小柯机器人

晶体生长调节剂间的拮抗协同作用
2020-01-19 18:42

美国休斯顿大学Peter G. Vekilov和Jeffrey D. Rimerhe合作揭示了晶体生长调节剂间的拮抗与协同作用。2020年1月15日出版的《自然》在线发表了这项成果。

研究人员探究了成对抑制剂阻止血红素结晶的分子机制,血红素是一种典型的有机化合物,与抵抗疟原虫的生理学有关。使用扫描探针显微镜和分子模拟相结合的方法,研究人员证明抑制剂对利用纽结阻滞或台阶固定机制抑制血红素生长,并表现出协同和拮抗的协同作用,其具体取决于抑制剂的组合和应用的浓度。

如预期一致,两种晶体生长调节剂之间会产生协同作用,但是在目前的晶体生长模型中并未反映出血红素抑制剂的拮抗协同作用。

研究人员发现扭结阻滞剂降低了台阶边缘的线张力,这有利于晶体层的成核和通过栅的台阶传播。结晶改性剂之间协同作用的分子结构为结晶材料合成中改性剂的配比提供了指导。

该研究揭示的机制有助于理解和控制天然和工程系统中结晶的策略,这种结晶发生在复杂的多组分介质中。在更广泛的背景下,该结果突出了晶体界面相互作用和结构介导的晶体-修饰剂相互作用的复杂性。

据悉,自然界和工业界广泛存在的过程利用了多组分环境的结晶。但是,实验室的工作重点放在纯溶质的结晶和单一生长调节剂的作用上。

附:英文原文

Title: Antagonistic cooperativity between crystal growth modifiers

Author: Wenchuan Ma, James F. Lutsko, Jeffrey D. Rimer, Peter G. Vekilov

Issue&Volume: 2020-01-15

Abstract: 

Ubiquitous processes in nature and the industry exploit crystallization from multicomponent environments1,2,3,4,5; however, laboratory efforts have focused on the crystallization of pure solutes6,7 and the effects of single growth modifiers8,9. Here we examine the molecular mechanisms employed by pairs of inhibitors in blocking the crystallization of haematin, which is a model organic compound with relevance to the physiology of malaria parasites10,11. We use a combination of scanning probe microscopy and molecular modelling to demonstrate that inhibitor pairs, whose constituents adopt distinct mechanisms of haematin growth inhibition, kink blocking and step pinning12,13, exhibit both synergistic and antagonistic cooperativity depending on the inhibitor combination and applied concentrations. Synergism between two crystal growth modifiers is expected, but the antagonistic cooperativity of haematin inhibitors is not reflected in current crystal growth models. We demonstrate that kink blockers reduce the line tension of step edges, which facilitates both the nucleation of crystal layers and step propagation through the gates created by step pinners. The molecular viewpoint on cooperativity between crystallization modifiers provides guidance on the pairing of modifiers in the synthesis of crystalline materials. The proposed mechanisms indicate strategies to understand and control crystallization in both natural and engineered systems, which occurs in complex multicomponent media1,2,3,8,9. In a broader context, our results highlight the complexity of crystal–modifier interactions mediated by the structure and dynamics of the crystal interface.

DOI: 10.1038/s41586-019-1918-4

Source: https://www.nature.com/articles/s41586-019-1918-4

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0