科学网

 找回密码
  注册

tag 标签: spin

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

亥姆霍兹联合会企业创办基金遴选并资助六个商业创意
Helmholtz 2018-6-22 18:45
Fair wind for founders: Helmholtz to fund six innovative spin-offs Faster bone loss detection using marine chemistry, equipping cargo bikes with high-performance fuel cells, or simplifying the energy efficiency measurement of buildings – these are three of the six new business ideas selected for the Helmholtz Enterprise funding program. These spin-off projects now have up to 260,000 euros at their disposal for one year. 亥姆霍兹联合会的企业创办基金新选出六个商业创意,并提供单项最高额度26万欧元的资助 Spin-off companies from research are an important way to apply new technologies and findings for public benefit. This is why Helmholtz supports entrepreneurs in the field of science with a number of funding instruments, including the Helmholtz Enterprise program. Since 2005, 176 spin-offs have emerged from the Helmholtz Centers. Approximately half of them were funded by Helmholtz Enterprise. New, promising spin-offs are now ready to launch. Six spin-off projects were included in the program during the current round of calls. Over a period of twelve months, each of the founders receive up to 260,000 euros in funding and go through a number of support programs to turn their business idea into a reality. “We use Helmholtz Enterprise to support brilliant scientists with their business ideas, says Otmar D. Wiestler, President of Helmholtz. Their new companies are the result of years of excellent research at our Centers. Their new products and processes have high potential for innovation. For this reason, they play an important role in bringing technological progress into our daily lives. I wish them much success!” Half of the Helmholtz Enterprise funding comes from the Helmholtz President’s Initiative and Networking Fund, the other half is provided by the Helmholtz Center where the basic technology of the business idea was developed. The six projects currently being funded are: Improved treatment for cancer patients (Theraselect) 改善癌症患者治疗效果 Helmholtz Zentrum München – German Research Center for Environmental Health (HMGU) The Theraselect project aims to create new diagnostic and pharmacological tests to improve treatment for cancer patients. The basis for the spin-off from the Department of Analytical Pathology at the Helmholtz Zentrum München is specially developed methods in mass spectrometry imaging that make thousands of molecules visible in tissue samples. In addition to the cell structure, this makes it possible to see which molecules are present at which location. This can help drug studies to differentiate between active ingredients and their metabolic products in order to verify the success of a treatment. The method also allows specific biomarker profiles to be collected from clinical tissue samples. Based on the results, doctors would be able to make personalized treatment decisions in the future. The locally resolved detection of previously undetectable, tumor-inducing molecules could set new standards in cancer diagnostics. Contact: Dr. Achim Buck Phone: +49 89 3187 4133 Email: achim.buck@helmholtz-muenchen.de Helmholtz Zentrum München – German Research Center for Environmental Health (HMGU) 2. Fuel Cell Power Pack gives cargo bicycles more power (FCPP) German Aerospace Center (DLR), Stuttgart 提供货运自行车动力的燃料电池堆 The German Aerospace Center (DLR) has developed an innovative fuel cell module called the Fuel Cell Power Pack (FCPP), which makes cargo bikes fit for everyday use. It can be refueled in a matter of seconds and performs reliably even at low temperatures. It allows a greater range and twice the service life at similar costs to fully battery-powered systems. It can also be integrated into existing bicycle concepts. The application focus is on what is known as the last mile, meaning the distance between the distribution center and the customer. This is becoming increasingly important due to the rise in e-commerce. The DLR spin-off provides technology and an innovative logistics concept that is faster and more flexible than cars or vans, while also being emission-free and quiet. Contact: Dr. Mathias Schulze Phone: +49 711 6862 456 Email: Mathias.Schulze@dlr.de German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart Dr. Christian Rudolph Phone: +49 30 67055 249 Email: Christian.Rudolph@dlr.de 3. Storing valuable muscle stem cells (MyoPax) 珍贵肌肉干细胞的存储 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Rare muscular dystrophies destroy tissue stem cells as well as muscle. This eliminates any chance for those affected to recover through stem cell-based treatments. Intensive research on these treatments is currently underway. MyoPax is the first biobank for muscle tissue at drug level that is expected to enable patients to benefit from these treatments in the future. The founding team from the Experimental and Clinical Research Center (ECRC), a joint facility of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité – Universitauml;tsmedizin Berlin, is working on regenerative treatments for muscle loss to cure more than 50hereditary, previously incurable muscular diseases. They use a patented procedure to extract primary muscle stem cells from routine biopsies. The researchers can then repair genetic defects in these stem cells, multiply them as muscle cells, and regenerate tissue. The MyoPax biobank will store the processed tissue samples for patients until the procedure has been completely developed and officially approved. It is currently undergoing preclinical testing. Contact: Dr. Verena Schouml;wel Phone: +49 30 450 540002 Email: verena.schoewel@mdc-berlin.de Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) 4. Early detection of bone loss (Osteolabs) 骨丢失的早期诊断 GEOMAR Helmholtz Center for Ocean Research Kiel Osteoporosis or bone loss is a widespread disease that many older women suffer from. The consequences range from broken bones to complete loss of mobility. In the OSTEOLABS project, a research team from the GEOMAR Helmholtz Centre for Ocean Research Kiel and physicians from University Hospital Schleswig-Holstein are developing a non-invasive biomarker based on a marine chemistry analysis method for calcium isotopes that only requires urine or blood for the examination. The biomarker is expected to be able to detect bone loss much earlier than traditional methods and, in the case of an illness, to measure the therapeutic success, thus ensuring a personalized treatment strategy and optimized medication. The goal of the spin-off is to offer the test as a medical device and osteoporosis screening service. OSTEOLABS has already received funding of 1.8 million euros from a validation project of the Helmholtz Association. Contact: Prof. Dr. Anton Eisenhauer Phone: +49 0431 600 2282 Email: aeisenhauer@geomar.de Helmholtz Centre for Ocean Research Kiel 5. Simulation methods for lightweight construction (Simutence) Karlsruhe Institute of Technology (KIT) 轻量化生产的模拟方法 Fiber-reinforced plastics offer excellent mechanical properties such as high material rigidity and, simultaneously, very low weight. This means they offer enormous potential for lightweight construction in vehicle structures. However, currently available software cannot accurately simulate and design the load-bearing capacity of the corresponding components or the manufacturability of production processes. The result of this is a high degree of uncertainty and high costs to develop and use fiber-reinforced plastics. Researchers at the Institute of Automotive Engineering at Karlsruhe Institute of Technology (KIT) have now significantly improved corresponding simulation methods. Through the start-up Simutence, they are offering new processes for the virtual product development of fiber-reinforced plastics as services and as additional modules for commercially available software. Based on process and structure simulations, it is possible to reliably design fiber-reinforced plastics within a virtual process chain and optimize the associated manufacturing processes and components. Contact: Benedikt Fengler Phone: +49 0721 608-45375 Email: benedikt.fengler@kit.edu Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Institute of Lightweight Construction Technology 6. Rapid energy analysis of buildings and apartments (neofizient) German Aerospace Center (DLR), Cologne and Jülich 建筑与公寓的快速能源分析 About half of the approximately 40 million apartments in Germany will have to be renovated over the next 20 years. Because of energy saving regulations and the large saving potential offered by new materials and technologies, building energy consulting will be required to plan the renovations. These consultations are time consuming and expensive since experts have to perform complex, on-site measurements. The procedure and the documentation are not standardized and are not comparable due to varying standards of quality. It is currently impossible to get a simple assessment of the energetic condition without on-site analysis by an expert. The neofizient spin-off from the Institute for Solar Research at the German Aerospace Center (DLR) offers fast, inexpensive, and standardized preparation of energy building models. The measurement using a newly developed infrared (IR) interior scanner is so simple that it can be performed by anyone. The interior scanner is based on an optical 360° camera system that combines visual and IR data. These data are used to create a 2.5dimensional spatial model that displays energetic information such as the U-value (heat transfer coefficient), thermal bridges, and humidity. Contact: Silvan Siegrist Phone: +49 2203 601 4195 Email: Silvan.Siegrist@dlr.de Dr. Arne Tiddens Phone: +49 2203 601 4174 Email: Arne.Tiddens@dlr.de The Helmholtz Association contributes to solving great, pressing questions facing society, science, and business with top scientific performances in six research fields: Energy; Earth and Environment; Health; Key Technologies; Matter; and Aeronautics, Space, and Transport. With 39,000 employees at 18 Research Centers and an annual budget of over 4.5 billion euros, the Helmholtz Association is Germany's largest science organization. Its work follows the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). Media contact: Dr Martin Kamprath Program Manager Transfer and Innovation Tel.: +49 30 206329-77 martin.kamprath@helmholtz.de Annette Doerfel Press Officer Phone: +49 030 206 329-38 annette.doerfel@helmholtz.de Communication and External Affairs Berlin Office Anna-Louisa-Karsch-Str. 2 10178 Berlin Germany
个人分类: 亥姆霍兹新闻|3206 次阅读|0 个评论
亥姆霍兹联合会企业创办基金遴选并资助六个商业创意
Helmholtz 2018-6-22 17:15
Fair wind for founders: Helmholtz to fund six innovative spin-offs Faster bone loss detection using marine chemistry, equipping cargo bikes with high-performance fuel cells, or simplifying the energy efficiency measurement of buildings – these are three of the six new business ideas selected for the Helmholtz Enterprise funding program. These spin-off projects now have up to 260,000 euros at their disposal for one year. 亥姆霍兹联合会的企业创办基金新选出六个商业创意,并提供单项最高额度26万欧元的资助 Spin-off companies from research are an important way to apply new technologies and findings for public benefit. This is why Helmholtz supports entrepreneurs in the field of science with a number of funding instruments, including the Helmholtz Enterprise program. Since 2005, 176 spin-offs have emerged from the Helmholtz Centers. Approximately half of them were funded by Helmholtz Enterprise. New, promising spin-offs are now ready to launch. Six spin-off projects were included in the program during the current round of calls. Over a period of twelve months, each of the founders receive up to 260,000 euros in funding and go through a number of support programs to turn their business idea into a reality. “We use Helmholtz Enterprise to support brilliant scientists with their business ideas, says Otmar D. Wiestler, President of Helmholtz. Their new companies are the result of years of excellent research at our Centers. Their new products and processes have high potential for innovation. For this reason, they play an important role in bringing technological progress into our daily lives. I wish them much success!” Half of the Helmholtz Enterprise funding comes from the Helmholtz President’s Initiative and Networking Fund, the other half is provided by the Helmholtz Center where the basic technology of the business idea was developed. The six projects currently being funded are: Improved treatment for cancer patients (Theraselect) 改善癌症患者治疗效果
个人分类: 亥姆霍兹新闻|2272 次阅读|0 个评论
Fermi子自旋动力学过程
热度 1 yanbohang 2014-5-19 07:52
Fermi 子自旋动力学过程 利用 Feshbach 共振可以调节冷原子之间的相互作用。而 Fermi 子在 Feshbach 共振点依然可以有很长的寿命,因此利用这点可以研究 Fermi 子在共振作用下的自旋过程。而相反,Bose在Feshbach共振点附近寿命很短,因此不适合研究自旋碰撞过程。最近一期 Science 上出现一篇 Thywissen 小组的文章( Science 344, 722 (2014) ),测量了 Fermi气体 在共振作用下(unitary regime)的横向自旋扩散效应。刚看到这篇文章,还比较奇怪,为什么能发到science上去。因为文章用到的 spin echo 方法, 2011 年 Kohl 小组首次采用的,文章发表在 Nature physics 上( Nature Physics 9, 405–409 (2013) )。但当时用到的是二维Fermi气体,并且测量的结果和预期小好几个量级,理论现在还没有很好的解释。 实验过程如下:原子初态是自旋极化的,加一个 Pi/2 脉冲,将原子制备到 spin up 和 spin down 的叠加态,如图 a 。 然后自由演化,由于磁场的存在,自旋会在磁场下Lamor进动。设置磁场为一个梯度磁场,因此每一个位置的自旋选择速度不一样,造成自旋的退相干,如图 b 。除了自旋的 Lamor 进动外,自旋之间还有一个自旋旋转效果。具有不同自旋的两个原子可以碰撞,总自旋守恒,但是他们各种的自旋确可以旋转一定角度,如图 c 。 图 1 : 自旋碰撞导致退相干。 两个过程 b 和 c 都会导致系统退相干。但是过程 b 是单粒子过程,通过加一个 spin echo(Pi pulse) ,可以消除这个磁场不均匀造成的退相干,剩下的就是自旋碰撞造成的退相干。这个过程的快慢和自旋横向扩散系数相关。 下图是一个主要实验结果。图中的插图是测量系统自旋相干性随时间的变化,从中可以拟合出自旋扩散系数。调节 Feshbach 共振,改变相互作用,测量扩散系数。在 unitary 区域,这个扩散系数是一个常数,测量结果为 6.3x10 -3 hbar/m. 这个值比一般的预期小三个量级。还没有很好的理论解释。我们也可以看到图上没有理论拟合曲线。 图 2 :自旋扩散系数。插图:系统退相干(退磁化)。 Thywissen 小组将这个方法扩展到三维气体。整个时序是一样的,但是更系统的测量了这个过程。下图是他们测量自旋扩散系数的结果。 图 3 :自旋扩散系数。插图:系统退相干(退磁化)。 图 A 测量了退相干时间和磁场梯度关系。图 B 和 Kohl 小组结果类似,但是扩散系数和预期吻合,为 1.08hbar/m. 这篇Science 文章中另一个重点是测量了在退相干过程中的 Tan’s contact 变化。实验发现,在退相干过程中, Fermi 子的动量分布改变了,出现一个高频的尾巴,并且这个尾巴可以用 contact 来描述。 Contact 是 描述系统当地原子关联性的参数,随着时间的增加, contact 增加,意味着原子的关联随做自旋碰撞建立起来。
个人分类: 文献|5083 次阅读|1 个评论
里德堡原子(Rydberg atom)的自旋交换作用
热度 1 yanbohang 2014-1-5 02:34
里德堡原子( Rydberg atom )的自旋交换作用 由于冷原子技术的发展,里德堡( Rydberg )原子现在又成为了研究的热门方向。通过激发已经冷却的原子气体,可以获得可控,纯净的里德堡原子样品。一般来说,人们用电离 Rydberg 原子的方法来探测它。而在一般冷原子实验中,大家是用吸收法探测原子。我曾经也想过,怎样能用吸收法来探测 Rydberg 原子呢?由于 Rydberg block 效应,样品中 Rydberg 原子的数目很少,光学厚度太小,所以一般吸收法是很难探测的。不过后来才知道,其实已经有人提出了用吸收法来探测 Rydberg 原子,利用了 Rydberg 原子的 block 效应和电磁感应透明( EIT )效应,具有空间分辨率,构想很巧妙。( Weidemuller 小组 PRL 108 , 013102 ( 2012 )) 上图是这种 EIT-Rydberg 探测的原理示意图。用一束耦合光耦合 |e 和 |r 两个能级,再利用一束探测光来探测 |g 和 |e 。耦合光和探测光的频率满足 EIT 条件,双光子失谐为零,这时候吸收是减弱的。但是,如果在这个原子样品中,有一个 Rydberg 原子存在,会导致 |r 能级移动,这样就不满足双光子共振的 EIT 条件了。这样探测光的吸收就会增强。对比 Rydberg 原子存在和不存在两种情况下的吸收,就可以知道 Rydberg 原子的信息了。同时吸收法可以做到很好的空间分辨,所以可以用来探测 Rydberg 原子的空间信息。 有了这个方法后,他们进一步做了一个漂亮的工作( Science 342 954 ( 2013 ))。观测到 Rydberg 原子在自旋交换作用下的 Spin diffusion 。 实验示意图如下。 在冷原子气体中,激发一部分原子(空间上),使得它激发到 Rydberg 态 |i 上,马上进行打开 EIT 光。这时你可以认为 Rydberg 原子 |i 周围是另外一个 Rydberg 态 |p 。由于 Rydberg 原子间的 dipole-dipole 相互作用,会让 |i 和 |p 态之间自旋交换。 |i|p --- |p|i 这个过程原子间能量相互交换,但是总能量守恒。这个过程有个名称叫 Forster 共振。 由于这个自旋交换作用的存在,中间部分激发的 |i 态将会扩散到原子团的其他部分。而由于 EIT — Rydberg 探测方案具有空间分辨率,所以可以观测到这种效应。下面就是一个实验结果图。左边是 EIT 光脉冲开启不同时间,可以看到中间的 |i 态原子扩散开来。作为对照,固定 EIT 光脉冲时间,但是开启在不同的时刻,可以看到基本没有扩散。这是因为 EIT 脉冲没开启时, |p 态不存在,没有自旋交换作用,所以改变 delay time 不会造成额外的 spin diffusion 。
个人分类: 文献|9432 次阅读|1 个评论
地幔深部Fe的自旋态转换以及富Fe硅酸盐熔体
热度 4 chunyinzhou 2011-5-14 11:10
地幔深部Fe的自旋态转换以及富Fe硅酸盐熔体
地幔深部 Fe 的自旋态转换以及富 Fe 硅酸盐熔体 下地幔底部核幔边界之上可能存在着高密度的熔体,这些熔体由于特别富集Fe而比周围地幔物质密度更大,从而可以在这样的极端环境下保持重力稳定。Fe在下地幔中的分配行为伴随着下地幔中Fe的自旋态的转换,即从高自旋态向低自旋态转换,这种行为在下地幔矿物钙钛矿和铁方镁石中已经被广泛观测到。如果这种高低度的富Fe熔体可以在下地幔底部核幔边界之上稳定存在,那么就可能在地球形成演化过程中产生厚达1000km的高密度熔体层,这对于地球内部物质的分异演化以及现在下地幔底部超低速带(ULVZs )的解释具有重要的揭示意义。这一成果发表在最新一期2011年5月12日《Nature》杂志上,正是由发现后钙钛矿(post-perovskite)的日本科学家Kei Hirose小组利用激光加热金刚石压砧(LHDAC)完成了相关实验。(译者注) Nature原文链接: http://www.nature.com/nature/journal/v473/n7346/full/nature09940.html Supplementary Information (5.1M): http://www.nature.com/nature/journal/v473/n7346/extref/nature09940-s1.pdf PDF文档下载: 2011-Nature- Spin crossover and iron-rich silicate melt in the Earth’s deep mantle .pdf 熔体与同成分的硅酸盐固相相比具有更大的体积。但是在高压条件下这一差距将会缩小,并且现在普遍推测具有这样一种可能性,那就是,在地球内部(以及其他类地天体)高压条件下大量富集重元素 Fe的熔体比固相密度更大 (1,2)。这些致密硅酸盐熔体在下地幔底部的出现,将会对其物理化学演化产生重要影响,并可以提供一个统一模型来解释核幔边界区所观测到的一些特征 (3)。最近的理论计算 (4)以及在浅部地幔条件下对 (Mg,Fe)SiO 3 钙钛矿和熔体之间 Fe的分配关系的估计(5-7)表明, 在地球最深部地幔高压条件下熔体比固相密度更大 ,这与冲击波实验分析结果一致(8)。本文我们将 Fe分配关系测量扩大到整个地幔压力范围,发现 在大于 ~76 GPa压力时有一个明显突变,导致 Fe在熔体中的强烈富集 。随后对 (Mg 0.95 Fe 0.05 )SiO 3 玻璃的 X光发射光谱分析显示在大约 70 GPa时有一个自旋态突降 (spin collapse),这表明所观测到的 Fe分配关系的变化可以用硅酸盐熔体中 Fe的自旋态转换 (从高自旋态到低自旋态 )来解释。这些结果意味着 在下地幔 ~1800 km深度条件下 (Mg,Fe)SiO 3 液相比共存的固相密度更大 。在地球刚形成早期,由增生作用 (accretion)和内部分异 (internal differentiation)所释放的热量可以在固体地幔下面形成一个厚达 1000 km的致密熔体层。我们也推测 (Mg,Fe)SiO 3 钙钛矿在深部地幔条件下处于液相线状态,致密岩浆的分异结晶作用 (fractional crystallization)会逐渐向富 Fe贫 Si成分演化,这与地震学上对核幔边界区结构的推测是一致的 。 我们的熔融实验是在激光加热金刚石压砧 (laser-heated diamond-anvil cell, DAC) 上进行的,样品总体成分为 (Mg 0.89 ,Fe 0.11 ) 2 SiO 4 ,压力条件为 20-159 GPa 。为了避免出现异常热扩散,加热时间控制到比较短 ( 见补充材料 ) ,但是这也使我们难于测量熔融温度。不过实验中温度的上下限可以分别由 Mg 2 SiO 4 液相线温度以及天然橄榄岩的固相线温度来给出 ( 见 Methods 以及补充材料图 1) 。从 DAC 回收的样品用高分辨率场发射电子探针显微分析仪 (FE-EPMA) 进行了分析。回收样品显示同心结构,这反映了加热过程中的温度分布 (Fig.1) ,与常见的多顶砧实验 (5-7) 中所观测的结构类似。我们在样品中间温度最高部分总是观测到一个斑点 (pocket) ,它具有非化学计量比的成分,我们将其看作是淬火局部熔体 (quenched partial melt) 。该淬火熔体的 ( Mg+Fe)/Si 摩尔比随压力增加而增大 ,从 36 GPa 时的 1.50 到 159 GPa 时的 2.56( 补充材料图 2) 。该熔体斑点被一个单相固体层 ( 铁方镁石或者钙钛矿,视压力条件不同 ) 所包围,我们认为这是在降温过程中最先结晶的相 ( 液相线相 )(5,7) 。 Figure 1: Backscattered electron images and X-ray maps for Si, Mg and Fe for samples recovered from high-pressure melting experiments. a , At 32   GPa, when ferropericlase (Fp) is the liquidus phase; b , at 76   GPa, when perovskite (Pv) is the crystalline phase in contact with the quenched melt pocket; and c , at 159   GPa in the stability field of post-perovskite (PPv). Quenched melt was found at the centre of the sample, where the temperature was highest. Metallic iron was observed at the edge of the laser-heated area in all samples, where a strong temperature gradient existed 28 . It was also found in the melt pocket, but only above 36   GPa where the liquidus phase was perovskite or post-perovskite. Arrows in a represent the directions of the laser beams for heating. See Supplementary Information for the valence state of iron in the partial melt. 在本研究中,在 20-36 GPa 时液相线相是铁方镁石 (ferropericlase) ,在更高压力下则逐渐被钙钛矿所取代 ( 在 36 GPa 时两者同时都与熔体池接触 ) (Fig.1) 。考虑到样品中 Mg/Si 比值的差异 (7) ,这与橄榄岩成分物质的观测结果 (5) 一致,其中在 31 GPa 以上条件下液相线相从铁方镁石变成钙钛矿。尽管实验中并没有做物相鉴定,但是在 143-159 GPa 条件下的实验中应该会形成后钙钛矿 (post-perovskite) 。在 36 GPa 时液相线相从铁方镁石向钙钛矿的转变表明,共熔 (eutectic) 熔体成分在高压条件下更加富 Mg 。这与熔体中 (Mg+Fe)/Si 摩尔比随压力增加而增大的现象是一致的 ( 补充材料图 2) ,尽管熔体成分与熔融程度也是相关的。 Figure 2: Change in Fe-Mg distribution coefficient and calculated density profiles. a , K D = (Fe Pv /Mg Pv )/(Fe melt /Mg melt ) between perovskite (blue circles) or post-perovskite (red squares) and melt; the values drop sharply at pressures above 76   GPa, probably due to the effect of the spin crossover of iron in silicate melt (see Fig. 3 ). Previous experimental datum obtained at 25   GPa using a multi-anvil apparatus is shown by a grey circle 6 . Error bars were estimated from uncertainties (1 σ ) in both solid and liquid compositions. b , Density of the (Mg,Fe)SiO 3 liquid coexisting with (Mg 0.92 Fe 0.08 )SiO 3 perovskite calculated for 4,000   K using the newly obtained Fe-Mg partitioning data. Data for (Mg 0.86 Fe 0.14 ) O ferropericlase 29 , Ca-perovskite 30 and PREM 19 are also shown for comparison. Liq, liquid; Fp, ferro-periclase; CaPv, calcium silicate perovskite; MgPv, magnesium silicate perovskite. 钙钛矿 / 后钙钛矿和熔体之间的 Fe-Mg 分配系数 K D = ( / )/( / ) ,在 36-159 GPa 压力范围内均得到测定 (Fig.2a) ,其中钙钛矿 / 后钙钛矿为液相线相。尽管淬火熔体斑点含有多价态的 Fe(Fig.1b,c) ,但是我们将高温下所有的 Fe 均看作为 Fe 2+ ( 见补充材料 ) 。 K D 值在 73 GPa 以下几乎保持恒定不变 ( 大约 0.22-0.29) 。这与前人在含 Al 橄榄岩总体成分 (5-7) 中的测量结果 (~0.4) 相比要低一些,但是与不含 Al 的橄榄岩物质 (6) 在 25 GPa 条件下所获得的 K D =0.304 ± 0.035 非常一致。在含 Al 体系中高 K D 值应该是由于钙钛矿中的高 Fe 3+ 含量引起的 ( 见 ref.9) 。另一方面, K D 在 76 GPa 时会突降到 0.07±0.02(Fig.2a) 。随后一直到 159 GPa 则几乎保持恒定在 0.06-0.08 。 Figure 3: Evolution of X-ray emission spectra of (Mg 0.95 Fe 0.05 )SiO 3 glass with increasing pressure. Measurements were conducted at 300   K. All spectra are normalized to transmitted intensity, and shifted so that the weighted average of main (Kβ) plus satellite (Kβ′) emission lines is set to 7,058   eV. The satellite peak decreased slightly at 59   GPa and completely disappeared at 77   GPa, indicating the spin crossover of iron. 为了研究 76 GPa 以上条件下 Fe 在熔体中强烈富集的原因,我们在 300 K 、 8-85 GPa 条件下对 (Mg 0.95 Fe 0.05 )SiO 3 玻璃进行了 X 光发射光谱分析 (Fig.3) 。在低压下, Fe 的 Kβ ′ 峰 (satellite peak) 在 7045 eV 非常明显,指示玻璃样品中的高自旋态的 Fe 2+ 。这一峰在 59 GPa 时会减弱,而在 77 GPa 时会消失。这表明了二价 Fe 中的自旋态转换。因为玻璃是液态的一个很好的类似物,这样一个 Fe 的高自旋向低自旋态的转换也可以在相似压力条件下的熔体中产生,因此为熔体中所观测到的 Fe 富集的突变而提供了一种解释 ( 见 refs. 10, 11) 。确实在我们的玻璃样品中所观测到的自旋态转换的压力范围与 K D 急剧变化的压力 (Fig.2a) 是相符的。我们的熔体比 (Mg 0.95 Fe 0.05 )SiO 3 玻璃具有更高的 Mg/Si 比值以及 FeO 含量;但是 Mg 2 SiO 4 流体中所计算的平均 Mg-O 和 Si-O 配位数 (12) 与下地幔压力条件下 MgSiO 3 流体中的值 (13) 非常相近。因此,与 Mg/Fe-O 配位相关的自旋态转换压力不会伴随着熔体中 Mg/Si 比值从 1 变化到 2 而产生明显偏移。理论研究 (14,15) 表明,当 Fe 浓度很低时 ( 低于 ~20%) , Fe 含量并不会改变自旋态转换的压力范围,因为 Fe-Fe 相互作用是可以忽略的。多顶砧实验 (16) 结果表明,在自旋态转换开始时,钙钛矿和铁方镁石之间 Fe 的分配会产生急剧变化,这与我们的观测具有可比性。 Figure 4: Evolution and crystallization of dense melts in the deep mantle. a , During Earth's early history, any melts that form below ~1,800   km depth sink and accumulate at the base of the mantle, while any crystals that form owing to cooling of this dense magma will rise upward into the solid mantle. b , Fe-poor perovskite crystallization leaves a residual liquid enriched in FeO and depleted in SiO 2 , and crystals forming from this evolved liquid may become dense enough to form thermo-chemical piles at the base of the solid mantle. c , The final stage of crystallization involves a composition close to wüstite, leaving behind a very dense thin layer that is consistent with the seismic properties inferred inside ULVZs. White arrows indicate schematic flow patterns in the convecting solid mantle. Fe 分配关系的巨大变化表明在 1800 km 深度以下熔体会变得更加致密。我们计算了与 (Mg 0.92 Fe 0.08 )SiO 3 钙钛矿 ( 地幔岩下地幔的代表成分 (16,17)) 达到平衡的 (Mg,Fe)SiO 3 流体, 在 4000K 条件下随压力变化的密度 (Fig.2b) 。为简化起见,在 75 GPa 以下我们使用 K D =0.25 ,在更高压力下我们使用 K D =0.07 。 MgSiO 3 流体的摩尔体积根据最近的第一性原理计算结果 (4) 获得, Fe 的作用对于流体相和固相 ( 钙钛矿 ) 假设是相同的 (4,18) 。但是 (Mg,Fe)SiO 3 熔体在 75 GPa 以下时与任何典型下地幔矿物相比都是具有浮力的,而在更高压条件下则会突然变得密度更大。在地幔底部与初始参考地球模型 (PREM)(19) 的差距达到 8% 。本实验中熔体的 Mg/Si 比值比 MgSiO 3 高 ( 补充材料图 2) 。根据前人的冲击波压缩实验 (8) ,这种高 (Mg+Fe)/Si 熔体可能比上面所讨论的 (Mg,Fe)SiO 3 熔体密度更大,从而表明熔体和固体之间的密度转换可能发生在比 1800 km 更浅的深度。尽管有关熔体在地幔底部的详细情况并不是十分清楚,但是我们的结果为下地幔中可能存在的厚达 1000 km 的稳定熔体层提供了约束条件 (Fig.4) 。 Labresse 等 (3) 已经提出了一个模型,在地球形成不久所产生的致密熔体,可以构成一个相当大的“基底岩浆海” (basal magma ocean, BMO) ,它在几十亿年中缓慢结晶,其速率由上覆固体地幔中相对缓慢的固相对流所控制。我们的实验结果为固体地幔下高达 1000 km 的 BMO 的重力稳定性提供了一个新的物理证据,并且上面所推测的最大的可能厚度与 BMO 假说在广范围来说是一致的。例如,一个 1000 km 厚的 BMO 可以构成地幔 1/4 的质量;分异结晶作用以及冷却过程中残余流体中热量所产生的不相容元素 ( 如 U,Th) 的隔离,可以解释“丢失”的球粒陨石成分,这些物质可能被隔离在地幔中的某个储库中 (20) 。我们的实验结果也可以帮助我们对 BMO 的性质以及其化学演化过程随时间的变化做进一步的推测。 正如上文所提到的,我们的结果说明, (Mg,Fe)SiO 3 钙钛矿是从熔体中最先结晶出来的相,并具有较广的 (Mg+Fe)/Si 比值;对于核幔边界条件下 (Mg+Fe)/Si≈2.5 的贫 Si 熔体来说依然是这样的 ( 补充材料 Fig.2) 。这充分说明, BMO 冷却过程主要是以钙钛矿的结晶作用为特点,其他的相如 (Mg,Fe)O 镁方铁矿 (magnesiowustite) 只在相对较晚的时期结晶。另外, BMO 中形成的钙钛矿晶体将会相对亏损 Fe ,并漂浮到 1800 km 深度以下的岩浆区的顶部 (Fig.4) ,因为其 Fe/Mg 分配 K D 值较低。由此,我们可以推断残余岩浆将会向富 FeO 贫 SiO 2 成分演化 ( 即接近于方铁矿的成分 ) ,随时间密度变得更大,而且可能会保留相当量的不相容挥发性物质。 经过如上文所讨论的分异结晶演化,同样也可以影响从 BMO 所形成的堆积岩的成分。尤其是当从越来越富 Fe 的岩浆中结晶出来时,堆积岩会随时间变得更加富 Fe 密度更大。这些高密度堆积岩最终将可以保持稳定而不会被地幔对流所带走,并在地幔底部集中形成热化学堆积 (Fig.4) 。这些致密固体物质的堆积,大约比平均地幔密度高 2-3% 并构成 ~2% 的总体地幔体积,可以解释太平洋和非洲地区 (21) 下面地幔底部两个巨大的低剪切波速省 (low-sheaer-wave velocity provinces, LLSVPs) ;这些高密度物质的富 Fe 成分与这些异常 (22) 大小是一致的。 BMO 中更高程度的结晶作用也可以在核幔边界之上的薄层中产生一些高密度残余体补丁,这将可以解释超低速带 (ultralow-velocity zones, ULVZs)(23) 的出现以及地震波速特征。这些物质在地质历史时期里可以保持在或接近固相线,因为参与流体将会隔离不相容物质,相应地也会降低熔融温度。那么后期富方铁矿的堆积岩从富 Fe 贫 Si 熔体中结晶出来将会产生一个高密度固相层,即使没有熔体 (24) ,其地震波特征同样与来自 ULVZ 的地震反射仍然是一致的。 BMO 模型以及我们实验所推测的成分演化过程,与两种可能性都是相容的。另外一种可能,有助于解释为什么不同地区的 ULVZs 并不总是显示相同的地震特征 (25) ,那就是在一些 ULVZs 中间隙中的熔体已经完全抽干,留下一个强烈富集方铁矿的不含熔体的固相岩石。在另外一些 ULVZs 中,由于周围地幔中存在不同的动力学条件,上覆地幔流粘度耦合作用所产生的这些糊状残余体的连续扰动,将会阻止岩石的固结和熔体的分离 (26) 。不含熔体富集方铁矿的 ULVZ 和固有的糊状的 ULVZ 之间,我们所预计观测到的主要区别就是,剪切波速的降低幅度,在糊状 ULVZs 中降低幅度更大 (27) 。 参考文献: Stolper, E., Walker, D., Hager, B. H. Hays, J. F. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. 86, 6261–6271 (1981) ChemPort ISI Article Show context Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998) ChemPort ISI Article Show context Labrosse, S., Hernlund, J. W. Coltice, N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450, 866–869 (2007) ChemPort ISI PubMed Article Show context Stixrude, L. et al. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278, 226–232 (2009) ChemPort ISI Article Show context Ito, E., Kubo, A., Katsura, T. Walter, M. J. Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter. 143–144, 397–406 (2004) Show context Corgne, A. et al. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005) ChemPort ISI Article Show context Liebske, C. et al. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib. Mineral. Petrol. 149, 113–128 (2005) ChemPort ISI Article Show context Mosenfelder, J. L., Asimov, P. D. Ahrens, T. J. Thermodynamic properties of Mg 2 SiO 4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. 112 B06208 doi:10.1029/2006JB004364 (2007) ChemPort Article Show context McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997) ChemPort ISI Article Show context Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003) ChemPort ISI PubMed Article Show context Auzende, A.-L. et al. Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet. Sci. Lett. 269, 164–174 (2008) ChemPort ISI Article Show context de Koker, N. P., Stixrude, L. Karki, B. B. Thermodynamics, structure, dynamics, and freezing of Mg 2 SiO 4 liquid at high pressure. Geochim. Cosmochim. Acta 72, 1427–1441 (2008) ChemPort ISI Article Show context Karki, B. B. First-principles molecular dynamics simulations of silicate melts: structural and dynamical properties. Rev. Mineral. Geochem. 71, 355–389 (2010) ChemPort ISI Article Show context Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R. S. de Gironcoli, S. Spin transition in magnesiowüstite in Earth's lower mantle. Phys. Rev. Lett. 96, 198501 (2006) ChemPort PubMed Article Show context Bengtson, A., Persson, K. Morgan, D. Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg 1-x ,Fe x )SiO 3 . Earth Planet. Sci. Lett. 265, 535–545 (2008) ChemPort ISI Article Show context Irifune, T. et al. Iron partitioning and density change of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010) ChemPort ISI PubMed Article Show context Hirose, K. Phase transition in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107 2078 doi:10.1029/2001JB000597 (2002) Article Show context Lundin, S. et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys. Earth Planet. Inter. 168, 97–102 (2008) ChemPort ISI Article Show context Dziewonski, A. M. Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981) ISI Article Show context Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997) ChemPort ISI Article Show context Hernlund, J. W. Houser, C. On the distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008) ChemPort ISI Article Show context Cobden, L. et al. Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of nonadiabatic thermal gradients and compositional heterogeneity. J. Geophys. Res. 114 B11309 doi:10.1029/2008JB006262 (2009) ChemPort Article Show context Williams, Q. Garnero, E. J. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996) ChemPort ISI Article Show context Wicks, J. K., Jackson, J. M. Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: implications for the core-mantle boundary region. Geophys. Res. Lett. 37 L15304 doi:10.1029/2010GL043689 (2010) ChemPort Article Show context Thorne, M. S. Garnero, E. J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 109 B08301 doi:10.1029/2004JB003010 (2004) Article Show context Hernlund, J. W. Jellinek, A. M. Dynamics and structure of a stirred partially molten ultralow velocity zone. Earth Planet. Sci. Lett. 296, 1–8 (2010) ChemPort ISI Article Show context Hier-Majumder, S. Influence of contiguity on seismic velocities of partially molten aggregates. J. Geophys. Res. 113 B12205 doi:10.1029/2008JB005662 (2008) Article Show context Fialin, M., Catillon, G. Andrault, D. Disproportionation of Fe 2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen. Phys. Chem. Miner. 36, 183–191 (2009) ChemPort ISI Article Show context Komabayashi, T. et al. High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth Planet. Sci. Lett. 297, 691–699 (2010) ChemPort ISI Article Show context Ricolleau, A. et al. Density profile of pyrolite under the lower mantle conditions. Geophys. Res. Lett. 36 L06302 doi:10.1029/2008GL036759 (2009) ChemPort Article Show context
个人分类: 最新论文介绍|6192 次阅读|4 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-21 00:02

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部