科学网

 找回密码
  注册
科学网 标签 nasa 相关日志

tag 标签: nasa

相关日志

GEODYN-嗟来的软件-0.引言
slrseer 2020-1-13 14:26
最近,NASA发布了SGP版的GEODYN: https://space-geodesy.nasa.gov/techniques/tools/GEODYN/GEODYN.html 在页面上,可以看到六个下载链接,如下图: 左边是三个PDF文档,右边是三个压缩包。 又点开support页面: https://space-geodesy.nasa.gov/techniques/tools/GEODYN/support/GEODYN_support.html 可以看到另外三个下载链接: 其中第三个的链接错了,要删除链接的最后一个字母,把gzz改成gz,才能下载。 https://space-geodesy.nasa.gov/techniques/tools/GEODYN/support/example_geodyn.gz z 下载完之后,有六个压缩包,都是双重压缩的(*.tar.gz),要解压两次。用7z软件可以很方便地把它们解压好。 你学会了吗? ----------------------------- 附录: 文件目录: geodyn_vol1.pdf geodyn-sgp-doc-vol3.pdf geodyn-sgp-doc-vol5.pdf 2sfile.tar.Z 2efile.tar.Z export_make_tables.tar.gz tdffile.tar.Z example_geodyn.tar.gz export_make_ephem.tar.gz 最后的目录树如下: │ │ geodyn-sgp-doc-vol3.pdf │ geodyn-sgp-doc-vol5.pdf │ geodyn_vol1.pdf │ ├─2efile │ antphc_module.f90 │ cgmass_module.f90 │ COMMON_DECL.inc │ g2efile.f90 │ mssgfc_mod.f90 │ README_2E │ tragen_utils_module.f90 │ vmf_module.f90 │ ├─2sfile │ antphc_module.f90 │ COMMON_DECL_2S.inc │ g2sfile.f90 │ README_2S │ vmf_module.f90 │ ├─example_geodyn │ ephem430.data │ FILIST.DF │ G2B │ gdntable.data │ giie1911 │ giis1911 │ gravity.file │ iieerr │ iieout │ iis.setup │ iiserr │ iisout │ README │ RUN_GEODYN │ tables │ tdf.input │ tdf.setup │ tdf1703 │ tdf2 │ tdferr │ tdfout │ ├─export_make_ephem │ ascii_header_430 │ ascii_to_binary.f90 │ ascii_to_binary_eph430 │ ascp1950.430 │ compile │ create_ephemeris │ create_ephemeris.f90 │ README │ RUN1_EPH_430 │ RUN2_EPH_430 │ ├─export_make_tables │ comperr │ comptab │ emptyfile │ gdntable.data │ getdate_option │ getdate_option.f90 │ master.original │ mk_binary │ new_master │ outtab │ README │ taberr │ tabY2Kg │ tabY2Kg.f90 │ └─tdffile README_TDF tdffile.f90
个人分类: 职业病|4098 次阅读|0 个评论
NASA的球载日冕仪已准备好在新墨西哥州上空进行高空气球飞行
spins 2019-8-31 13:30
NASA和韩国天文学和空间科学研究所(KASI)正准备测试一种新的方法来观察太阳,它位于新墨西哥沙漠的上空。 一个大到可以装下一个足球场的气球计划在2019年8月26日左右起飞,气球下面装有一个名为Bitse的太阳望远镜。Bitse是一种日冕仪,它是一种望远镜,用来阻挡太阳明亮的表面,以揭示其较暗的大气层,称为日冕。作为对日冕中电子的温度和速度进行观测的球载日冕仪的简称,BITSE试图解释太阳风暴是如何形成的。 太阳风暴是一股带电粒子流,不断地从太阳的外层大气中吹出来,冲刷整个太阳系。虽然科学家通常知道它在哪里形成,但它究竟是如何形成的仍然是个谜。但是,解开太阳风暴成因本质是预测太阳喷发过程的关键。太阳风暴有点像水的滑动:它的流动决定了太阳风暴是如何通过太空的。有时,风暴会撞击地球磁场,引发干扰卫星和无线电或GPS等日常通信系统的干扰。 NASA和KASI合作,展示了一种研究太阳风暴的新方法。当标准的日冕仪捕捉到日冕的密度时,BITSE还测量了太阳风中电子的温度和速度,以帮助理解将它们加速到每小时100万英里的强大力量。BITSE的气球飞行是测试和开发该仪器的关键一步,它将帮助科学家和工程师团队为未来的太空飞行改进他们的技术。 “这是一个能够测量这三种性质的日冕仪,你需要了解太阳风暴是如何形成和加速的,”位于马里兰州绿地的美国宇航局戈达德航天飞行中心的BITSE首席研究员Nat Gopalswamy说。通过改进日冕仪,BITSE进一步加深了我们对日冕本身的理解,即充满地球周围空间的太阳物质背后的驱动力,最终提高了我们预测太空天气的能力。 NASA和KASI的BITSE将从位于新墨西哥州萨姆纳堡的NASA哥伦比亚科学气球基地飞到大气层边缘。BITSE试图解释太阳是如何吐出太阳风暴的。 飞到大气层边缘 发射前,在凌晨时分,来自NASA哥伦比亚科学气球基地位于新墨西哥州萨姆纳堡的现场的技术人员将为气球的飞行做好准备,并将部分氦填充在大的塑料囊体中。气球是由聚乙烯制成的,和杂货袋的材料一样,它的厚度和塑料三明治袋差不多,但强度要大得多。当气球上升到高空,气压下降时,气球中的气体膨胀,膨胀。 BITSE将蜿蜒向上走到离地面35km的地方。在那里,它会平飞,拍摄太阳炽热的大气层。到今天为止,它将收集多达64GB的数据——相当于40部长电影。 BITSE的天空之旅始于日食。日冕仪的工作原理是模仿日食;就像月球一样,一个叫做“掩星”的金属盘阻挡了太阳,将日冕带到了聚光灯下。2017年8月21日,日全食、戈帕尔斯瓦米和他的团队在俄勒冈州的马德拉斯测试了仪器的关键部件。他们总共只花了两分钟的时间拍摄了50张照片,并展示了利用仪器特殊技术的挑战和优势。 现在,研究小组不再局限于在月球阴影下匆忙进行的研究。气球将把他们的仪器带到大气层边缘,在那里它将飞行至少六个小时。气球为进入这个区域提供了一种低成本的方式,允许科学家进行测量,并进行他们不能从地面进行的测试。在那里,BITSE可以用比地面更少的背景光收集图像,后者会干扰扰了对暗日冕的观测。 一种新型日冕仪 研究小组成员纳尔逊·雷金纳德在NASA位于马里兰州绿带的戈达德航天飞行中心的实验室里检查了该仪器。BITSE是球载日冕仪的简称,它是一种用来阻挡太阳明亮的表面,以揭示其较暗的大气层的特殊望远镜。 BITSE结合了几种重要的技术。首先,仪器有一个 独立的分光机构。 然后,有一个特殊的照相机,可以捕捉到特定方向的偏振光波。科学家们用这些照片来绘制电子密度,或者在日冕中有多少电子以及在哪里。 典型的日冕仪使用一个轮子,它通过偏振器滤光片循环,每个滤光片都指向不同的角度,并结合图像得到偏振光。BITSE的偏振摄像机逐像素分析观测结果,通过减少运动部件的数量,使过程更加可靠。 “我们把整个微偏光片粘在摄像机探测器上,所以我们不需要偏振轮,”戈达德公司的BITSE首席光学工程师龚乾( 音译 )说。 BITSE还有一个滤光轮,它可以阻挡除四种特定波长以外的所有电晕光。这些不同波长的比值为科学家提供了日冕测量中电子的温度和速度,即使在日食期间,他们也无法从地面获得这些数据。科学家们希望通过将焦点集中在先前未被观测到的日冕层上,这是太阳风暴形成的关键,从而收集到有关日冕起源的新线索。未来某一天,BITSE的改进版本将可以从太空进行测量,将观测时间从几个小时延长到几个月。 BITSE将在离地面35km以上的地方,在鸟类、飞机、天气和蓝天之上漂浮。龚说,海拔高度带来了独特的挑战。某些设计元素是气球飞行特有的,比如BITSE的温度敏感光学器件。机载加热系统将确保BITSE在上升过程中不会太冷。甚至他们在偏振滤光片上使用的胶水都经过精心挑选,既能提供良好的粘合剂,又能承受预期的温度。她解释说,由于每个像素的宽度为7.5微米,而人类头发的平均直径只有75微米,因此寒冷的上层大气可能会影响他们的数据。 在如此高的海拔高度,天空变得更暗;在大气层很薄的地方,很少有空气粒子散射光。与地面相比,这些条件对于日冕仪来说是更好的。不过,大气层的边缘比空间更亮。 戈达德的太阳科学家杰夫·纽马克说:“天空的亮度从根本上限制了我们所能看到的,并推动我们进入下一步的需要:太空观测。”Gopalswamy和Newmark一起带领团队将BITSE送上天空,距离太空更近一步,那里没有干扰的背景光。 作为一个真正的合作任务,BITSE拥有来自NASA和KASI的广泛贡献。NASA提供了主要的光学、机械、指向、通信和吊舱组件,以及任务的全面管理和启动,而KASI提供了过滤轮、仪器计算机和照相机系统,以及其他贡献。 崇高的目标 在BITSE飞行结束时,萨姆纳堡现场的技术人员将结束终止命令,启动分离仪器和气球的程序,打开仪器的降落伞,气球将上升破裂。一架在上空盘旋的飞机将监视气球的最后时刻,并传递BITSE的位置。几个小时后,日冕仪将从它开始的地方降落到地面。工作人员将开车进入沙漠,在一天结束时回收气球和吊舱。 BITSE的飞行数据将有助于科学家用来预测太空天气的模型。但该小组将寻找飞行来验证BITSE的设计和临近空间环境的性能。从他们对2017年8月日食的实地观察到今年的气球飞行,最后是航天飞行,这个团队继续将目光放得更高。 相关: Studying the Sun’s Atmosphere with the Total Solar Eclipse of 2017 NASA Team to Fly First-Ever Coronagraph Capable of Determining the Formation of the Solar Wind
个人分类: 浮空器|4354 次阅读|0 个评论
将“星”比“星”──回望地球,蠡测系外行星
热度 2 jiangxun 2019-4-2 08:06
作者:蒋迅 本文已发表在《天文爱好者》2018年8月号上。 人类居住的太阳系只是银河系中一个恒星系统中的普通一员。天文学家们估计,在银河系中有一千亿到四千亿个恒星系统。因此不难想象,除了太阳系之外应该还有其他自带行星(我们称之为“太阳系外行星”)的恒星系统。这个猜测在1988年得以证实。到2018年5月8日,人们已经在613个星系中确认了3725个太阳系外行星。除此之外,美国宇航局的开普勒太空望远镜还找到了近4500个太阳系外行星候选体,其中的一些具有地球大小并位于适居地带;有些所环绕的恒星也与我们的太阳类似。人们还证实了,其中的一些太阳系外行星带有大气层,甚至有自己的卫星。开普勒太空望远镜是为发现环绕着其他恒星之类地行星设计的太空望远镜,它指向银河系中的一个特定区域。通过这项任务所得结果,天文学家得出结论:银河系中的恒星有行星环绕是很普遍的。 人类证实了太阳系外行星的存在之后,就开始跃跃欲试去访问那里的外星人了。但是且慢,其实我们根本就不知道在那些行星上有没有大陆和海洋,更不用说外星人了。它们距离我们实在太远,而与其所环绕的星球又太近,以致我们甚至不能直接观测到它们,或者只能看到一个小小的亮点,小到只有一个像素。 这就像我们平时拍照,人物背对着太阳是照不好的,因为你的相机拍出来的是逆光像。解决逆光的一个办法就是将太阳光遮住。美国宇航局基于这个思想开发了一个“遮星板”技术。今年6月我专程去喷气推进实验室的“遮星板设计室”参观,接待我的蒋红涛博士告诉我,他们又开辟了一个新的思路,用现在时髦的术语就是:大数据挖掘。这引起了我极大的兴趣。 他们的出发点就是一个像素。准确点说,就是一个像素时间序列,在此基础上建立一个数学模型来探索系外行星。问题是,怎么能证明可以用一个像素和数学模型来推断一颗太阳系外行星的基本特徵?答案是:你必须把你的数据和模型应用到一颗可以验证的行星上。这颗行星就是我们居住的地球,因为我们对地球已经有足够的认知。 大数据助力:单像素透露多信息 这项新研究使用的是美国宇航局的地球多色成像相机(EPIC)的数据。这个相机安装在美国国家海洋和大气管理局的深空气候观测台(DSCOVR)卫星上。DSCOVR在拉格朗日点L1处绕太阳运转,自2015年6月以来它每时每刻为EPIC提供地球上阳光照射的地表视野。 图1:深空气候观测台卫星(DSCOVR)在空间的位置示意图,它位于第一拉格朗日点L1处。(来源:NASA) 现在,美国宇航局要以地球作为实验室,用这个多色成像相机来做太阳系外行星研究。如果我们想要得到太阳系外行星的自转速度以及其陆地、海洋、大气风暴等特徵,那么我们首先要看看我们能否通过一个像素的信息来分析我们的地球。这就好像是我们假想着有外星人在遥远的地方在观察我们的地球。他们通过什么仪器和手段来获取地球的信息呢? 图2:地球多色成像相机(EPIC)用10个波长拍摄的地球图片(来源:NASA) EPIC仪器的一个亮点是它能以10种不同的波长来捕获来自地球的反射光线。因此,每当EPIC拍摄地球时,它实际上会拍摄10张图像。当然这10张图片都含有大量的像素信息。新研究将每个图像平均成一个点光源,即相当于每个波长的一个单像素,然后分析每个波段点光源的亮度变化以获得地面云层、陆地、自转周期及其他细节。平均成点光源是因为,在实际太阳系外行星观测时,即使用目前最大的望远镜,我们也只能看到点光源,不可能看到实际图像。一个单一的像素快照可以提供有关地表的非常少的信息。但我们有10个波段的单一像素,而不同材料反射不同波长的光到不同程度 -- 例如,植物主要反射绿光;与被冰覆盖的行星相比,像火星这样的红色行星将具有非常不同的颜色轮廓。在这项新研究中,他们分析了一个大数据的集合,其中包含两年内每天多次拍摄的10个波长的单像素图像。尽管提供给研究人员的地球信息已经减少到单一的光点,但他们的分析表明,只要长期坚持观测,小小的点光源也能提供大量信息(大数据)。 时间序列分析:威力不凡的“找不同” 他们对这些单一像素的图像的亮度做时间序列分析,并采用傅里叶分析的技术提取由于行星自转公转、云层变化和地表类型(海洋、陆地和植被)以及季节变化所带来的周期规律。顾名思义,时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。傅里叶分析是数学的一个领域。根据傅里叶分析,任何物理信号都可以分解成一些离散频率或连续范围的频谱(即对特定信号或特定种类信号频率内容的分析的统计平均)。这部分内容已经超出了本文的范围。简单地说,他们得到了地球上24小时的昼夜循环。他们还能够估算海洋、陆地、植被、冰和岩石的比例,以及云覆盖的季节性变化,识别大气中的水云并测量地球的旋转速率等。 图3:旅行者1号探测器飞出海王星轨道后,在大约59亿千米远的地方拍下的地球照片(来源:NASA) 把地球作为研究太阳系外行星的实验室的思想不是第一次出现,但从来没有人考虑过从遥远的地方能得到什么样的行星特徵,也没有人在研究中使用过如此多的波段。他们使用的观测数据时间段也是前所未有的:超过了27个月的时间,每天拍摄约13次。数学计算表明,如果要超过90%的置信度测量太阳系外行星的旋转速度的话,那么就需要在每个自转周期(即太阳系外行星的一“天”)内拍摄两到三次图像。 喷气推进实验室的大气与气候科学家蒋红涛是这项研究的带头人。他说,“利用地球作为太阳系外行星的替代的好处是,我们可以通过与我们对地球实际拥有的大量数据与单像素数据中得出的结论做比较,从而验证我们通过单像素数据得出的结论。如果我们直接使用来自一个太阳系外行星的数据的话,我们无法知道我们的分析结论是否正确。现在有了地球实验的依据,我们就可以有信心地说,我们的方法是有效的。” 接下来的问题就是直接观察太阳系外行星并获取数据了。但是行星比母星要暗得太多,例如地球亮度只有太阳的10亿分之一,所以它们极难被检测到。大多数已知的太阳系外行星都是利用“行星凌星”现象(即行星经过恒星前面时导致恒星亮度周期性地轻微下降)间接观测到的,著名的开普勒太空望远镜就是按这个原理设计的。通过直接成像,仅发现了大约45颗太阳系外行星,而且所有这些行星都比地球大得多。天文学家们也拍摄了一些木星大小的太阳系外行星的直接图像。但是对于地球尺度的行星系统,要想直接成像,需要一个口径数百米的太空望远镜。参看一下目前人们的实际能力:美国宇航局下一次要发射的詹姆斯-韦伯太空望远镜的直径只有6.5米! 图4:开普勒太空望远镜寻找系外行星的方法──凌星法──示意图。它通过探测行星经过恒星前面时导致的恒星亮度周期性轻微下降来探测行星。 这种方法的有效性还取决于行星的独特特徵。在表面大致均匀的行星上可能看不到日循环模式。例如,金星被厚厚的云层覆盖,表面没有海洋,因此可能不会出现反复出痕7b的图案,或者可能不足以在单像素图像中观察到。像水星和火星这样的行星也具有挑战性,但陨石坑等行星特徵也可能有助于形成可用于测量旋转周期的模式。另一个问题将是观测中采光的光源。EPIC数据提供了一个非常清晰的地球视图,很大程度上不受其他来源光线的影响。但直接成像太阳系外行星的一个主要挑战是它们比母恒星暗太多,很容易淹没于恒星的光芒之中,因此可能需要更长的时间来辨别可以揭示行星旋转速率的模式。 图5:直接成像法的一个范例:2015年,双子天文台(Gemini Observatory)通过直接成像法发现一个和太阳系非常类似的行星系统,其中这颗行星被命名为波江座51b(51 Eridani b)。它约为两倍木星质量,距离母恒星13个天文单位。版权:J. Rameau C. Marois 早在二十多年前,美国宇航局就计划建造搜寻太阳系外行星的望远镜。其中比较著名的有“太空干涉测量任务”和“类地行星发现者”,但它们都由于种种原因没有能付诸实施或者被推迟。最大的障碍是经费。美国宇航局每年得到的经费只有不到整个联邦预算的0.5%,这其中还包括航空、太阳系和载人航天等多个领域,能分配给深空探索的钱就可想而知了。尽管如此,美国宇航局仍然在研究能够直接成像太阳系外行星的下一代望远镜的潜在设计。蒋红涛团队的实验可以视为研发的出发点。他说:“我可以想象,在我们的子女那一代,我们可以在月球表面建造这样的望远镜阵”。将来遮星板技术成熟的时候,应该可以将两项技术一起使用,这将对研究太阳系外行星起到更大的作用。 科学家们也在寻找银河系外行星。距离银河系最近的距离地球大约250万光年的仙女座星系是最有希望的地方。有天文学家在2009年使用精密的“微引力透镜”方法寻找仙女座星系的行星。他们宣称发现了一颗可能的行星,但至今没有人能给予证实。寻找银河系外行星的最大困难在于工具。我们还没有一个真正可靠的望远镜。蒋红涛博士告诉我,喷气推进实验室的科学家们建议采用意大利科学家提出的一个大胆的计划:建造一台以太阳作为引力透镜的星际超级哈勃望远镜。这要求必须把望远镜送到750亿千米之外的地方,是冥王星到地球距离的10倍。有趣的是,这项技术也需要前面提到的遮星板。这样的望远镜可以为距离我们一百光年以外的行星拍摄具有1000X1000像素的照片。据保守的估计,该项目至少需要200亿美元,比美国宇航局一年的经费还多。 随着太阳系外行星和银河系外行星直接成像技术的发展,科学家有望能够了解遥远行星的表面特徵。不过他们还将面对一个更大的问题:如何找到那些承载生命的太阳系外行星和银河系外行星?这将是一个更为艰难的课题,但他们毕竟迈出了第一步。
个人分类: 航天|6433 次阅读|3 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-21 02:28

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部