科学网

 找回密码
  注册

tag 标签: Modelling

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]Modeling the internet of things: a hybrid Modeling approach
Fangjinqin 2017-4-4 14:56
Modeling the internet of things: a hybrid modeling approach using complex networks and agent‑based models Modeling IOT.pdf
个人分类: 学术文章|1448 次阅读|0 个评论
Hermes Summer School in Materials Modelling
gcshan 2016-2-1 16:36
Hermes Summer School in Materials Modelling Hi there! Hermes 2016 - a unique international summer school organised by PhD students from around the UK (Imperial College London, Birmingham, Sheffield, Cambridge) and abroad - will take place in July next year. It will bring together cutting edge materials modelling and world class science communication. It will also provide a networking opportunity and the chance to meet the invited speakers in an informal setting. Our confirmed speakers on materials modelling methods are Prof. Kurt Kremer (Max Planck Institute for Polymer Research), Prof. Nicola Spaldin (ETH Zürich), Prof. Sauro Succi (Istituto per le Applicazioni del Calcolo). Further, we have an excellent lineup of science communication speakers, including Craig Carter (Massachusetts institute of Technology), Piero Vitelli (Island 41) and Lulu Pinney (Freelance Infographer), with a key focus on presenting data in an effective and comprehensible manner. Hereby participants will learn the art of communicating science to a wide range of audiences - a skill of growing importance in both scientific research and in the public domain. The event takes place from 27-31 July 2016 at Cumberland Lodge (a former Royal Palace located in Great Windsor Park, Greater London, UK ). Applications are now open, with an early bird deadline of 28 February 2016. For more information see our video http://www.youtube.com/watch?v=FjL8v4rGQpg and our website http://hermessummerschool.org . We would welcome any applications from early stage researchers that have a keen interest in materials modelling, science communication and would enjoy the one-of-a-kind atmosphere in the countryside with like minded people. If you have any questions, please contact us at contactus@hermessummerschool.org . Best wishes, Hermes Team
个人分类: Information|2057 次阅读|0 个评论
最新一期Int. J. Simulation and Process Modelling (10.4)发表
FengQiao 2015-10-2 09:22
IJSPM 1004 CONTENTS PAGE.pdf Int. J. Simulation and Process Modelling Vol. 10, No. 4, 2015 Contents 307 Structural optimisation and analysis of internally heat integrated reactive distillation column Shoushi Bo, Jian Wang, Lanyi Sun, Fei Bai and Kang He 315 Android malware detection based on permission combinations Zenghui Liu, Yingxu Lai and Yinong Chen 327 Engineering-oriented simulation platform for laminar cooling process of hot rolled strips Jinxiang Pian, Zhen Wang, Yunlong Zhu, Tianyou Chai and Jiejia Li 334 Customer order fulfilment in mass customisation context – an agent-based approach Khaled Medini 350 A virtualisation simulation environment for data centre Chia-Jung Chen and Rong-Guey Chang 360 Modelling the complexity of emergency department operations using hybrid simulation Norazura Ahmad, Noraida Abdul Ghani, Anton Abdulbasah Kamil and Razman Mat Tahar 372 Simulation and analysis of water concentration in the proton exchange membrane Shizhong Chen, Zhongxian Xia, Shiyu Xing, Xuyang Zhang and Yuhou Wu 383 Contents Index 385 Keywords Index 389 Author Index
2453 次阅读|0 个评论
Tools for biological modelling
ljxue 2013-2-15 23:50
CellDesigner http://celldesigner.org/index.html (The models can be generated by manual and simulated with built-in tools ). More tools: http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix Summary: http://sbml.org/SBML_Software_Guide/SBML_Software_Summary Well, I think most of the biological modelling tools would support SBML(Systems Biology Markup Language). The SBML website provides a long list of software. This should be the full list, at least a great list to start with.
2390 次阅读|0 个评论
William Curtin's presentation on multiscale material model
ZHANGJINGNUS 2012-10-15 21:37
今天是MMM2012 SINGAPORE的第一天,原来在BROWN University 的 William Curtin 教授作了第一个报告,这是我听到的最好好的报告之一。他的主题是:Perspective on multiscale materials modelling: Why, What, How, Who, Where and so what? 我主要理解2点 (1)What is multiscale material modelling? Wiki: In engineering , mathematics , physics , meteorology and computer science , multiscale modeling is the field of solving physical problems which have important features at multiple scales, particularly multiple spatial and(or) temporal scales. Important problems include scale linking (Baeurle 2009 , de Pablo 2011 , Knizhnik 2002 , Adamson 2007 ). (2)This internal conference on multiscale material modelling was First held in 2002, after 10 years, what we get? We have key understanding: there are two key points: Different scales information passing and concurrent coupling.for scale information passing, for Lower scale: what is the key information needed to pass up;for higher scale: Theory can accept the appropriate lower-scale information.
4167 次阅读|0 个评论
复杂系统、仿真与经济学
热度 4 estudy 2012-5-20 20:09
内容没有标题这么大的,只是把最近想到一些东西放在一起。 复杂系统理论 那些最热心研究这个领域的人一般叫它“复杂科学complexity science”,总觉得还是大了点——似乎这个范式还不太清晰——还是叫“复杂系统理论complex systems theory”比较保险。复杂系统不算全新的东西,可以看作是系统论的一个部分。系统讲的是由一些个体individual(局部part)组成的总体aggregate(全部whole),强调总体的功能和属性大于个体的总和。因此个体和总体之间不是简单的线性关系,不能一一映射map。从个体到总体多出来的这部分属性就是涌现emergency,是在一定条件下,因个体和个体之间的相互作用interaction而产生的。大致可以想象:系统可以简化的看成有三个要件:individuals agents,aggregate pattern,emergency(由individuals 的interaction产生)。复杂系统就是关注系统中的interaction这部分,此外的部分可以简单的认为就是从个体到总体可以映射和加总的部分——这是还原论的看法(复杂的现象可以化解为各部分的组合来理解和描述)——但现在看来,这不是决定复杂现象属性的主要部分,现象的特征和变化规律主要地由interaction来决定。 这和经济学的直接关系在哪里?现在主流经济学的一个主要问题把总体变量看成是个体变量的加总,例如在它的逻辑中,aggregate demand是 (individual) demand的总和,这就完全忽略了消费者之间的相互作用。而有些现象是只有Aggregate level才有的,individual level没有,例如失业和通胀,其实这就是涌现,为了处理这些问题,经济学就不得不把现象分成微观和宏观两个level还考察,于是有了宏观和微观经济学之分——宏观经济学就是凯恩斯为了分析失业和通胀这些只有在aggregate level才存在的涌现的现象而创造的,刚才说过这些interaction所导致的涌现的部分主要地决定现象的属性,所以就失业和通胀是宏观经济学主要的issue。当然不仅如此,为了保证这种还原论方法论下数学逻辑的通行,主流经济学又不得不对individual的属性、市场(individual运动的环境)的属性以及经济行为发生的规则等做了必要的界定,于是又有了理性经济人、完全竞争市场、最优化等等这样的假设。 这么说没有抨击主流经济学的意思,作为一个比较完善和成熟的体系,它有很多可取之处,如果说要有什么变化(或这变革),还是应该以这个体系的内容为主。要知道,目前从复杂性角度研究经济学最深入的还是主流经济学家。 仿真技术 也有人叫“仿真科学simulation science”,还是觉得目前它主要是个技术。仿真技术可以说是目前研究复杂系统最合适的方法,一般认为是建模modelling方法的一种。实际上也不是什么新东西,只是由于复杂系统的研究,有了更多的关注,也就有了更快的发展。仿真是有些不用于演绎和归纳的解释现象的方式,它把主体agent、他们行为的规则rule及运行的环境定义出来,模拟现象发生的过程,它的逻辑是生成generate就是解释explain。作为一种通过数学模型和计算机模拟来完成的模拟实验,在诸多领域都有应用,自然科学中往往和观察实验和控制实验结合在一起,社会科学通常做不了观察实验或控制实验,仿真就成了理想的实验方式。仿真的技术也有很多中,目前在社会科学中最常用、最适用的莫过于Agent-based modelling(ABM)和System dynamics,其中ABM更底层、更灵活,所以用得更加广泛。 在经济学中,虽然实验经济学是在做观察实验和控制实验,但是十分有限,仿真就成了一种依靠电脑就能完成的廉价、可控的实验方式,于是ABM开始广泛应用到经济学的研究中,出了Agent-based computational economics (ACE) 这个学科。由于这个框架非常灵活,经济行为主体、运行环境、行为规则等都可以根据需要界定,完全突破了数学模型的种种限制,因此有可能在这个框架下放开主流经济学所做的各种假设,对经济现象作出新的解释,解决主流经济学由于与现实脱离所面临的一些问题。 尽管发展非常迅猛,但是当前仿真、ABM也面临着诸多问题,最大的挑战来自建模的一般范式,由于这个框架非常灵活,每个建模者都可以agent、rules和运行环境给出不同的界定,这样就难以形成一个具有一般性的范式,模型之间没有可比性。另外模型参数的校对Calibrate也有一定难度。
个人分类: 经济思维|7082 次阅读|14 个评论
Protein-Protein Docking in Rosetta
热度 2 albumns 2010-12-26 11:08
The protein-protein docking workflow in Rosetta could be described as following: 1. Low resolution docking command: docking_protocol.linuxgccrelease @flags docking.log This step will create large number of initial pose e.g. 10,000 for full sampling. To fasten the whole process, poses without sidechain would be wise for this step especially if you want to sample even a larger population. 2. Clustering pose command: cluster.linuxgccrelease @flags-cluster cluster.log Clustering was used for largest population pose recognition which usually represent the most likely protein binding mode. The best scored pose in the largest clustered group would be used as the input of next step. 3. Initial pose refinement command: relax.linuxgccrelease @flags relax.log Initial docking in 1st step is a rigid body docking without sidechain and the 2nd would build full atom poses. There are many unfavorable sidechain conformation or atom clashes in the poses comes from step 2. So this step would make the pose much more favorable in energy level. 4. High resolution docking command: docking_protocol.linuxgccrelease @flags2 docking2.log To confirm the docking results, small perturbations can be introduced for such purpose. In this step, thousands of perturbed pose can be generated and the best one can be identified as final docking results according to the scoring function in Rosetta. Tips: Some protocols in Rosetta could support parallel job running, users could use MPI for such kind tasks so that the whole workcould be finished much faster.
个人分类: 科研笔记|6011 次阅读|1 个评论
[转载]A review paper on wave modelling by the WISE Group
热度 1 zuojun 2010-7-14 05:11
Citation: Cavaleri L., Alves J.-H.G.M., Ardhuin F., Babanin A., Banner M., Belibassakis K., Benoit M., (...), Young I. Wave modelling - The state of the art (2007) Progress in Oceanography ,75(4),pp.603-674. Abstract This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the problems we presently face. Both theory and applications are considered. The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an introduction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2, generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize the present situation from a general point of view and try to look at the future developments. Keywords: Wind waves; Windwave generation; Wavewave interaction; Wave propagation; Wave dissipation; Wavecurrent interaction; Numerics Article Outline 1. Introduction 2. Brief review of windwave generation 2.1. Linear theory 2.2. Nonlinear effects 2.3. Gustiness 2.4. Open issues 2.4.1. Damping of low-frequency swells 2.4.2. Momentum transfer for high wind speeds 2.4.3. Quality of modelled wind fields 3. Modelling nonlinear four-wave interactions in discrete spectral wave models 3.1. Theory 3.2. Solution methods 3.3. Properties 3.4. Development in computational methods 3.5. Inter-comparison of computational methods 3.6. Questions and actions 4. Spectral dissipation in deep water 4.1. Theoretical and experimental research of physics of the spectral dissipation 4.1.1. Spectral dissipation due to wave breaking 4.1.2. Waveturbulence interactions 4.1.3. Wavewave modulations 4.2. Modelling the spectral dissipation function 5. Nonlinear interactions in shallow water waves 5.1. Nonlinearity in shallow water 5.2. Deterministic models: time-domain and spectral-domain 5.3. Stochastic models 5.4. Dissipation and wave breaking in shallow water 5.5. Open problems 6. Bottom dissipation 6.1. Wave energy dissipation due to bottom friction 6.1.1. Common formulations for spectral wave models: waves only 6.1.2. Common formulations for spectral wave models: waves and currents 6.1.3. Bottom roughness models for movable beds 6.2. Energy dissipation due to wavebottom interaction 6.3. Discussion and outstanding problems 7. Wave propagation 7.1. Dispersion, geometrical optics and the wave action equation 7.2. Limitations of geometrical optics: diffraction, reflection and random scattering 7.3. Waves over varying currents, nonlinear wave effects and the advection velocity 7.4. Waves blocking 7.5. Unsteady water depths and currents 7.6. Waves in the real ocean 8. Numerics and resolution in large-scale wave modelling 8.1. A description of the problem 8.1.1. Error due to the numerical scheme for geographic propagation on a grid 8.1.2. Diffusion 8.1.3. Numerical dispersion 8.1.4. Combined effect of diffusion and dispersion 8.1.5. Error due to the numerical scheme for spectral propagation 8.1.6. Error due to coarse geographic resolution 8.1.7. Error due to coarse spectral resolution 8.1.8. Errors in source term integration 8.2. Existing solutions 8.2.1. Improved numerical schemes for propagation on a grid 8.2.2. Alternatives to the finite difference schemes on a grid 8.2.3. Addressing error due to coarse geographic resolution 8.2.4. Garden sprinkler effect correction methods 8.2.5. Errors in source term integration 8.3. Relative importance of problem 8.3.1. Error due to the numerical scheme for geographic propagation 8.3.2. Argument 8.3.3. Counter-argument 8.3.4. Error due to the numerical scheme for spectral propagation 8.3.5. Geographic resolution 8.3.6. Spectral resolution 8.3.7. Source term integration 8.4. Future solutions 8.4.1. The numerical scheme for geographic propagation 8.4.2. Geographic resolution 8.4.3. Spectral resolution 8.4.4. Errors in source term integration 8.5. Numerics and resolution: problems particular to finite depth and high resolution applications 9. Where we are 10. Where to go Acknowledgements References
个人分类: My Research Interests|2241 次阅读|3 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-9 23:15

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部