科学网

 找回密码
  注册

tag 标签: histone

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

PTM表观遗传修饰“黑马”之巴豆酰化
PTMBio 2020-10-21 17:16
巴豆酰化修饰的前世今生 01 巴豆酰化修饰首次发现 相比于磷酸化和乙酰化等早已被熟知的修饰类型, 赖氨酸巴豆酰化修饰 (Lysine Crotonylation, Kcr) 在2011年才由芝加哥大学 赵英明 教授团队在顶级期刊 Cell 杂志首次报道, 该修饰通常出现在转录活跃的染色质区的组蛋白上并与生殖调控密切相关。同年,该研究被Cell杂志评选为2011年表观遗传领域的研究亮点。 图1 赵英明教授团队首次报道巴豆酰化修饰 02 巴豆酰化修饰Writer鉴定 2015年,纽约洛克菲勒大学染色质生物学和表观遗传学实验室 C. David Allis 教授团队在 Molecular Cell 发文报道, 乙酰转移酶P300能够催化组蛋白的巴豆酰化修饰的发生,组蛋白巴豆酰化修饰受到细胞内crotonyl-CoA复合物浓度的影响,由此可以通过遗传和环境两方面共同调控巴豆酰化修饰。 图2 P300催化巴豆酰化修饰的发生 03 巴豆酰化修饰Reader鉴定 2016年,清华大学 李海涛 教授课题组发现最新的巴豆酰化阅读器--- AF9 YEATS结构域 。 该研究将进化保守的YEATS结构域定义为巴豆酰赖氨酸阅读器家族,并证明AF9 YEATS结构域能直接将组蛋白巴豆酰化与转录活性联系起来。 图3 巴豆酰化阅读器—AF9 YEATS 结构域 04 巴豆酰化修饰Eraser鉴定 2017年,华中师范大学 翁杰敏 教授团队在 Cell Research 发文,揭示了HDACs而非Sirtuin家族是主要的组蛋白去巴豆酰化酶,同时组蛋白巴豆酰化在哺乳动物细胞中与组蛋白乙酰化一样存在动态调控。 图4 HDACs是主要的去巴豆酰化酶 05 巴豆酰化修饰调控机制 2017年,北京大学健康科学中心基础医学院 尚永丰 院士课题组在 Molecular Cell 发文证实,CDYL可以通过充当crotonyl-CoA水合酶来将crotonyl-CoA转化为β-hydroxybutyryl-CoA,进而负调控组蛋白巴豆酰化修饰,这种负调控与其转录抑制活性有内在关联,并参与生殖过程调控。 图5 CDYL负调控巴豆酰化修饰并参与精子发生过程 06 非组蛋白巴豆酰化修饰鉴定 2017年,北京大学健康科学中心 张宏权 教授课题组在 Cell Research 上发表文章证实, 巴豆酰化不止发生于组蛋白上,其在非组蛋白上也有发生 。通过免疫荧光染色和免疫组化的实验手段,证实了巴豆酰化蛋白广泛定位于H1299和HeLa细胞的细胞质和细胞核中,也广泛存在于多种小鼠组织中。 图6 H1299和Hela细胞以及小鼠组织中Kcr的检测 案例一 题目: Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination–mediated DNA repair 期刊:Science Advances(IF=13.116) 单位: 北京大学医学部 梁静 研究员和 景杰生物 团队合作发表 发表时间: 2020年3月 研究内容和意义: 本项工作在之前CDYL调控组蛋白巴豆酰化水平及功能的基础上,通过高深度的蛋白质修饰组学分析,结合具体的生化细胞实验,证明了CDYL对非组蛋白RPA1巴豆酰化修饰的调控和生理意义。这既是目前为止最深覆盖的巴豆酰化修饰组学分析,也是第一次对非组蛋白巴豆酰化进行深入的功能研究。 景杰抗体产品应用: anti-PanKcr (PTM-502) 、Anti-Kcr antibody beads (PTM-503)、anti-PanKac (PTM-101)。 图7 超高深度巴豆酰化组学分析揭示其在DNA损伤修复中的重要作用 案例二 题目: Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice understarvation and submergence 期刊:Genome Biology(IF=14.028) 单位: 华中农业大学 周道绣 教授团队 发表时间: 2018年9月 研究内容和意义: 该研究在水稻中首次揭示发现组蛋白多种酰化修饰包括巴豆酰化 (lysine crotonylation, Kcr)、丁酰化 (lysine butyrylation, Kbu) 和乙酰化 (acetylation) 修饰,在饥饿胁迫和淹水胁迫下相互作用来调控相关基因的表达,为水稻逆境胁迫下的表观遗传研究提供了指导意义。 景杰抗体产品应用: anti-crotonyllysine (PTM-501)、Anti-Kcr antibody beads (PTM-503) 、anti-butyryllysine (PTM-301)、Anti-Kbu antibody beads (PTM-302)。 图8 水稻组蛋白酰化修饰在逆境下调控基因表达 景杰生物 独家提供巴豆酰化泛抗体、树脂以及多种组蛋白巴豆酰化位点修饰抗体,应用范围广泛包括WB、Dot、ELISA、IAC、IP等,助力科研工作者在开展巴豆酰化修饰在多领域的研究,为表观遗传基础研究以及该修饰在农业、医学和临床等方面的应用提供有力的工具。 图9 景杰生物巴豆酰化修饰抗体产品列表 参考文献: 1. Minjia Tan, et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2. Benjamin R. Sabari, et al. 2015. Intracellular Crotonyl-CoA Stimulates Transcription through p300-Catalyzed Histone Crotonylation. Molecular Cell. 3. Yuanyuan Li, et al. 2016. Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Molecular Cell. 4. Shumeng Liu, et al. 2017. Chromodomain Protein CDYL Acts as a Crotonyl-CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis. Molecular Cell. 5. Weizhi Xu, et al. 2017. Global profiling of crotonylation on non-histone proteins. Cell Research. 6. Wei Wei, et al. 2017. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Research. 7. Yue Lu, et al. 2018. Dynamics and functional interplay of histone lysinebutyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biology. 8. Graeme J. Gowans, et al. 2019. Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Molecular Cell. 9. Huajing Yu, et al. 2020. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination–mediated DNA repair. Science Advances.
9312 次阅读|0 个评论
Histone Modifications and Nucleosome Turnover
bigdataage 2015-5-10 22:14
Relationship between Histone Modifications and Nucleosome Turnover Apparently, all the factors that influence nucleosome turnover can be classified into two categories: internal and external causes. The external causes mainly contain chromatin remodeling complexes, some enzymes, histone chaperones and DNA binding proteins , such as ATP-dependent chromatin assembly and remodelling factor (ACF) . The internal causes contain all the factors that influence the histone-DNA or histone-histone interactions, such as DNA flexibility, DNA methylation, histone modification and variants . Here, I only introduce the relationship between histone modifications and nucleosome turnover. Recent data suggest that histone modifications have a direct effect on nucleosomal architecture by affecting histone–histone and histone–DNA interactions, as well as the binding of histones to chaperones . And Venkatesh show that co-transcriptional acetylation is achieved in part by histone exchange over open reading frames (ORFs) in yeast. Firstly, H3K56ac is positioned at the entry–exit point of the DNA on the nucleosome, it can form water-mediated contacts between the histone residue and the DNA. So H3K56ac might influence nucleosome stability and DNA accessibility by enabling the nucleosome breathing. Arg42 is another residue in histone H3 that is located at the DNA entry–exit region of the nucleosome. The addition of a methyl group to an Arg residue not only adds steric bulk but also removes a potential hydrogen bond donor, which suggests that this modification affects the interaction of histones with the DNA. And previous data imply a role for asymmetric dimethylation of H3R42 in decreasing nucleosome stability. Secondly, H3K122 is located on the dyad axis of the nucleosome, in which the interaction between histones and DNA is strongest. H3K122ac can establish a water mediated salt bridge between H3K122 and the DNA. Previous data suggest that fully acetylated H3K64 are less stable than nucleosomes containing unmodified H3K64. In addition, and H3K64 acetylation reduces the interaction with DNA. Thirdly, H3K79 is located on the outside of the nucleosome, in the solvent-exposed carboxy-terminal end of the H3 α1 helix. The structure of chemically dimethylated H3K79 showed that this modification does not cause a major change in nucleosome structure, but a subtle reorientation of the region surrounding Lys79, which probably results in the loss of a single hydrogen bond to the L2 loop of H4. And H4K91 is positioned within the H3–H4 tetramer–H2A–H2B dimer interface and mutation mimicking the acetylated state leads to decondensed chromatin and loss of nucleosomal interaction. Fourthly, histone chaperones are acidic proteins and hence ideally suited to guide the basic histones to their final destination within chromatin. They either bind the histone–histone interface or part of the histone–DNA interaction surface. Therefore, histone modifications, such as H3K56ac and H2AQ105, could also modulate the binding to their respective chaperones. Lastly, in yeast, co-transcriptional acetylation is achieved in part by histone exchange over ORFs. In addition to its function of targeting and activating the Rpd3S complex, H3K36 methylation suppresses the interaction of H3 with histone chaperones, histone exchange over coding regions and the incorporation of new acetylated histones. In a words, histone modifications and nucleosome dynamics can influence each other. So understanding the correlation between histone modification and nucleosome turnover maybe become the first task. References: Zachary A. Gurard-Levin, et al. (2014). Histone Chaperones: Assisting Histone Traffic and Nucleosome Dynamics. Annual Review of Biochemistry, 83: 487-517. Maria J.E. Koster, et al. (2015). Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell, 161(4), 724–736. Timothy R. Blosser, et al. (2009). Dynamics of nucleosome remodelling by individual ACF complexes. Nature, 462, 1022-1027. Isabel Jimenez-Useche, et al. (2013). DNA Methylation Regulated Nucleosome Dynamics. Scientific Reports, 3, Article number: 2121. Thuy T.M. Ngo, et al. (2015). Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility. Cell, 160(6), 1135–1144. Gregory D. Bowman, Michael G. Poirier. (2015). Post-Translational Modifications of Histones That Influence Nucleosome Dynamics. Chem. Rev., 115 (6), 2274–2295. Hideaki Tagami, et al. (2004). Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis. Cell, 116(1), 51–61. Peter Tessarz, Tony Kouzarides. (2014). Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology, 15, 703–708. Swaminathan Venkatesh, et al. (2012). Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature, 489, 452–455. Michaela Smolle, et al. (2012). Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nature Structural Molecular Biology, 19, 884–892.
6160 次阅读|0 个评论
paper reading
purifier 2010-9-20 11:28
Aging is characterized by a gradual decline in function over time and , at the molecular lever, by an accumulation of modified and/or damaged molecules. The basic processed underlying the phenomenon of aging are still incompletely understood. Increasing genomic instability and deregulated transcription are features of aging. yeast lacking the histone chaperone Asf1 have a shortened replicative life span. Whereas mRNA levels for histone genes go up with age, protein levels, at least for H3 and H2A, decline dramatically, with a corresponding reduction in chromatin-bound histones. The authors propose two possible explanations.
个人分类: English|3017 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-21 19:03

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部