小柯机器人

科学家总结细胞外基质粘弹性对细胞行为的影响
2020-08-28 14:06

美国斯坦福大学Vivek B. Shenoy等研究人员合作总结了细胞外基质粘弹性对细胞行为的影响。该综述论文于2020年8月26日在线发表于《自然》。

研究人员表示,在过去的二十年中,大量的研究确定了细胞外基质(ECM)的弹性或刚度会影响细胞的基本过程,包括扩散、生长、增殖、迁移、分化和类器官的形成。线性弹性聚丙烯酰胺水凝胶和涂有ECM蛋白的聚二甲基硅氧烷(PDMS)弹性体被广泛用于评估刚度的作用,这种实验的结果通常被认为可再现体内细胞经历的机械环境的影响。但是,组织和ECM并非线性弹性材料,它们表现出更为复杂的机械行为,包括粘弹性(对载荷或变形的时间依赖性响应)以及机械可塑性和非线性弹性。
 
研究人员回顾了组织和ECM的复杂力学行为,讨论了ECM粘弹性对细胞的影响,并描述了粘弹性生物材料在再生医学中的潜在用途。
 
最近的工作表明,基质粘弹性调节这些相同的基本细胞过程,并且可以促进在二维和三维培养微环境中用弹性水凝胶观察不到的行为。这些发现提供了对细胞-基质相互作用以及这些相互作用如何差异调节细胞中机械敏感分子途径的了解。
 
此外,这些结果为下一代生物材料提出了设计指南,从而使得组织和ECM力学相匹配,以用于体外组织模型及其在再生医学中的应用。
 
附:英文原文

Title: Effects of extracellular matrix viscoelasticity on cellular behaviour

Author: Ovijit Chaudhuri, Justin Cooper-White, Paul A. Janmey, David J. Mooney, Vivek B. Shenoy

Issue&Volume: 2020-08-26

Abstract: Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials—they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell–matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.

DOI: 10.1038/s41586-020-2612-2

Source: https://www.nature.com/articles/s41586-020-2612-2

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0