小柯机器人

科学家总结肿瘤的耐药性及解决方案
2019-11-14 14:43

近日,美国纪念斯隆-凯特琳癌症中心David M. Hyman等研究人员对肿瘤的耐药性以及相应的解决方案进行了总结性回顾。2019年11月13日,《自然》在线发表了这一综述论文。

研究人员表示,癌症对治疗的抗性问题是多方面的。

研究人员采用还原论方法来定义和分离了抗药性的关键决定因素,包括肿瘤负荷和生长动力学;肿瘤异质性;物理障碍;免疫系统和微环境;顽强的癌症驱动力;以及施加治疗压力的许多后果。研究人员提出了四种针对耐药性的通用解决方案,这些方案基于实现癌症阻拦的早期检测;治疗期间的自适应监测; 增加新药和改善药理学原理,从而产生更深层次的反应;并通过高通量合成致死筛选、临床基因组数据整合和计算模型鉴别癌细胞依赖性。这些不同的方法最终可以在任何决策点为不同的肿瘤定制,并用于治疗方案的选择。

附:英文原文

Title: A view on drug resistance in cancer

Author: Neil Vasan, Jos Baselga, David M. Hyman

Issue&Volume: 2019-11-13

Abstract: The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling. These different approaches could eventually be synthesized for each tumour at any decision point and used to inform the choice of therapy. A review of drug resistance in cancer analyses each biological determinant of resistance separately and discusses existing and new therapeutic strategies to combat the problem as a whole.

DOI: 10.1038/s41586-019-1730-1

Source:https://www.nature.com/articles/s41586-019-1730-1

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0