杂,但是这个工具使得,单从实数域无法解决的频率分析问题,变得可以解决了。两者之间的关系是: 傅立叶级数中的频率幅度分量是a1-an,b1-bn,这些离散的数表示频率特性,每个数都是积分的结果。而傅立叶变换的结果是一个连续函数: 对于f域每个取值点a1-aN(N=无穷),它的值都是原始的时域函数和一个三角函数(表示成了复数)积分的结果----这个求解和级数的表示形式是一样的。不过是把N个离散的积分式子统一为了一个通用的,连续的积分式子。 复频域 ,大家都说画不出来,但是我来画一下!因为不是一个图能够表示清楚的。我用纯中文来说: 1. 画一个x,y轴组成的平面,以原点为中心画一个圆(r=1)。再画一条竖直线: (直线方程x=2),把它看成是一块挡板。 2. 想象,有一个原子,从(1,0)点出发,沿着这个圆作逆时针匀速圆周运动。想象太阳光从x轴的复数方向射向x轴的正数方向,那么这个原子运动在挡板(x=2)上面的投影,就是一个简协震动。 3. 再修改一下,x=2对应的不是一个挡板,而是一个打印机的出纸口,那么,原子运动的过程就在白纸上画下了一条连续的sin(t)曲线! 上面3条说明了什么呢? 三角函数和圆周运动是一一对应的。如果我想要sin(t+x),或者cos(t)这种形式,我只需要让原子的起始位置改变一下就可以了:也就是级坐标的向量,半径不变,相位改变。 傅立叶级数的实数展开形式,每一个频率分量都表示为AnCos(nt)+BnSin(nt),我们可以证明,这个式子可以变成 sqr(An^2+Bn^2)sin(nt+x)这样的单个三角函数形式,那么:实数值对(An,Bn),就对应了二维平面上面的一个点,相位x对应这个点的相位。实数和复数之间的一一对应关系便建立起来了,因此实数频率唯一对应某个复数频率,我们就可以用复数来方便的研究实数的运算:把三角运算变成指数和乘法加法运算。 ------------------------------------------------------------------------- 但是, F变换 仍然是有限制的(输入函数的表示必须满足狄义赫立条件等),为了更广泛的使用"域"变换的思想来表示一种"广义"的频率信息,我们就发明出了拉普拉斯变换,它的连续形式对应F变换,离散形式就成了Z变换。离散信号呢? 离散周期函数的F级数,项数有限,离散非周期函数(看为周期延拓以后仍然是离散周期函数),离散F级数,仍然项数有限。离散的F变换,很容易理解---- 连续信号通过一个周期采样滤波器,也就是频率域和一堆脉冲相乘。时域取样对应频域周期延拓。为什么? 反过来容易理解了,时域的周期延拓对应频率域的一堆脉冲。 两者的区别:FT =从负无穷到正无穷对 积分 LT =从零到正无穷对 积分 (由于实际应用,通常只做单边Laplace变换,即积分从零开始) 具体地,在Fourier积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在laplace变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a0)做域变换。 而 Z变换 ,简单地说,就是离散信号(也可以叫做序列)的Laplace变换,可由抽样信号的Laplace变换导出。ZT =从n为负无穷到正无穷对 求和。Z域的物理意义: 由于值被离散了,所以输入输出的过程和花费的物理时间已经没有了必然的关系(t只对连续信号有意义),所以频域的考察变得及其简单起来,我们把 (1,-1,1,-1,1,-1)这样的基本序列看成是数字频率最高的序列,他的数字频率是1Hz(数字角频率2Pi),其他的数字序列频率都是N分之 1Hz,频率分解的结果就是0-2Pi角频率当中的若干个值的集合,也是一堆离散的数。由于时频都是离散的,所以在做变换的时候,不需要写出冲击函数的因子 离散傅立叶变换到快速傅立叶变换----由于离散傅立叶变换的次数是O(N^2),于是我们考虑把离散序列分解成两两一组进行离散傅立叶变换,变换的计算复杂度就下降到了O(NlogN),再把计算的结果累加O(N),这就大大降低了计算复杂度。 再说一个高级话题: 小波 。在实际的工程应用中,前面所说的这些变换大部分都已经被小波变换代替了。 什么是小波?先说什么是波:傅立叶级数里面的分量,sin/cos函数就是波,sin(t)/cos(t)经过幅度的放缩和频率的收紧,变成了一系列的波的求和,一致收敛于原始函数。注意傅立叶级数求和的收敛性是对于整个数轴而言的,严格的。不过前面我们说了,实际应用FFT的时候,我们只需要关注部分信号的傅立叶变换然后求出一个整体和就可以了,那么对于函数的部分分量,我们只需要保证这个用来充当砖块的"波函数",在某个区间(用窗函数来滤波)内符合那几个可积分和收敛的定义就可以了,因此傅立叶变换的"波"因子,就可以不使用三角函数,而是使用一系列从某些基本函数构造出来的函数族,只要这个基本函数符合那些收敛和正交的条件就可以了。怎么构造这样的基本函数呢?sin(t)被加了方形窗以后,映射到频域是一堆无穷的散列脉冲,所以不能再用三角函数了。我们要得到频率域收敛性好的函数族,能覆盖频率域的低端部分。说的远一点,如果是取数字信号的小波变换,那么基础小波要保证数字角频率是最大的 2Pi。利用小波进行离频谱分析的方法,不是像傅立叶级数那样求出所有的频率分量,也不是向傅立叶变换那样看频谱特性,而是做某种滤波,看看在某种数字角频率的波峰值大概是多少。可以根据实际需要得到如干个数字序列。 我们采用(0,f),(f,2f),(2f,4f)这样的倍频关系来考察函数族的频率特性,那么对应的时间波形就是倍数扩展(且包含调制---所以才有频谱搬移)的一系列函数族。频域是窗函数的基本函数,时域就是钟形函数。当然其他类型的小波,虽然频率域不是窗函数,但是仍然可用:因为小波积分求出来的变换,是一个值,例如(0,f)里包含的总能量值,(f,2f)里面包含的总能量值。所以即使频域的分割不是用长方形而是其他的图形,对于结果来说影响不大。同时,这个频率域的值,它的分辨率密度和时域小波基函数的时间分辨率是冲突的(时域紧频域宽,时域宽频域紧),所以设计的时候受到海森堡测不准原理的制约。Jpeg2000压缩就是小波:因为时频都是局部的,变换结果是数值点而不是向量,所以,计算复杂度从FFT的O(NlgN)下降到了O(N),性能非常好。 用中文说了这么多,基本的思想已经表达清楚了,为了"研究方便",从实数傅立叶级数展开,到创造了复数域的傅立叶级数展开,再到傅立叶变换,再扩展到拉式变换,再为了时频都离散的情况简化为Z变换,全部都用一根主线联系起来了。
个人分类: 科研笔记|3179 次阅读|0 个评论
MIT研究出比FFT更快的傅立叶变换算法
热度 7 毛宁波 2012-1-19 08:44
MIT研究出比FFT更快的傅立叶变换算法
据MIT新闻网站报道,MIT的科学家研究出比FFT更快的傅立叶变换算法。 The Fourier transform is one of the most fundamental concepts in the information sciences. It’s a method for representing an irregular signal — such as the voltage fluctuations in the wire that connects an MP3 player to a loudspeaker — as a combination of pure frequencies. It’s universal in signal processing, but it can also be used to compress image and audio files, solve differential equations and price stock options, among other things. The reason the Fourier transform is so prevalent is an algorithm called the fast Fourier transform (FFT), devised in the mid-1960s, which made it practical to calculate Fourier transforms on the fly. Ever since the FFT was proposed, however, people have wondered whether an even faster algorithm could be found. At the Association for Computing Machinery’s Symposium on Discrete Algorithms (SODA) this week, a group of MIT researchers will present a new algorithm that, in a large range of practically important cases, improves on the fast Fourier transform. Under some circumstances, the improvement can be dramatic — a tenfold increase in speed. The new algorithm could be particularly useful for image compression, enabling, say, smartphones to wirelessly transmit large video files without draining their batteries or consuming their monthly bandwidth allotments. Like the FFT, the new algorithm works on digital signals. A digital signal is just a series of numbers — discrete samples of an analog signal, such as the sound of a musical instrument. The FFT takes a digital signal containing a certain number of samples and expresses it as the weighted sum of an equivalent number of frequencies. “Weighted” means that some of those frequencies count more toward the total than others. Indeed, many of the frequencies may have such low weights that they can be safely disregarded. That’s why the Fourier transform is useful for compression. An eight-by-eight block of pixels can be thought of as a 64-sample signal, and thus as the sum of 64 different frequencies. But as the researchers point out in their new paper, empirical studies show that on average, 57 of those frequencies can be discarded with minimal loss of image quality. Heavyweight division Signals whose Fourier transforms include a relatively small number of heavily weighted frequencies are called “sparse.” The new algorithm determines the weights of a signal’s most heavily weighted frequencies; the sparser the signal, the greater the speedup the algorithm provides. Indeed, if the signal is sparse enough, the algorithm can simply sample it randomly rather than reading it in its entirety. “In nature, most of the normal signals are sparse,” says Dina Katabi, one of the developers of the new algorithm. Consider, for instance, a recording of a piece of chamber music: The composite signal consists of only a few instruments each playing only one note at a time. A recording, on the other hand, of all possible instruments each playing all possible notes at once wouldn’t be sparse — but neither would it be a signal that anyone cares about. The new algorithm — which associate professor Katabi and professor Piotr Indyk, both of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), developed together with their students Eric Price and Haitham Hassanieh — relies on two key ideas. The first is to divide a signal into narrower slices of bandwidth, sized so that a slice will generally contain only one frequency with a heavy weight. In signal processing, the basic tool for isolating particular frequencies is a filter. But filters tend to have blurry boundaries: One range of frequencies will pass through the filter more or less intact; frequencies just outside that range will be somewhat attenuated; frequencies outside that range will be attenuated still more; and so on, until you reach the frequencies that are filtered out almost perfectly. If it so happens that the one frequency with a heavy weight is at the edge of the filter, however, it could end up so attenuated that it can’t be identified. So the researchers’ first contribution was to find a computationally efficient way to combine filters so that they overlap, ensuring that no frequencies inside the target range will be unduly attenuated, but that the boundaries between slices of spectrum are still fairly sharp. Zeroing in Once they’ve isolated a slice of spectrum, however, the researchers still have to identify the most heavily weighted frequency in that slice. In the SODA paper, they do this by repeatedly cutting the slice of spectrum into smaller pieces and keeping only those in which most of the signal power is concentrated. But in an as-yet-unpublished paper , they describe a much more efficient technique, which borrows a signal-processing strategy from 4G cellular networks. Frequencies are generally represented as up-and-down squiggles, but they can also be though of as oscillations; by sampling the same slice of bandwidth at different times, the researchers can determine where the dominant frequency is in its oscillatory cycle. Two University of Michigan researchers — Anna Gilbert, a professor of mathematics, and Martin Strauss, an associate professor of mathematics and of electrical engineering and computer science — had previously proposed an algorithm that improved on the FFT for very sparse signals. “Some of the previous work, including my own with Anna Gilbert and so on, would improve upon the fast Fourier transform algorithm, but only if the sparsity k” — the number of heavily weighted frequencies — “was considerably smaller than the input size n,” Strauss says. The MIT researchers’ algorithm, however, “greatly expands the number of circumstances where one can beat the traditional FFT,” Strauss says. “Even if that number k is starting to get close to n — to all of them being important — this algorithm still gives some improvement over FFT.” 引自: http://web.mit.edu/newsoffice/2012/faster-fourier-transforms-0118.html
个人分类: 其他|7343 次阅读|8 个评论
数字通信介绍(4) OFDM为何如此热门?
热度 3 fouyang 2011-11-3 09:43
在以前的讲座中,我们介绍了无线电信号调制的基本原理,有关数字传送速度极限的香农定理,以及为了实现香农极限而发明的种种信道编码方式。在本文中,我们来介绍一种独特的,也是当前最流行的调制方式:OFDM。目前最常见的几种无线通信系统,除了蓝牙系统不用OFDM外,第四代移动通信(4G)的两种标准LTE和WiMAX都使用这种调制方式【注一】,取代了第三代中使用的CDMA。目前已经非常普及的无线局域网标准(IEEE802.11)也采用OFDM【注二】。 OFDM的全名非常拗口:正交频分复用调制(Orthogonal Frequency-Division Modulation)。它是最新出现的调制方式,目前还有很多研究论文发表。但看了以下的介绍后,你会同意:其实它的原理并不深奥,反而是简化通信系统的一个好办法呢! 在详细谈OFDM之前,让我们先复习一下第一讲中讲过的调制的基本概念。调制就是根据要传送的数据来改变发射的电波(称为载频)的幅度和相位,以达到传送信息的目的。每个调制的单位称为波特(baud)每个波特控制一段时间的载频。这个时间的倒数也就是单位时间里传送的波特数,称为波特率。经过调制的载波称为信号。 信号可以表达为一个随时间变化的量,也可以用它的频率分量(称为频谱)来表达。这两种表达通过傅立叶变换而联系在一起。傅立叶变换本身就是个奇妙无穷的数学工具。在这里只能列举几个以下要用到的性质。首先,时间信号的变化速度(一般来说正比于波特率)正比于频谱的宽度(称为带宽)。这就是第一讲中提到的那奎斯特定理。其次,一个信号在时间上的延迟,等价于在它的频谱上加一个与频率成正比的相位差。而这后一点,正是OFDM用以简化通信系统的妙方。 复习完之后,我们需要引进一个以前没有讨论过的问题:信道。信道(channel)是指信号从发射器到接收器之间经历的变化。在以前的讲座中,我们都采用最简单的信道:信号除了被加上一个随机噪声以外,没有任何变化。但实际的无线信道通常不是如此。发射器发出的电波除了直接传播到接收器外,还可以通过大楼,高山和其他物体的反射和散射而到达接收器。这些通过不同路径传播的电波使得接收器里产生了多个“版本”的信号,他们之间有相对的时间延迟。这样,前一个波特“迟到”的版本就会叠加在后一个波特上,而造成干扰,称为多路径干扰。更要命的是,这样的干扰与噪声不同,不能用增加信号功率的方法来克服,因为干扰本身就是信号造成的,它的强度随着信号功率的增加而增加。这很像我们在一间空屋子里说话,由于回音,使我们说的话变得含混不清。 多路径干扰很久前就引起了人们的注意。在上世纪六十年代,人们发明了“判决反馈均衡器(Decision Feedback Equalizer,DFE)”,被认为是纠正多路径干扰的最优方法。它是利用两个滤波器来抵消多路径的干扰。但是这个方法与信道编码一起使用时相当困难。在九十年代以后信道编码的增益大大增加(见第三讲),也使得DFE的使用更加受限。 另一个对付“多路径”的思路,就是降低波特率。当一个波特的时间长度远远大于多路径之间的相对延迟时,这种延迟就不重要了。这就像在有回音的时候说话,我们会自觉不自觉地放慢速度一样。当然降低了波特率,数据传送的速度也就低了。这个代价可是太大了。但是且慢!根据前面说到的奈奎斯特定理,波特率低了,信号的带宽就窄了。也就是说,同样的频率范围以前传送一路信号的,现在可以传送多路信号了。这样数据传送速度不就又回来了吗?理论上的确是这样。可是在实际上,信号的频谱并不是出了带宽范围就降到零的,而是有个逐渐降低的范围(称为副瓣,sidelobe)。所以为了避免相互干扰,各个信号的频率范围之间要留出一定的保护间隔。而这就降低了频率使用的总体效率,从而降低了数据传送速度。 幸好,傅立叶变换的理论告诉我们,在一定的条件下,虽然有副瓣的存在,但相邻频道的干扰可以是零,即使没有保护间隔。这就是OFDM中那个O(正交)的含义。于是,把整个频率范围分为多个子频道的思路,就带来了OFDM这种新的调制方法。更幸运的是:由于一种名为“快速傅立叶变换(FFT)”的算法,使得这种调制可以高效率地实现。 OFDM是1970年代正式提出的。在上世纪八十,九十年代被应用于有线数字通信(那里也有信道延迟带来的问题)。在有线宽带接入技术ADSL和HDSL中就是使用这种调制方式(被称为数字多频,DMT)。在九十年代后逐步开始OFDM在无线领域的应用,而终于在今天成为局域网和第四代移动网的主流技术。 在发射端,OFDM信号是这样形成的。被调制的数字被分成很多数据流,每个用来调制一个子载频。(调制的方法可以是在第一讲中谈到的任何一种方法,但通常都使用正交幅度(QAM)调制。)在每个调制周期,每个子载频产生一个复数值(即被调制过的振幅和相位)。这组代表频谱的复数值经过反傅立叶变换,就形成时间域上的一段信号(我们称为一个OFDM符号)。在接收端,信号经历相反的过程:一个OFDM符号经过傅立叶变换变成频率域上的一组复数。每个复数经过解调,恢复被传送的数字。 上面说到,由于每个子频道的波特率(也就是OFDM符号传送的速度)很低,多路径之间的相对延迟对它造成的干扰很小。事实上,数学上可以证明,多路径干扰在一个OFDM符号内部的效果只是把每个子频道上的复数乘以一个复数因子。(这是因为前面说的,一个信号在时间上的延迟,等价于在它的频谱上加一个与频率成正比的相位差。)这在接收端可以很容易修正过来。但是,多路径之间的延迟会造成OFDM符号之间的干扰,也就是前一个OFDM符号的信号由于延迟而与后一个符号混在一起。为此,需要在OFDM符号之间加入“安全间隔”,其长度大于多路径延迟的最大值。由于OFDM符号本身可以很长(原始的波特率乘以子载频的数目),这个“安全间隔”对传送效率的影响是很小的。有了安全间隔后,OFDM完全消除了多路径干扰。【注三】 除了上面介绍的对付多路径造成的干扰外,OFDM还给在频率上控制传送信号带来很大的方便。例如,如果在某些频率上遇到强烈的干扰,OFDM系统可以在相应的子载频采用抗干扰能力更强的调制方式,或者干脆不用那些子载频而把有限的发射功率用到别的频率上。反之,为了避免干扰其它窄频的用户,OFDM也可以“关闭”一段子载频而在其它频率上通信。在多用户分享频道的情况下,OFDM更有其优势。这时,我们称之为正交频分多址(Orthogonal Frequency-division multiple access, OFDMA)。在这种制式下,我们可以把不同的子载频分配给不同的用户。这种分配不影响发射和接收端的基本设置所以可以快速改变。因此,系统可以根据实时的数据量随时调整资源配置,而且可以根据各个用户信道的情况分配给他们条件最好(衰减最小,噪声最小)的频段。 当然从理论上说, OFDM并非革命性的进展。它的性能与其他调制方式在理论上是一样的。上面说到的种种功能,其他调制方式也能做到。但在实践上,OFDM对这些功能的支持要容易得多。特别值得一提的是,当采用多天线通信技术(下一讲要介绍)时,不用OFDM的话处理多路径问题会非常复杂。在这种情况下,OFDM几乎是唯一现实的选择了。 当然,OFDM也有自己的问题。对无线通信的应用来说,最主要的问题是它发射端功耗比较大。在其他的调制方式中,每个波特的最大电压都是有绝对限度的,不会比平均高出多少。但OFDM相当于是把很多经过调制的子载频加在一起。当它们相位都一致的时候,总电压就会很大。所以发射器的放大器就要留出很大的余量来对付这种偶然发生的“超大电压”,因而增加功率消耗。正因为此,在LTE标准中,上行信号(由手机发射)就不采用OFDM,而采用另一种类似的调制方式,来降低功耗。另一个问题是OFDM对于信号频率的漂移非常敏感,因为它使用频宽很窄的子载频。而在移动通信中,由于多普勒效应,不仅存在着整体的频率漂移,而且在多路径情况下每个路径的频率变化都可能不一样。这个问题是可以通过信号处理来改善的,但由此带来的复杂性就部分抵消了OFDM的优势。 我查了一下最近五年内出版的数字通信教科书,居然有一大半没有涵盖OFDM的内容。而今天数字通信的工作岗位中,大概有80%必须与OFDM打交道。从这个对比中可以看出OFDM是一个迅速发展的领域。希望这篇文章,能让你觉得它不再那么陌生。 【后记】:感谢dsp2008对于中文译名的指正,文中已经修改。 【注一】严格说来LTE标准还不算4G,它的下一代LTE Advanced才算。但这两者在调制方式上是一样的。 【注二】WiMAX和802.11都有几种调制方式。但最新的和目前普遍用的是OFDM。 【注三】通常这个安全间隔中所发射的并不是零,而是重复上一个OFDM符号的一部分。这涉及到傅立叶变换的特殊性质,这里就不细说了。 有关博文: 数字通信介绍(1) 调制 http://www.sciencenet.cn/m/user_content.aspx?id=261043 数字通信介绍(2)香农与信息论 http://www.sciencenet.cn/m/user_content.aspx?id=275997 数字通信介绍(3)信道编码 http://www.sciencenet.cn/m/user_content.aspx?id=377560
个人分类: 学海无涯|8674 次阅读|18 个评论
一个有趣的猜想___晒晒我的学术贡献3
热度 1 LintaoLiu 2011-10-1 17:10
2009 年,我提出了如下数学猜想:除去加窗傅立叶变换和小波变换,其他任何时频变换只能找到一种逆变换。换言之,在所有时频变换中,只有加窗傅立叶变换和小波变换能够找到两种或两种以上的逆变换。这里的逆变换是指采用双重积分的逆变换。 我目前只是以数学直觉和16年的信号分析经验认为该猜想是正确的,但我给不出证明。 这个猜想如果是正确的,则我们会有以下认识: 1 )加窗傅立叶变换和小波变换这两种分别于 1940s 和 1980s 被创立的时频变换在时频分析领域具有特殊地位; 2 )不可能再创造出别的特定时频变换与此两种时频变换分享这种特殊地位。 这个猜想如果是错误的,则我们会有以下认识: 1 )必有别的时频变换与此两种时频变换分享特殊地位; 2 )这种别的时频变换在哪里? 我预言:除非人们假装看不见这个猜想,关于该猜想的证明与否定将在今后(到明天或到 100 年后)激励着信号分析领域的发展。以我的视野纵观当今国际信号分析领域,似乎没有一个基础问题可以跟此猜想在激动人心程度上相媲美。 END 注明: 这个猜想激励我发明了标准时频变换,涵盖了加窗傅立叶变换和小波变换。没有想到我会以这种方式来推动时频分析的发展。
个人分类: 科研随笔|4279 次阅读|3 个评论
傅立叶变换群英会
zhuoqing 2010-11-10 10:01
对于一门学科的介绍不容易。我根据郑君里老师书中关于傅立叶变换关键人物和事件制作了介绍傅立叶变换历史的教课课件。很可惜没有将其中的人物事件的照片找全。 教学视频: http://v.youku.com/v_show/id_XMjIxMzMzODI0.html
个人分类: 我的教学|3907 次阅读|3 个评论
mirror - 需要自我“捍卫”一哈
liwei999 2010-7-21 12:43
需要自我捍卫一哈: (40621) Posted by: mirror Date: December 13, 2006 01:08AM (o)言 引用: 刚看了你关于傅立叶变换的普虽为编译不是原创 一句,或许是言者无意。但是,有闻者有心。镜某最看不起的,就是人云亦云。编译这样的事情,镜某是绝对不会作的。 悟的境界不能理解,一点不寒碜。不能知道开窍的感觉,不妨从YT里找,两个是一致的。 宗教的问题,是个信仰的问题,不适合于讨论。而科学的课题是适合于讨论的。但是这里面又有个理解能力(=悟性)的问题。坦率地讲,有悟性的人是少数。 悟的境界是一个需要原创的东西。只有原创的作业才能体验快感。那时,见到俗的就自然要横扫了。 用自己的脑袋思想,用自己的语言表达。这是镜某写东西的宗旨。音乐说、直进马达说,论证1倍等于两倍等等的,都是原创! -------- 就是论事儿,就事儿论是,就事儿论事儿。
个人分类: 镜子大全|2284 次阅读|0 个评论
mirror - 科普一下傅立叶变换
liwei999 2009-12-14 11:41
立委按: 镜子的好为人师以此篇为最。都说镜子傲,那是一点不假,可他傲得有幽默有趣味。幽默感这种东西,不是想有就有的。不服气不行。有些大批判镜子的文字,下笔千言,像个瘪三,就是有再英明的思想在内,也让人不忍卒读。文比文,真是气死人,不提也罢。镜子的幽默是五香豆腐干级的,譬如本篇,写到最后,一本正经来一句您是现金还是刷卡?,让读者喷饭。乐死人,不偿命啊,老兄。 本来应该收费的。有人夸镜某的为人,只好再志愿一次。 虹桥科教论坛 送交者: mirror 于 November 02, 2004 18:48:18: 回答: 镜子给科普一下傅立叶变换吧 由 FairyChild 于 November 02, 2004 14:20:07: 听懂了值一千元。 话说音乐里有乐曲和乐谱之分,一个是用听觉、一个是用视觉。有能人可以看着谱奏乐曲,有更能人可以听着乐曲演奏写出谱子。超级音乐家傅立叶先生主张:描述音乐的一档事儿,可以有曲和谱两样东西来完成。从学问的高度上看,这两个是等价的。这是导入部,值200元。 今天的技术比当年要发达,有了谱子,机器可以按照谱子演奏;也有机器可以听着曲子打出乐谱来。进去的和出来的不一样,因此起个名子叫变换。进去的和出来的一样,那叫吃冰拉冰--没话。这是第一节,值200块。 是不是所有的曲子都可用一种方法,比如五线谱记录下来?傅立叶先生通过研究,得出来结论,只要是能有的曲子,就一定能用谱的方式记录下来。这样,就有很多西洋的、被称为作曲(=写谱)家的人青史留名,而奏曲家的人没有能留下。这是第二节,值200块。 反过来,是不是所有的谱子都可用一种方法演奏出来,比如提琴,笛子?傅立叶先生通过研究,得出来结论,只要是能有的谱子,就一定能用某种乐器(包括人嗓)演奏出来。这是第三节,也值200块。 结束语: 视觉器官的眼和听觉器官的耳是正交(成直角)。两个眼睛、两个耳朵,表明输入的、变换的数字要用复数表示。 懂乐理、会乐器的人,就可以通过眼看谱,再经过乐器的变换,达到能耳闻乐谱内容的境界。到达了此境地,就可以成为一个高尚的人、一个纯粹的人;一个也关心低级趣味的人、一个能作镜子的人了。以上共计1000元,您是现金还是刷卡? ~~~~~~~~~~~~~~~ 欧阳峰 02月 4th, 2009 at 10:58 pm edit 这都什么呀?懂的人看了还是懂,不懂的人看了还是不懂。唯一值得称赞的,是没有看出错来。 liwei 02月 5th, 2009 at 3:23 am edit 这都什么啊? 答曰:游戏文字耳。难道不好玩(fun)? 立委见到术语就头疼,经过镜子先生的科普,感觉这个什么变换突然亲切起来。哦,原来类似于看乐谱识音乐啊。我的导师当年看穿孔纸,就能映射成程序,大概也是类似的过程? 吴兄是拿中规中矩的科普做标准,看其知识传播的准确和效率。以此为标准,年轻人最好去查wiki百科全书和念大学和研究院,谁傻到上博客和论坛去求知识?那个求教于镜兄的想来也是个不愿意自己动脑经的冒傻气的上进女青年,连wiki都不愿意查。对于这样的青年,调侃游戏是良剂。 http://zh.wikipedia.org/wiki/ 傅里叶变换 那是众多学者心血凝聚而成,随着时间会越来越准确和权威。连我女儿遇到任何知识问题,都知道去找 wiki 大叔,而不是mirror先生。:=) mirror 02月 5th, 2009 at 7:07 am edit 既然两位仁兄都说了,不应一下也不合适。 懂的人看了还是懂一句不错。从没有看出错来一句看,欧阳兄属于懂的一派了。那么不懂的人看了还是不懂的一句就是推测了,因为懂了的人很难感受到不懂的人是如何想的,所谓饱汉不知饿汉饥。 认为是游戏文字也是一种读法。镜某以为这个读法也很高明。 懂了是个什么状态?镜某以为是个简并了的状态。在一定的条件下,这个简并的状态可以分出很多种懂了的状态。能读懂这些个状态就要看人的觉悟了。 看戏 02月 5th, 2009 at 8:24 am edit 很俏皮的游戏文字:-) 不知道傅立叶变换为何物的人,大约会觉得云里雾里,不知道在说什么。认定傅立叶变换只能有数学教科书上的那种正规说法的人,大约会认定这又是忽悠了。从科普的角度来说,没有让不懂的人明白:-( 对这样的文字觉得好玩,不生气的人,大概愿意1000元,津巴布韦元:-) 路人 02月 5th, 2009 at 9:42 am edit mirror: 懂了是个什么状态?镜某以为是个简并了的状态。在一定的条件下,这个简并的状态可以分出很多种懂了的状态。能读懂这些个状态就要看人的觉悟了。 有禅味!是不是以为懂了,搞来搞去好像又不懂了,然后又懂了,不知道以后还会不会不懂,玄机重重的感觉。 mirror 02月 5th, 2009 at 9:51 am edit 没有让不懂的人明白:-(的说法比较奇怪。因为这需要出现一个原本不懂的人的判断。而说没有让不懂的人明白:-(的人往往是知道了傅立叶变换为何物的人。 这是个现代版的子非鱼了。 mirror 02月 5th, 2009 at 10:12 am edit 应路人:那句话落了一个字,能{否}读懂这些个状态就要看人的觉悟了。 也不是禅机,而是自然:量子化的结果必然是多体的。也就是说原来以为是两个状态:懂─不懂。结果一细分析发现懂可以有n多的懂,不懂也可以有n多的不懂。能否发生相变(=懂到不懂,或者是不懂到懂)?这就要看个人的造化了。 比如以为懂了的人能否感觉出用谱的寓意呢?知道不知道谱学呢?这一个标准可以砍去90%自以为是懂了的人。再提几个问题,恐怕99%的人就不知道了。这时再回头看立委的懂了──原来类似于看乐谱识音乐啊就显得很有境界了。因为这与读谱学认识自然的结构对应上了。 路人 02月 5th, 2009 at 11:10 am edit mirror: 量子化的结果必然是多体的,这句话我不懂:)。 我理解:在数学上,傅立叶变换是简洁明确的,出人意料的是其竟有如此丰富多彩的应用,进而导致了傅立叶变换的物理实现(示波器,频谱分析仪)。傅立叶变换的大义、寓意其实是蕴藏在数学-自然科学的对应中的。 mirror 02月 5th, 2009 at 12:15 pm edit 第二量子化。 复数:可以认为是两个,也可以认为是实数虚数; 直交:可以认为是耳目的位置关系,也可认为是数学空间的关系。 路人 02月 5th, 2009 at 2:51 pm edit mirror的中文术语不大地道了哈! 第二量子化通常中文叫二次量子化 直交通常中文叫正交,即向量的内积为0。 mirror 02月 5th, 2009 at 3:29 pm edit 二次量子化的说法镜某不喜欢。应该说第一和第二,因为这是说种类的问题。 right angle译成直角,不是正角。因此说直比说正要好。斜交与直交的对比比用正要好。如果是用正的话,对应的就是邪了。 术语的形成当然要有规范。但是先人也有失手的时候。比如迟延势(延迟势)显然不如滞后势合理。是用激光还是镭射也没有统一吧。 子平 02月 5th, 2009 at 4:49 pm edit mirror 喜爱极其深入地了解一个问题的终极含义。Kind of a freak! I like that you dont keep your findings to yourself.
个人分类: 镜子大全|6130 次阅读|3 个评论
MIT给大家解释离散傅立叶变换(DFT)
毛宁波 2009-12-1 01:43
我们大家知道,傅立叶变换是我们很多科学领域的重要的数学工具。有人说没有傅立叶变换就没有我们现代科学一些新分支或者很多学科就可能不太完善,我觉得这句话一点没有错。我们在地球物理的信号,无线电信号,现代的通讯技术、光学、声学甚至音乐中都大量应用傅立叶变换,尤其是离散的傅立叶变换。美国麻省理工学院(MIT)最近在她的网站主页上用非数学的语言给普通民众大谈离散傅立叶变换(DFT),这篇文章很通俗,推荐给大家共享,希望大家多多讨论。 网站链接: http://web.mit.edu/newsoffice/2009/explained-fourier.html Explained: The Discrete Fourier Transform The theories of an early-19th-century French mathematician have emerged from obscurity to become part of the basic language of engineering. Larry Hardesty, MIT News Office November 25, 2009 Science and technology journalists pride themselves on the ability to explain complicated ideas in accessible ways, but there are some technical principles that we encounter so often in our reporting that paraphrasing them or writing around them begins to feel like missing a big part of the story. So in a new series of articles called Explained, MIT News Office staff will explain some of the core ideas in the areas they cover, as reference points for future reporting on MIT research. In 1811, Joseph Fourier, the 43-year-old prefect of the French district of Isre, entered a competition in heat research sponsored by the French Academy of Sciences. The paper he submitted described a novel analytical technique that we today call the Fourier transform, and it won the competition; but the prize jury declined to publish it, criticizing the sloppiness of Fouriers reasoning. According to Jean-Pierre Kahane, a French mathematician and current member of the academy, as late as the early 1970s, Fouriers name still didnt turn up in the major French encyclopedia the Encyclopdia Universalis. Now, however, his name is everywhere. The Fourier transform is a way to decompose a signal into its constituent frequencies, and versions of it are used to generate and filter cell-phone and Wi-Fi transmissions, to compress audio, image, and video files so that they take up less bandwidth, and to solve differential equations, among other things. Its so ubiquitous that you dont really study the Fourier transform for what it is, says Laurent Demanet, an assistant professor of applied mathematics at MIT. You take a class in signal processing, and there it is. You dont have any choice. The Fourier transform comes in three varieties: the plain old Fourier transform, the Fourier series, and the discrete Fourier transform. But its the discrete Fourier transform, or DFT, that accounts for the Fourier revival. In 1965, the computer scientists James Cooley and John Tukey described an algorithm called the fast Fourier transform, which made it much easier to calculate DFTs on a computer. All of a sudden, the DFT became a practical way to process digital signals. Summing together only three discrete frequencies can produce a much more erratic composite. The Fourier transform provides a way to decompose signals into their constituent frequencies. To get a sense of what the DFT does, consider an MP3 player plugged into a loudspeaker. The MP3 player sends the speaker audio information as fluctuations in the voltage of an electrical signal. Those fluctuations cause the speaker drum to vibrate, which in turn causes air particles to move, producing sound. An audio signals fluctuations over time can be depicted as a graph: the x-axis is time, and the y-axis is the voltage of the electrical signal, or perhaps the movement of the speaker drum or air particles. Either way, the signal ends up looking like an erratic wavelike squiggle. But when you listen to the sound produced from that squiggle, you can clearly distinguish all the instruments in a symphony orchestra, playing discrete notes at the same time. Thats because the erratic squiggle is, effectively, the sum of a number of much more regular squiggles, which represent different frequencies of sound. Frequency just means the rate at which air molecules go back and forth, or a voltage fluctuates, and it can be represented as the rate at which a regular squiggle goes up and down. When you add two frequencies together, the resulting squiggle goes up where both the component frequencies go up, goes down where they both go down, and does something in between where theyre going in different directions. The DFT does mathematically what the human ear does physically: decompose a signal into its component frequencies. Unlike the analog signal from, say, a record player, the digital signal from an MP3 player is just a series of numbers, representing very short samples of a real-world sound: CD-quality digital audio recording, for instance, collects 44,100 samples a second. If you extract some number of consecutive values from a digital signal 8, or 128, or 1,000 the DFT represents them as the weighted sum of an equivalent number of frequencies. (Weighted just means that some of the frequencies count more than others toward the total.) The application of the DFT to wireless technologies is fairly straightforward: the ability to break a signal into its constituent frequencies lets cell-phone towers, for instance, disentangle transmissions from different users, allowing more of them to share the air. The application to data compression is less intuitive. But if you extract an eight-by-eight block of pixels from an image, each row or column is simply a sequence of eight numbers like a digital signal with eight samples. The whole block can thus be represented as the weighted sum of 64 frequencies. If theres little variation in color across the block, the weights of most of those frequencies will be zero or near zero. Throwing out the frequencies with low weights allows the block to be represented with fewer bits but little loss of fidelity. Demanet points out that the DFT has plenty of other applications, in areas like spectroscopy, magnetic resonance imaging, and quantum computing. But ultimately, he says, Its hard to explain what sort of impact Fouriers had, because the Fourier transform is such a fundamental concept that by now, its part of the language.
个人分类: 美国麻省理工学院见闻|7945 次阅读|1 个评论
中心极限定理之二
zhouda1112 2009-7-17 13:00
正态分布(Normal distribution)大家都很熟悉,应该是概率论中,知名度最高的名词之一。 每一位接触过概率论的朋友都能说出一点关于正态分布的东西,翻看任何一本概率或者统计的书籍,都少不了对它的介绍。有关它的基本知识,可以参阅WIki百科或者百度百科,搜索一下就可以了。 正态分布的故事很多,从数学里最专门的调和分析到时下最时髦的和谐社会,吹吹正态分布的牛很容易。 这里我想讲这么几个问题,希望能有点新意。 1、正态分布的密度函数exp(-x^2)是唯一的一个傅立叶变换不变函数。用概率论的语言讲,就是正态分布的密度函数跟它的特征函数(characteristic function)形式一致,而且只有正态分布具有这样的性质。傅立叶变换的数学及其应用价值不言而喻,而exp(-x^2)这个量因其优美的不变性,在其中扮演了核心角色。 2、正态分布是轻尾的。明显,exp(-x^2)随着x的增加,会下降很快。用直观的语言讲,符合正态分布的群体,绝大部分个体是集中在中庸附近,太极端的个体非常少。这很好的符合了很多自然和社会现实。不过,有越来越多的研究者去关注厚尾现象,特别是复杂性的一些工作。比如scale-free网络就是厚尾的,即网络中度很大的节点数目其实还不少。 3、正态分布是无穷可分(infinitely devisible)的。无穷可分是概率极限理论的一个专门概念。粗略地讲,我们关心那些可能成为某一串随机变量极限的分布,都具备什么样的特点?比如,大家知道中心极限定理是一串随机变量收敛到正态分布;还有一种叫poisson收敛,就是二项分布在某种条件下会收敛到poisson分布。教科书里都有介绍。那么正态分布和poisson分布有何种共性?无穷可分性非常好的回答了这个问题。相关内容可参看Durrett的教材第二章。
个人分类: 概率论问题讨论|7199 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 22:48

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部