科学网

 找回密码
  注册

tag 标签: Feature

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

Science China Chemistry发表马於光教授综述文章
sciencepress 2014-3-19 14:19
激子 ( 或自旋 ) 统计是基本的物理原理,决定了有机半导体器件中单线态与三线态激子的形成比例 (1:3) 。近年来,基于新原理 ( 三线态反系间窜越、延迟荧光 ) 的 OLED 材料引起广泛关注。该类材料在理论方面重新催热了关于自旋统计的探讨,在应用方面有望发展成为低成本、高性能的新一代 OLED 材料,因此得到了国内相关领域的高度重视,多个研究机构已布局开展相关研究。从目前的发展情况看,该类材料的发光机制、原理以及进一步材料设计思路还有待探讨和明确。 受《中国科学:化学》副主编曹镛院士邀请,华南理工大学发光材料与器件国家重点实验室马於光教授为 Science China Chemistry (《中国科学:化学》英文刊) 撰写了专题论述文章: Progress in next-generation organic electroluminescent materials : material design beyond exciton statistics , 发表在 2014 年第 3 期 。 该文综述了激子统计研究进展,分析了多种提高激子利用效率的途径,提出该课题组提高激子利用率的“热激子过程”新思路及杂化局域-电荷转移(HLCT)态材料设计原理,器件实现接近100%的激子利用效率。 全文免费下载地址: http://chem.scichina.com:8081/sciBe/EN/volumn/current.shtml (境内) http://link.springer.com/article/10.1007/s11426-013-5046-y (境外,免费 Open Access 3 个月) SCIENCE CHINA Chemistry 2014, 57 No. 3 pp. 335-345 欢迎阅读~
个人分类: 《中国科学》论文|10192 次阅读|0 个评论
Hinton文章learning multiple layers of representation总结
mimizhu2003 2013-3-2 22:33
前两天看的文章,总结如下: 在文章的开始,提出的思想是:不同于以往学习一个分类器的目标,而是希望学习一个生成模型(generative model)。 作者指出,在一个神经网络中,如果它既包含自底向上的“识别”连接,也包含自顶向下的“生成”连接,就可以使用自底向上的过程来识别数据,而使用自顶向下的过程来产生数据。如果神经元是随机的,重复自顶向下的过程,将产生一个数据矢量的完整的分布。这表明,通过调整自顶向下的连接权值,来使得网络产生训练数据的概率达到最大,则训练数据将被驻留(reside in)在自顶向下的权值中。 可以用RBM(受限波尔兹曼机)的隐层来建模二值图像像素间的高阶相互关系。为了从训练图像集中学习一套好的特征检测子,像素i和特征检测子j间的初始权值被置为0,使用两对相互关系之间的差异迭代地更新权值,即像素i和特征检测子j之间同时出现的频率,一是受训练图像驱动时的,二是受重构后的图像驱动时的,相似的学习规则也可用于偏差(bias)。一旦RBM的隐层确定,我们就产生了一个对训练图像的重构。通过组合RBM来学习多层特征。
个人分类: 文章读后感|6052 次阅读|0 个评论
[转载]Different feature selection methods implemented in R
chuangma2006 2012-10-24 01:58
# ----------------------------------- # Feature Selection in R # # Houtao Deng hdeng3@asu.edu # ----------------------------------- library(RRF); library(FSelector) library(varSelRF) library(glmnet) library(RWeka) set.seed(1) #1: linear case; 2: nonlinear case; 3: XOR case flag=2 #data simulation #only the first and the 21th feature are needed nCol = 100 X=matrix(runif(400*nCol, min=-2, max=2), ncol=nCol) #linear case if(flag==1) {class = (X ) + (X ) ix=which(classquantile(class, 1/2)); class = class*0-1; class =1} #nonlinear case if(flag==2){ class = (X )^2 + 1*(X )^2 ix=which(classquantile(class, 6/10)); ix=c(ix,which(classquantile(class, 1/10))); class = class*0-1; class =1} #plot if(flag==1|flag==2){ ix = which(class==1) X11(); plot(X ,X ,col="blue",pch=1, xlim=c(-3,3),ylim=c(-3,3),xlab="Variable 1",ylab="Variable 2") ix = which(class==-1) points(X ,X ,pch=3,col="red") legend("topright",legend=c("class 1","class 2"), col=c("blue","red"), pch=c(1,3))} #XOR case if(flag==3){ bSample = sample(0:1,400*nCol,replace=TRUE) X=matrix(bSample,ncol=nCol) class = (xor(X ,X )) } #duplicate #X =X ;X =X ; data = data.frame(cbind(X,class));data =as.factor(data ) listFea = list() #Chisquare weights - chi.squared(class~., data) subset - cutoff.k(weights, 5) subset=c("Chi-Square Top 5",paste(subset)) listFea ]=subset #Information Gain weights=information.gain(class~., data) subset - cutoff.k(weights, 5) subset=c("Information Gain Top 5",paste(subset)) listFea ]=subset #CFS from FSelector subset - cfs(class~., data) subset=c("CFS-FSelector",paste(subset)) listFea ]=subset #--- CFS from RWeka nombi=make_Weka_filter("weka/filters/supervised/attribute/AttributeSelection") datbin - nombi(class ~., data=data, control =Weka_control( E="weka.attributeSelection.CfsSubsetEval ", S="weka.attributeSelection.BestFirst -D 1 -N 5" )) CFSRweka=colnames(datbin) CFSRweka=c("CFSRweka",paste(CFSRweka)) listFea ]=CFSRweka #LASSO cvob1=glmnet(X,as.factor(class),family="binomial",lambda=0.1,alpha=1) coef=coef(cvob1) coef=which(coef0.001)-1;coef=coef coef=c("LASSO",paste("V",coef,sep="")) listFea ]=coef #RF-RFE Ignore the warning here. RFE=varSelRF(X,as.factor(class), c.sd = 1, mtryFactor = ncol(X), ntree = 500, vars.drop.num = NULL, vars.drop.frac = 0.2, whole.range = TRUE, recompute.var.imp = FALSE, verbose = FALSE, returnFirstForest = TRUE, fitted.rf = NULL, keep.forest = FALSE) RFEFS=RFE$selected.vars; RFEFS=c("RF-RFE",RFEFS) listFea ]=RFEFS #----RRF--- #ordinary random forest. rf - RRF(X,as.factor(class), flagReg = 0,importance=TRUE) impRF=rf$importance impRF=impRF imp=impRF/(max(impRF))#normalize the importance score coefReg=0.9*0.7+0.1*imp #weighted average rrf - RRF(X,as.factor(class),coefReg=coefReg,mtry=ncol(X),importance=TRUE) imp=rrf$importance imp=imp FS_RRF = which(imp0) FS_RRF=c("RRF",paste("V",FS_RRF,sep="")) listFea ]=FS_RRF print(listFea)
个人分类: R|3947 次阅读|0 个评论
ArcGis中 “feature”似宜译“图素”、“形素”而不仅是“要素”
热度 1 hillside 2011-8-21 18:41
  我认为,英语翻译或者英语科技翻译只有更好,没有最好。与时俱进是客观规律与形势所需。不少西方政治名词、法律名词、文化名词的汉译,虽然沿用多年,其实往往带有“词语”翻译时期文化及意识形态等方面的烙印或偏差。探究本义、还原真义就显得很有意义。当然,由于惯性所致,改变字面本身已经很难,但是依然可以老瓶装新酒、旧貌换新颜。科技翻译可能没有文化方面的困惑,但语言本身的准确、易解还是需要的。 最近操练ARCGIS,发觉作为基础元素的“feature”的汉译“要素”并不直观、通俗。 先来看feature在GIS中的作用。它是空间数据最基本、不可分割的单位,有点、线、面(多边形等)。 按英语而论,含义除了习见的“特征、特色、特性”等抽象表达外,还明显地带有图像信息:面貌的一部分(眼,口,鼻等,山川等自然地理)特征, 容貌, 特色, 特写。 按英语词源,face与feature同源,都出自动词“fact”。fac=fact(做),加上-e后缀表示“做出来的形”;feat=fact,加上 -ure 后缀同样表示“做出来的形状”。   从字面而言,“要素”偏于抽象与空泛,“重要的因素、元素”,具体指哪个方面的“要素”语焉不详,感觉“要素”太玄、太抽象了。应当选择与图形、图象有关的“图符、图划、图案、图件、图元”等描述。我个人认为,从使用的角度,结合“图”与“要素”解释成“图素”比较简洁、明了。当然,“图素”是我自造的词语(后来检索发现CAD、CAXA中已有图素一词,但我暂没有时间去查准确定义),尽管可能不见于词典,但从学习者的角度理解,一目了然。此外,我觉得也可采用“形素”一语。 此想法的提出不是追求标新立异,而是立足于实用,“feature”翻译为“要素”并无错误,只是不很妥帖而已。 重要说明:将“feature”理解或翻译为“图素”,应当具体问题具体分析,并不是一概而论。该译“要素”的仍然应当译为“要素”。 注:写完此文,挂出后有博友提出不同意见,为增加本文的说服力,遂略加考证。并从网上搜得一文专门探讨“feature”,将之翻译为“貌征”。下面转贴该文的前半部分(来自网易博客,可惜该文作者并未发现feature的词根): feature:重要的面貌特征 2007-03-26 00:25:06 作者:清抹 据说,很多明星、尤其是女明星,都是经过了整容的。 据说,韩国的女明星在这方面尤其出类拔萃。 对此,我们有时侯禁不住会挖苦这种人造美人;另外一些时候,我们也可能一付貌似公正悲天悯人之模样,爱美之心,人皆有之嘛,可以理解的,更何况在演艺圈,这feature(相貌)就是吃饭的本钱哪。 说到feature(相貌),很多人会疑惑,这feature不是“特征、特性、特点”么,怎么又变成脸盘子了呢?这英语词汇的花样可真多。 的确,feature既可以是“特征、特性、特点”,也可以是“容貌、相貌”,而且还不止这么点名堂。 现在,我们来分析表示“特征、特性、特点”的三大英语词汇之一的feature。 在几个表达“特征、特性、特点”的英语名词中,feature大概是最具有“特征、特性、特点”的。不过,尽管feature这么靠近“特征、特性、特点”,它的出发点仍然不在这里,或者说,它不止这么点意思。 从词源上讲,feature原本相当于a making“制作出的东西”或to make“制作”。然而,它的构词意义并非着眼于这简单的a making“制作出的东西”,而是这“制作出的东西”给人们的概括性印象。 所谓概括性印象,就是人们对于某事物一眼看上去的归纳、简化、提纯。我们首先看见的“制作出的东西”究竟形态为何,其次我们并非事无巨细地感受这形态,而是简练地总结它的主要特征。(请原谅这样的学究式繁琐表达,为了推断不得已而为之)。于是,我们可以判断出,feature的根本意思是“貌征”,貌即外貌、面貌、形态、类型、给出的视觉印象,而征即特征、征象、特别引人注目之处;简言之,“貌征”即面貌特征,而且是重要的、吸引人的面貌特征。 唉,这“貌征”太甜蜜的重要,以至于我们判断人、物、事的时候受到的影响不可谓不大。 慎重声明,此“貌征”解释不见诸于词典,却能把词典中feature的各种多义词用法囊括一尽。 (再累赘补充一下,此“貌征”feature的末尾有个后缀-ure,在英语名词中经常见到,它是个弱后缀,其作用就像汉字中的偏旁部首一样,意思呢是个弱弱的“…由尔”(词典上仍然没有这么个解释啊),可以完全不管它。只有在咬文嚼字的时候,比如,要同其它名词性后缀比如-ment, -ation/-tion, -ance, -ant, -ary,-ery, -ory之类加以区分时,才看得出这个“…由尔”的奥妙。)
个人分类: 地理科学|7087 次阅读|3 个评论
[转载]Unsupervised feature learning and Deep Learning
xrtang 2010-7-10 17:10
浏览EMNLP2010的网站,看到Andrew Ng将要做的一个报告的介绍,其中说到了特征学习和深度学习问题。最近在为知识库缺乏发愁。介绍中提到集中从无标注数据中学习特征的方法,在这里记录下来,以备后用。 1. sparse coding 链接:http://www.scholarpedia.org/article/Sparse_coding 2. ICA algorithm Independent componential analysis 3. Deep belief networks 链接:http://www.scholarpedia.org/article/Deep_belief_networks
个人分类: 未分类|6310 次阅读|0 个评论
[转载]Dimension reduction(From Wikipedia)
machinelearn 2010-7-4 10:56
In statistics, dimension reduction is the process of reducing the number of random variables under consideration, and can be divided into feature selection and feature extraction. Feature selection approaches try to find a subset of the original variables (also called features or attributes).Three strategies are filter (e.g. information gain) ,wrapper (e.g. search guided by the accuracy) and embedded approaches. Feature extraction transforms the data in the high-dimensional space to a space of fewer dimensions. The data transformation may be linear, as in principal component analysis (PCA), but many nonlinear dimensionality reduction techniques also exist. The main linear technique for dimensionality reduction, principal component analysis, performs a linear mapping of the data to a lower dimensional space in such a way, that the variance of the data in the low-dimensional representation is maximized. In practice, the correlation matrix of the data is constructed and the eigenvectors on this matrix are computed. The eigenvectors that correspond to the largest eigenvalues (the principal components) can now be used to reconstruct a large fraction of the variance of the original data. Moreover, the first few eigenvectors can often be interpreted in terms of the large-scale physical behavior of the system. The original space (with dimension of the number of points) has been reduced (with data loss, but hopefully retaining the most important variance) to the space spanned by a few eigenvectors. Principal component analysis can be employed in a nonlinear way by means of the kernel trick. The resulting techniques are capable of constructing nonlinear mappings that maximize the variance in the data. The resulting technique is entitled Kernel PCA. Other prominent nonlinear techniques include manifold learning techniques such as locally linear embedding (LLE), Hessian LLE, Laplacian eigenmaps, and LTSA. These techniques construct a low-dimensional data representation using a cost function that retains local properties of the data, and can be viewed as defining a graph-based kernel for Kernel PCA. More recently, techniques have been proposed that, instead of defining a fixed kernel, try to learn the kernel using semidefinite programming. The most prominent example of such a technique is maximum variance unfolding (MVU). The central idea of MVU is to exactly preserve all pairwise distances between nearest neighbors (in the inner product space), while maximizing the distances between points that are not nearest neighbors. An alternative approach to neighborhood preservation is through the minimization of a cost function that measures differences between distances in the input and output spaces. Important examples of such techniques include classical multidimensional scaling (which is identical to PCA), Isomap (which uses geodesic distances in the data space), diffusion maps (which uses diffusion distances in the data space), t-SNE (which minimizes the divergence between distributions over pairs of points), and curvilinear component analysis. A different approach to nonlinear dimensionality reduction is through the use of autoencoders, a special kind of feed-forward neural networks with a bottle-neck hidden layer. The training of deep encoders is typically performed using a greedy layer-wise pre-training (e.g., using a stack of Restricted Boltzmann machines) that is followed by a fine-tuning stage based on backpropagation.
个人分类: 科研笔记|3411 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-10 15:52

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部