科学网

 找回密码
  注册

tag 标签: synthetic

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]Lanthanide-dependent cross-feeding of methane-derived carbon
crossludo 2016-12-28 22:01
Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions
个人分类: 进化生态|353 次阅读|4 个评论
Macrogen推出illumina 10Kb长读长测序服务,读长欲赶超PacBiio
alinatingting 2014-10-28 10:18
Macrogen在美国American Society of Human Genetics (ASHG)会议上郑重宣布推出:“The Macrogen Long-Read Sequencing Service Portfolio”,除了结合最新试剂盒P6-C4试剂盒的PacBio RS II长读长平台,同时还基于Illumina's TruSeq Synthetic Long-Read DNA library preparation kit,推出illumina长读长测序服务,该测序技术读长最高也能达到~15Kb,平均读长在8Kb-10Kb左右。 读长示例: 更多信息可参阅Macrogen官网: Macrogen Introduces Latest Service Portfolio at 2014 ASHG Annual Meeting 。 关于illumina Long-Read Sequencing Technology资料: Illumina's TruSeq Synthetic Long-Read DNA library preparation kit for genome assmbly 。 PDF文档下载: Illumina's TruSeq Synthetic Long-Read DNA library preparation kit for geno.pdf 。
个人分类: 公司资讯|4853 次阅读|0 个评论
[转载]合成射射散热技术
WanghuataoHIT 2013-1-23 15:31
1. 合成射流用于LED散热 或者 How to Use Synthetic Jets for Local Thermal Managemen 2011.pdf
个人分类: 科普|1897 次阅读|0 个评论
创新是面向未来(视频)
benlion 2011-12-10 17:19
英特尔公司居然有专门的未来学家,这有点让我吃惊,以下视频过去看过,今天温习时突然意识到企业居然设立或聘用未来学家这么一个职务实在有些惊讶;因此,将以下视频附后提供思考与参考。 未来科技 - 合成生物学 : http://v.youku.com/v_show/id_XMjc0NzY5MTky.html “Brian David Johnson——Intel公司未来学家,就programming life以及reprogramming ourselves采访Eric Klavins。Klavins——华盛顿大学的科研专家, 致力于基于基因,分子,有机物制造生物机械。” 另外 - 未来IT技术也很有创意设计 - http://v.youku.com/v_show/id_XMjU4ODk0NDU2.html 。
2536 次阅读|1 个评论
随记 合成生物学01
热度 2 dxd 2011-9-8 05:43
看到科网上宣传的盖茨基金大挑战,有些感兴趣。进去浏览了一下有关合成生物学(synthetic biology)的信息,于是看到下面这一段。(来源http://www.synberc.org/content/articles/what-synthetic-biology) Third is the concept that natural living systems have evolved to continue to exist, rather than being optimized for human understanding and intention. By thoughtfully redesigning natural living systems it is possible to simultaneously test our current understanding, and may become possible to implement engineered systems that are easier to study and interact with. 虽然以前零零碎碎了解过synthetic biology大概是做些什么东西,自己也模糊产生过与这段话类似的想法,但这是第一次看到有人把话说得这么清楚。何必在进化论的口水仗中争论不休,能说出这段话的人已经径直穿过了迷雾。具有工程师思维的科学家是可贵的,他们能走多远,决定了这个世界能被改变多少。
个人分类: comments|3410 次阅读|3 个评论
[转载]a life of its own
tqan 2011-6-8 00:29
http://www.newyorker.com/reporting/2009/09/28/090928fa_fact_specter?currentPage=5
个人分类: 专业积累|2291 次阅读|0 个评论
合成生物学(synthetic biology)研究动态(30天内)
xupeiyang 2011-1-13 09:48
Provider: Quertle (www.quertle.info) Content: text/plain; charset=UTF-8 TY- JOUR TI- How molecular should your molecular model be? On the level of molecular detail required to simulate biological networks in systems and synthetic biology. AU- Gonze, Didier AU- Abou-Jaoud, Wassim AU- Ouattara, Djomangan Adama AU- Halloy, Jos PY- 2011 T2- Methods in enzymology J2- Methods Enzymol UR- http://www.ncbi.nlm.nih.gov/pubmed/21187226 VL- 487 SP- 171-215 N2- The recent advance of genetic studies and the rapid accumulation of molecular data, together with the increasing performance of computers, led researchers to design more and more detailed mathematical models of biological systems. Many modeling approaches rely on ordinary differential equations (ODE) which are based on standard enzyme kinetics. Michaelis-Menten and Hill functions are indeed commonly used in dynamical models in systems and synthetic biology because they provide the necessary nonlinearity to make the dynamics nontrivial (i.e., limit-cycle oscillations or multistability). For most of the systems modeled, the actual molecular mechanism is unknown, and the enzyme equations should be regarded as phenomenological. In this chapter, we discuss the validity and accuracy of these approximations. In particular, we focus on the validity of the Michaelis-Menten function for open systems and on the use of Hill kinetics to describe transcription rates of regulated genes. Our discussion is illustrated by numerical simulations of prototype systems, including the Repressilator (a genetic oscillator) and the Toggle Switch model (a bistable system). We systematically compare the results obtained with the compact version (based on Michaelis-Menten and Hill functions) with its corresponding developed versions (based on elementary reaction steps and mass action laws). We also discuss the use of compact approaches to perform stochastic simulations (Gillespie algorithm). On the basis of these results, we argue that using compact models is suitable to model qualitatively biological systems. N1- Exported from www.Quertle.info. Search query: Synthetic biology. ER- TY- JOUR TI- Large-Scale Discovery and Characterization of Protein Regulatory Motifs in Eukaryotes AU- Lieber, Daniel S AU- Elemento, Olivier AU- Tavazoie, Saeed PY- 2010 T2- PLoS ONE J2- PLoS One UR- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012054/ VL- 5 IS- 12 DO- 10.1371/journal.pone.0014444 C2- 3012054 N2- The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large number of candidate elements. We estimate that 80% of these are novel predictions in that they do not match a known motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation. N1- Exported from www.Quertle.info. Search query: Synthetic biology. ER- TY- JOUR TI- Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. AU- Medema, Marnix H AU- Breitling, Rainer AU- Bovenberg, Roel AU- Takano, Eriko PY- 2010 T2- Nature reviews. Microbiology J2- Nat Rev Microbiol UR- http://www.ncbi.nlm.nih.gov/pubmed/21189477 N2- One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to design efficient cellular synthetic production systems. Re-engineered versions of secondary metabolite biosynthetic pathways identified from any genomic sequence can then be inserted into these systems in a plug-and-play fashion. N1- Exported from www.Quertle.info. Search query: Synthetic biology. ER- TY- JOUR TI- Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits. AU- Norville, Julie E AU- Derda, Ratmir AU- Gupta, Saurabh AU- Drinkwater, Kelly A AU- Belcher, Angela M AU- Leschziner, Andres E AU- Knight, Thomas F, Jr PY- 2010 T2- Journal of biological engineering J2- J Biol Eng UR- http://www.ncbi.nlm.nih.gov/pubmed/21172029 VL- 4 IS- 1 SP- 17 N2- ABSTRACT: BACKGROUND: BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the assembly technique has allowed for wide distribution to a large number of users -- the parts are reusable and interchangeable during the assembly process. The standard assembly process, however, has some limitations. In particular it does not allow for modification of already assembled biological circuits, addition of protein tags to pre-existing BioBrick parts, or addition of non-BioBrick parts to assemblies. RESULTS: In this paper we describe a simple technique for rapid generation of synthetic biological circuits using introduction of customized inserts. We demonstrate its use in Escherichia coli (E. coli) to express green fluorescent protein (GFP) at pre-calculated relative levels and to add an N-terminal tag to GFP. The technique uses a new BioBrick part (called a BioScaffold) that can be inserted into cloning vectors and excised from them to leave a gap into which other DNA elements can be placed. The removal of the BioScaffold is performed by a Type IIB restriction enzyme (REase) that recognizes the BioScaffold but cuts into the surrounding sequences; therefore, the placement and removal of the BioScaffold allows the creation of seamless connections between arbitrary DNA sequences in cloning vectors. The BioScaffold contains a built-in red fluorescent protein (RFP) reporter; successful insertion of the BioScaffold is, thus, accompanied by gain of red fluorescence and its removal is manifested by disappearance of the red fluorescence. CONCLUSIONS: The ability to perform targeted modifications of existing BioBrick circuits with BioScaffolds (1) simplifies and speeds up the iterative design-build-test process through direct reuse of existing circuits, (2) allows incorporation of sequences incompatible with BioBrick assembly into BioBrick circuits (3) removes scar sequences between standard biological parts, and (4) provides a route to adapt synthetic biology innovations to BioBrick assembly through the creation of new parts rather than new assembly standards or parts collections. N1- Exported from www.Quertle.info. Search query: Synthetic biology. ER- TY- JOUR TI- Cellulase-Xylanase Synergy in Designer Cellulosomes for Enhanced Degradation of a Complex Cellulosic Substrate AU- Moras, Sarah AU- Barak, Yoav AU- Caspi, Jonathan AU- Hadar, Yitzhak AU- Lamed, Raphael AU- Shoham, Yuval AU- Wilson, David B AU- Bayer, Edward A PY- 2010 T2- mBio J2- mBio UR- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999897/ VL- 1 IS- 5 DO- 10.1128/mBio.00285-10 C2- 2999897 N2- IMPORTANCE: Global efforts towards alternative energy programs are highlighted by processes for converting plant-derived carbohydrates to biofuels. The major barrier in such processes is the inherent recalcitrance to enzymatic degradation of cellulose combined with related associated polysaccharides. The multienzyme cellulosome complexes, produced by anaerobic bacteria, are considered to be the most efficient systems for degradation of plant cell wall biomass. In the present work, we have employed a synthetic biology approach by producing artificial designer cellulosomes of predefined enzyme composition and architecture. The engineered tetravalent cellulosome complexes contain two different types of cellulases and two distinct xylanases. Using this approach, enhanced synergistic activity was observed on wheat straw, a natural recalcitrant substrate. The present work strives to gain insight into the combined action of cellulosomal enzyme components towards the development of advanced systems for improved degradation of cellulosic material. N1- Exported from www.Quertle.info. Search query: Synthetic biology. ER-
个人分类: 生物科学|5552 次阅读|0 个评论
合成生物学(2011 MeSH )研究文献分析 1936 - 2010
xupeiyang 2010-10-11 15:59
http://news.sciencenet.cn/htmlnews/2010/10/238594.shtm 美人造生命小组发明迄今最简单有效基因合成技术 http://www.nlm.nih.gov/cgi/mesh/2011/MB_cgi National Library of Medicine - Medical Subject Headings 2011 MeSH MeSH Descriptor Data Return to Entry Page Standard View. Go to Concept View ; Go to Expanded Concept View MeSH Heading Synthetic Biology 合成生物学 Tree Number H01.158.273.904 Tree Number J01.293.069.500 Annotation IM for the discipline (education, history, etc); NIM as a coordinate for studies involving specific synthetic biology concepts and applications Scope Note A field of biological research combining engineering in the formulation, design, and building (synthesis) of novel biological structures, functions, and systems. Allowable Qualifiers CL EC ED ES HI IS LJ MA MT OG SN ST TD History Note 2011 Date of Entry 20100625 Unique ID D058615 MeSH Tree Structures Natural Science Disciplines Biological Science Disciplines Biology Botany + Computational Biology + Cell Biology Developmental Biology + Ecology + Exobiology Genetics + Laboratory Animal Science Microbiology + Natural History Neurobiology Parasitology + Photobiology Radiobiology Sociobiology Synthetic Biology Zoology + Technology, Industry, and Agriculture Engineering Bioengineering Synthetic Biology http://www.gopubmed.org/web/gopubmed/1?WEB0k2h0lw1ovzpeI8IdI0 13,100 documents semantically analyze 1 2 3 Top Years Publications 2009 912 2010 840 2007 776 2008 775 2006 650 2005 618 2004 542 2002 530 2003 512 2000 506 1998 481 2001 475 1999 468 1997 446 1996 442 1993 439 1995 431 1992 428 1994 427 1990 409 1 2 3 1 2 3 4 5 Top Countries Publications USA 6,095 United Kingdom 767 Japan 570 Germany 556 Canada 417 China 359 Italy 313 India 252 Australia 234 Sweden 233 Spain 207 Netherlands 191 France 181 Russia 155 Switzerland 140 Denmark 107 South Korea 99 Israel 96 Belgium 91 Brazil 66 1 2 3 4 5 1 2 3 ... 48 Top Cities Publications Los Angeles 408 Bethesda 348 Cambridge, USA 337 Houston 250 New York City 240 Boston 239 Berkeley 182 Philadelphia 154 London 152 Tokyo 134 St. Louis 131 Baltimore 129 Chicago 116 Moscow, Russia 112 Cambridge 102 San Diego 100 Edinburgh 98 Stockholm, Sweden 97 Austin 89 Heidelberg 88 1 2 3 ... 48 1 2 3 ... 110 Top Journals Publications J Biol Chem 714 P Natl Acad Sci Usa 357 Biochemistry-us 250 Nucleic Acids Res 219 J Am Chem Soc 180 Contraception 137 Biochim Biophys Acta 135 Biochem Bioph Res Co 125 Febs Lett 117 J Mol Biol 114 Mol Cell Biol 112 Vaccine 110 J Virol 103 J Immunol 100 J Cell Biol 95 Science 94 Genetics 91 Cancer Res 79 Nature 77 Biochem J 76 1 2 3 ... 110 1 2 3 ... 1600 Top Terms Publications Animals 6,064 Humans 5,147 Proteins 5,091 Peptides 3,574 Genes 3,075 Amino Acid Sequence 2,645 Biology 2,024 DNA 1,950 Mice 1,920 Nature 1,878 Base Sequence 1,675 Amino Acids 1,499 Antibodies 1,475 antigen binding 1,467 Enzymes 1,445 Membranes 1,244 membrane 1,243 Mutation 1,206 Rats 1,195 Binding Sites 1,180 1 2 3 ... 1600 1 2 3 ... 2158 Top Authors Publications Kleinman H 55 Yamada Y 35 Nicolaou K 34 Baird D 34 Nagaraj R 28 Firestone G 28 Fidler I 27 Schreiber S 25 Nomizu M 25 Thyberg J 25 Holm R 24 Schlom J 24 Rivier J 24 Takemoto L 24 Janda K 22 Rebek J 21 Corey E 21 Gait M 20 Reichert L 19 Bygdeman M 19 1 2 3 ... 2158
个人分类: 生物科学|5057 次阅读|0 个评论
[转载]Synthetic Diamonds
jackiemwd 2010-8-9 11:50
A gem-quality diamond is rare in nature. Even with new discoveries in recent years, existing and developing markets are taxing the supply of natural diamonds. Creation of a diamond in the laboratory from other carbon minerals (e.g. graphite) or carbon-bearing gases has been studied for about half a century with important progress in the past 20 years. A gem-quality single crystal diamond can be created in the laboratory with two methods. One method is growing a diamond under High Pressure-High Temperature (HPHT) and the other is using the Chemical Vapor Deposition (CVD) method. Although historically the vast majority of synthetics have been used for industrial purposes, with advances in techniques more and more synthetic diamonds are finding their way into the jewelry market. In addition, various methods of artificial treatment are being developed to improve quality of as-grown synthetic diamonds. HPHT Synthetics Typical diamond growth conditions with this technique are pressures between 5.0 GPa to 6.5 GPa and temperatures between 1,350°C to 1,800°C. Various types of presses — cubic, belt, BARS — are employed to generate the needed pressure. Inside a graphite furnace, a graphite disk as a carbon source and a diamond seed crystal are placed at the top and at the bottom a metal disk typically of nickel-cobalt is placed. The assembly is specifically designed so that the top side of the molten metallic disk is higher in temperature than the bottom side. The growth of a diamond utilizes the fact that the solubility of the stable diamond phase in the molten metal is lower than that of the metastable graphite. Temperature gradient is another factor that facilitates the growth of a diamond because the solubility of graphite decreases with decreasing temperature. As a result, more carbon atoms are dissolved from the carbon source located at the hotter region and transported to the cooler region that then precipitates on the seed crystal — located at the bottom of the vessel — to form a new synthetic diamond crystal. Several companies in the U.S. — Gemesis Corp., Chatham Created Gems and Lucent Diamond — are producing HPHT synthetic diamonds for the jewelry market. High-quality crystals up to 3.50 carats and faceted stones as large as 1.50 carats are being produced commercially. The largest-known HPHT synthetic diamond is 34.80 carats grown by De Beers scientists for research purposes in 1992. Due to the very different growth conditions and the environment in which natural diamonds form, HPHT-grown synthetic diamonds display typical cuboctahedral morphology. In contrast, natural diamonds predominantly form in octahedron or distorted octahedrons. Impurities and their concentrations during synthetic diamond growth can be well controlled. While most HPHT synthetic diamonds in the market are type Ib, type IIa and type IIb can also be manufactured by either “blocking” nitrogen from getting into the diamond lattice or intentionally adding trace amounts of boron into the crystal. As-grown HPHT synthetic diamonds can show a large variation in color and saturation including colorless, blue, green, yellow, orange-yellow and yellow-orange. Post-growth radiation with or without annealing can create an attractive pink to red color, in addition to blue and green colors. As a result, HPHT synthetic diamonds are available in almost any color, although the vast majority is yellow (see figure 1). Clarity varies significantly from stone to stone. Some are relatively free of inclusions, but others could be highly included. Equivalent clarity grades range from VVS to I. Different growth sectors have contrasting behavior in capturing the nitrogen or boron impurity. This results in a distinct color zonation. Also, because of this difference these stones sometimes display a “cross” fluorescence pattern under ultraviolet (UV) radiation. In colorless type IIa HPHT synthetic diamonds, which usually show few identification features, this pattern may also be observed using strong shortwave UV radiation similar to that produced by the Diamond Trading Company’s (DTC) DiamondViewTM (see figure 2). Other useful features for identification include the presence of metallic inclusions, pinpoint clouds and intersecting internal graining. In addition to these visual features, testing with analytical instrumentation provides additional spectral and chemical evidence of their laboratory origin. CVD Synthetics In contrast to the conventional HPHT synthetic process, CVD synthetic diamonds are produced at much lower pressure, typically in the region of one-tenth of atmospheric pressure from carbon-bearing gases such as CH4. Commonly, the gas molecules are broken apart in a high-temperature plasma generated using microwaves in a reactor. These chemical reactions deposit layers of a synthetic diamond film as a single crystal over a diamond substrate, which is usually held at temperatures in the region of 800°C to 1,000°C. Much progress has been achieved in increasing the diamond growth rate — ~100 mm/hour — and a relatively large crystal could be created in the laboratory in a reasonably short period of time. In 2003, Apollo Diamond Inc. in the U.S. announced its plan to introduce single crystal CVD diamonds to the jewelry market. The DTC also reported on its work in producing high-quality CVD diamonds for research purposes (Martineau et al. Identification of Synthetic Diamond Grown Using Chemical Vapor Deposition, Gems Gemology, 2004;40(1):2–25). CVD synthetic diamond crystals are relatively small in size and usually display a tabular morphology. The largest CVD crystal from Apollo the GIA has examined to date weighs 1.36 carats and is 2.7 mm thick (see figure 3). The largest faceted stone weighs 1.11 carats. Faceted CVD diamonds usually show brown coloration with a large variation in tone. Most of these stones are “pretty clean,” but there are some irregular black inclusions present due to precipitation of nondiamond,carbon. Small fractures were occasionally observed. Equivalent clarity grades ranged from VS to SI. Square and rectangular cuts are common for CVD-grown diamonds in order to achieve the highest yield from the tabular crystals. Very high-quality synthetic diamonds can be created using the CVD technique, as demonstrated by a 1.03-carat fancy deep blue square cut that was VS2 in clarity and a 0.82-carat rose cut with a clarity of VVS1 and E color. These were produced by DTC research for scientific purposes only and the grades are given only for illustration. When they become available in the marketplace, CVD synthetic diamonds are likely to be difficult to identify using the standard gemological equipment. A brown coloration, the shallow depth of a cut stone and the characteristic strain pattern (see figure 4) of this CVD-grown material may provide clues in many cases. Laboratories equipped with the DiamondView will generally see a strong orangey-red luminescence in the device, which is a good visual indication that the diamond is a CVD synthetic. However, conclusive identification requires the use of advanced spectroscopic methods. The normal production of CVD synthetics is type IIa, most with trace amounts of isolated nitrogen. With photoluminescence spectroscopy, they show strong emissions from nitrogen-vacancy (N-V) centers at 575 nm and 637 nm. A doublet emission at 596 nm and 597 nm, which has never been reported in natural diamonds, is a specific feature of CVD diamonds. Finally, the infrared absorption due to hydrogen (mainly at 3,123 cm-1) and the emission features due to silicon impurity (at 737 nm) appear to be unique to these CVD-grown synthetic diamonds. Color and other physical properties of as-grown CVD diamonds can be significantly improved by HPHT annealing. Brown coloration could be dramatically removed and the stones turn near colorless or only slightly colored after treatment (see figure 5). While HPHT treatment does not change most of the intrinsic identification features of CVD synthetic diamonds, it introduces additional features that indicate it has been subjected to treatment. To date, all synthetics grown by the CVD process have been readily identifiable as synthetic, both those subjected to HPHT treatment and those that have been “as grown.” Summary Although the number is still quite small, more synthetic diamonds are being introduced into the market, making proper identification of these products critical for the industry. Based on the gemological and spectroscopic features of the synthetics we have examined to date, they can be conclusively identified. However, with the evolving developments — particularly in the CVD method — some challenges with identification are foreseeable. The GIA will continue to study all types of synthetic diamonds along with natural treated diamonds, ensuring proper identification information for today and in the future. From: http://www.diamonds.net/news/NewsItem.aspx?ArticleID=12147 CVD diamond Single-crystal CVD synthetic diamonds 如果需要CVD金刚石膜设备,可以与我联系,可以根据要求进行配置,从而满足不同的科研,教学的要求,热 丝CVD或者各种功率大小的微波CVD均可以与我联系!喜欢CVD金刚石膜的朋友,可以看我博客中的其他文章。 ----------------------------------------------------------------- 欢迎看看我的其他的博客内容: 金刚石薄膜的性质、制备及应用 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=231983 微波等离子体化学气相沉积 —— 一种制备金刚石膜的理想方法 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=232233 微波 CVD 金刚石膜产品及应用分析 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=402659 关于(微波法) CVD 金刚石膜产业化的看法 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=402561 Carnegie-Made Diamonds on Exhibit(CVD 金刚石产品展示) http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=386101 国外先进的微波等离子体 CVD 制备金刚石膜设备介绍 (Diamond) http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=384330 微波等离子体 CVD 制备金刚石膜 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=384313 Synthetic Diamonds http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=351296 微波等离子体同质外延修复金刚石的研究 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=232229 微波 CVD 金刚石薄膜用作 LED 散热片的制备 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=232213 提高金刚石薄膜与硬质合金基底之间附着力工艺的研究进展 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=231988 国外微波法制备金刚石膜设备介绍( microwave plasma CVD diamond system introduction) http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogview=mefrom=spacepage=2 MPCVD 法在基片边缘生长大颗粒金刚石的研究 http://hi.baidu.com/ 金刚石薄膜 /blog/item/379e83546858b8d1b645ae6c.html 等离子体技术 —— 一种处理废弃物的理想方法 http://bbs.sciencenet.cn/home.php?mod=spaceuid=257140do=blogid=259594
个人分类: 未分类|7628 次阅读|0 个评论
合成生命、偷天换日与新生物能源
sunon77 2008-12-22 06:43
上周到剑桥Cavendish Lab参加了生物物理新的地平线会议。会议邀请到了目前生物物理的诸多前沿研究者,从微观的单分子试验,单分子观测与成像, nanopore,到宏观的基因网络动力模型和心脏的整体数值模拟等,可以说是目前生物物理前沿研究的一个小型的巡礼。尤其值得注意的是,从来都是站在物理科研最前线的Cavendish Lab,建立了一个崭新的医学物理系,并对未来生物物理的发展,进行了展望。这次会议的精彩讲座将在以后的博文中陆续介绍。 Fig.1 New department of Physics of Medicine in Cavendish Lab Cavendish Lab掌门人的卢瑟福曾经说过:Science can either be physics, or stamp collecting.(科学要不是物理,要不就是收集邮票)。言下之意,其他的科学门类只是收集事实,没有像物理学这样建立恢宏的理论模型。但是物理学发展到现在,人们逐渐意识到reductionism并不能解释我们周围的宇宙万物。凝聚态物理的大家P.W. Anderson, 在他的一篇重要论文More is Different (Science, 1972)中指出,凝聚态物理和生物物理都是 extensive researches. 他说: we can see how the whole becomes not only more than but very different from the sum of its parts. 尤其是生命现象,不为简单的自然律所控制,其生命演进的历史,也对我们现在所观察的生物体,有着极为显著的影响。如果仅仅从现有的生物体出发去研究生命的本质规律,其难度不亚于去解释一个Rube Goldberg machine,见下图: Fig. 2 Rube Goldberg Machine to sharp a pencil 如果生物体的功能会像图中的削铅笔那样需要A到Q那样繁复的程序,为什么不干脆用最后备用的铅笔刀呢?于是,有研究者试图用有机化学合成的方法,来建立最小和最经济的生命体。 合成生命 德国TU Dresden Bio-Center的Schwille就是这样一位研究者。她试图制造一个double layer的lipid的小球,然后放进去新陈代谢所需要的若干蛋白质大分子,代谢中间物等,观察其是否能完成生命的代谢功能。在下一步,再放进去脱氧核糖核酸,RNA Polymerizer, Ribosome等,看看他们是否能自组织成为可以自我复制的系统。当然,这样合成生命的实验会非常困难。比如,制造一个只有2-3微米double layer的lipid的小球,就已经不是一件很容易的事。他们目前的成果是,通过适当的混合两者蛋白质MinD、MinE和ATP,可以在玻璃皿上模拟细胞膜上的分子震荡现象,而这个现象对细胞从中间分裂尤为重要。分子震荡的图像和他们在Science发表上的文章的连接如下。 Fig. 3 Protein dynamic pattern from Schwille Lab Paper: M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Science 320, 789 (2008) 偷天换日与新生物能源 然而更让人吃惊的是 Craig Venter 小组,他们采用人工合成生物柴油DNA的方法,直接将新的DNA打上记号并植入细胞体中,在引入定向的DNA降解酶将原有的DNA除去,因而在瞬间完成了自然界中需要数百年方能进化形成的新功能。当然,因为生物柴油与基因没有一对一的简单对应关系,实现需要通过系统生物学的方法协调新增加的pathway和enzyme的关系,使之成为具有统一功能的整体。之所以需要设计新基因,是因为目前自然家存在的光合作用效率太低。如果我们能够将目前植物的光合作用的能量转化效率提高到10%,那么种植大规模种植甘蔗的经济效益将不亚于开采一座油田。 Craig Venter 小组声称,将在未来18个月内培养出第四代生物柴油的新菌种,让我们拭目以待吧。 Video: Craig Venter's speech in TED END
个人分类: 生物物理-biophysics|6012 次阅读|4 个评论
基因时代的终结者 (4) --- 基因工程和合成生物学的胜利?
sunon77 2008-8-4 05:28
基因工程和合成生物学的胜利? 目前第一代转基因农作物大豆和玉米,第二代富含胡萝卜素的金大米的出现,和 人类的基因图谱,大豆、玉米和水稻等农作物的基因图谱相继被发现。以移植基因为目的的基因工程,和甚至重新设计新基因的合成生物学成为当今生物技术、生物工程的焦点。前不久,普林斯顿生物系的 S 教授来访,闲谈中他提到,现在普大连一年级刚入学的新生,也一心向往着要做合成生物学方面的工程。因为媒体就合成生物学制造了一个预言:他们将人工合成 DNA 技术的速度和价格发展趋势,与 50 年以来计算机 CPU 制造技术的速度和价格作了一个类比。计算机技术以摩尔定律为代表的性能不断提高、价格不断下降,催生出硅谷这样推动全球产业发展的高新产业,并以信息技术深刻的影响和改变了人类社会的发展。他们认为,未来 50 年,合成生物学会像计算机和信息技术一样,催生出象硅谷那样的生物高新产业,再一次的影响和改变了人类社会的发展。 这个玫瑰色的蓝图固然美好,但是我们必须认清在美好蓝图的背后,什么才是真正困难的问题。真正困难的并不是人工合成 DNA 技术的速度和价格,即使其真的使另一个摩尔定律应验的话。因为我们知道,生物 DNA 中的碱基对的确是一个庞大的数字:病毒大约在一万个碱基对这个数量级,细菌一百万个碱基对这个数量级,而人类大约有 30 亿碱基对。但是,能廉价快速的合成这些碱基对,并不意味着我们就能轻而易举的设计出新的生物性状与功能。这就好像,即我们能快速的在纸上写下大量的 0 、 1 串,并不代表着就能设计出强大功能的计算机软件。真正决定生物性状与功能的,是基因的组合与表达模式 ( gene expression pattern )。而目前就简单生物(如果蝇)对 基因表达模式的研究表明,控制基因表达模式在于一个由 DNA 中非蛋白质编码的部分与细胞中控制蛋白(术语: 转录因子 , transcription factors )共同作用的结果,称为 顺式调控网络 (cis-Regulatory Network ),如 Fig. 1 所示。 Fig. 1 an example of cis-Regulatory Network 比如说手一开始只是圆乎乎的一团,人如何能长出五根指头呢?位于指缝的细胞接收到相邻细胞的信号,这些信号经过细胞中若干次转导,将产生某种 转录因子 ( transcription factors )(图中的蓝色小球)。这些控制蛋白质会依照某种碱基对序列,找到 DNA 链上的某个部分并绑定(此处即称为 cis )。绑定后, cis 部分相邻的基因被转录并复制出相应的蛋白质等一系列的变化,启动细胞死亡程序 (apotosis) 。这样指缝处的细胞死亡,其余细胞正常生长,最后就长出了五根指头。 说到这里,肯定有人要问,这样说来岂不是仍然是 DNA 决定了生物的性状、功能,只不过是非蛋白质编码的部分在起作用罢了。但是 顺式调控网络 (cis-Regulatory Network ) 对生物的性状、功能的决定作用,并不像一座大楼的施工蓝图一样,墙、窗户和天花板的有无和位置都标注得清清楚楚,一切按部就班的照蓝图的模样建造就行了。如果让生物体来修建一座大楼,她的蓝图里并没有窗户的信息,在修好墙以后,需要让墙和天花板对话,才能决定窗户的有无和位置。再比如,我们修建一架波音客机,我们需要从每一个零部件做起,然后由底向上组装,从一开始就需要大量的信息。而如果让生物体来建造的话,她会使用全然不同的方式:不象在制造,更像在设计。先粗粗勾勒出客机机身的流线型轮廓,分出机头、机舱和机尾,然后在机头安装驾驶舱、在机舱安装座位,和在机尾安装方向舵等等。回到生物界的例子,一条色彩艳丽的毛毛虫,其斑状的条文是如何形成的呢? Fig. 2 Tiger Moth caterpillar 在蝴蝶产下的卵中,已经在卵的一侧布置了相应的 mRNA 。当卵开始生长以后, mRNA 相应的蛋白质 Bicoid 产生并自有扩散 (free diffusion) ,在胚体中形成一条斜线 (术语: 梯度, gradient) 。 Fig. 3 Gradient of protein concentration 然后,各细胞会按照 Bicoid 的浓度大小,决定是否打开另一个控制基因 hunchback , 此时连续分布的 浓度信息别转化为二进制的 0 、 1 信息。 Fig. 4 Boolean response of Gene hunchback 然后基因和蛋白质进一步相互作用,使蛋白质浓度按空间位置形成 斑状分布, 成为生物身体结构节状分布的先声。 Fig. 5 Strip pattern of protein concentration before section formation 因此, 生物性状的控制,与飞机制造恰恰相反,一开始只需要简单的信息输入,然后分节分布,逐步加入更多的信息,制造的结构与设计蓝图相互作用,决定下一步的制造细节,而最终的生物性状,其复杂程度完全可以和最现代的波音客机相媲美。 所以,要准确地通过基因来控制生物的性状,就需要了解 细胞内 基因和相应蛋白质是如何交流和相互影响的;进而了解 细胞之间 基因和相应蛋白质是如何交流和相互影响的。而正是这些 细胞内外 相互交流和影响,才真正决定了我们身体中组织的结构,各器官的结构,乃至我们整个身体的功能。如果仍然以计算机作比喻,人类的基因图谱的出现,只不过是辨认出了集成电路中的电阻、电容等等。我们现在对在基因控制网络中类似加法器、乘法器的单元结构都还了解的不是很清楚,更谈不上整个操作系统的体系与结构。现在的基因工程,其困难程度,不亚于通过改变 Windows 操作系统上万个二进制可执行 DLL 文件中的数个,进而来改变或增加 Windows 的新功能。目前合成生物学研究的一个重点,就是通过各种数学工具来预测基因表达模式的动力变化,比如采用图论、布尔网络、常微分方程和随机动力过程等等。先通过数学模型计算 顺式调控网络 (cis-Regulatory Network ) 会如何影响生物性状,然后再做实验来验证。这将是未来基因工程的一个方向。 最近的《自然》杂志正好有一文,是这方面很好的一篇综述文章: Life, logic and information, Nature 454, 424-426 (24 July 2008) | doi:10.1038/454424a; Published online 23 July 2008 http://www.nature.com/nature/journal/v454/n7203/full/454424a.html (待续)
个人分类: 生物物理-biophysics|8359 次阅读|8 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-28 23:54

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部