小柯机器人

长距离抑制同步并最新前额叶任务活动
2023-05-04 11:31

美国加州大学旧金山分校Vikaas S. Sohal等研究人员合作发现,长距离抑制同步并最新前额叶任务活动。该项研究成果于2023年4月26日在线发表者《自然》杂志上。

研究人员描述了一种机制,将表达小清蛋白的神经元、新的胼胝体抑制性连接和任务表征的变化联系起来。虽然非特异性地抑制所有胼胝体投射并不妨碍小鼠学习规则转换或破坏活动模式的演变,但选择性地抑制仅表达小清蛋白神经元的胼胝体投射会损害规则转换的学习,使学习所必需的伽马频率活动失去同步性,并抑制通常伴随着规则转换学习的前额腺活动模式的重组。这种分离揭示了胼胝体小清蛋白表达的投射是如何通过传递伽马同步性和门控其他胼胝体输入维持先前建立的神经表征的能力,从而将前额叶回路的操作模式从维持转为更新。因此,源自表达小清蛋白神经元的胼胝体投射是理解和纠正行为灵活性和伽马同步性缺陷的关键回路位置,这些缺陷与精神分裂症和相关情况有关。

据悉,内侧前额叶皮层内活动模式的变化使啮齿动物、非人类灵长类动物和人类能够更新其行为来适应环境的变化,例如在认知任务中。内侧前额叶皮层中表达抑制性神经元对于在规则转换任务中学习新策略非常重要,但将前额叶网络动态从维持到更新任务相关活动模式的回路相互作用仍然是未知的。

附:英文原文

Title: Long-range inhibition synchronizes and updates prefrontal task activity

Author: Cho, Kathleen K. A., Shi, Jingcheng, Phensy, Aarron J., Turner, Marc L., Sohal, Vikaas S.

Issue&Volume: 2023-04-26

Abstract: Changes in patterns of activity within the medial prefrontal cortex enable rodents, non-human primates and humans to update their behaviour to adapt to changes in the environment—for example, during cognitive tasks1,2,3,4,5. Parvalbumin-expressing inhibitory neurons in the medial prefrontal cortex are important for learning new strategies during a rule-shift task6,7,8, but the circuit interactions that switch prefrontal network dynamics from maintaining to updating task-related patterns of activity remain unknown. Here we describe a mechanism that links parvalbumin-expressing neurons, a new callosal inhibitory connection, and changes in task representations. Whereas nonspecifically inhibiting all callosal projections does not prevent mice from learning rule shifts or disrupt the evolution of activity patterns, selectively inhibiting only callosal projections of parvalbumin-expressing neurons impairs rule-shift learning, desynchronizes the gamma-frequency activity that is necessary for learning8 and suppresses the reorganization of prefrontal activity patterns that normally accompanies rule-shift learning. This dissociation reveals how callosal parvalbumin-expressing projections switch the operating mode of prefrontal circuits from maintenance to updating by transmitting gamma synchrony and gating the ability of other callosal inputs to maintain previously established neural representations. Thus, callosal projections originating from parvalbumin-expressing neurons represent a key circuit locus for understanding and correcting the deficits in behavioural flexibility and gamma synchrony that have been implicated in schizophrenia and related conditions9,10.

DOI: 10.1038/s41586-023-06012-9

Source: https://www.nature.com/articles/s41586-023-06012-9

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0