小柯机器人

果蝇角膜纳米涂层的逆向和正向工程
2020-09-18 13:55

瑞士日内瓦大学Vladimir L. Katanaev团队取得一项新突破。他们的最新研究提出果蝇角膜纳米涂层的逆向和正向工程。这一研究成果发表在2020年9月16日出版的国际学术期刊《自然》上。

他们证明了果蝇角膜上纳米涂层的形态和功能之间的明确联系。他们发现,由单个突起组成的纳米涂层具有更好的抗反射性能,而部分合并的结构则具有更好的抗粘附性能。他们使用生化分析和基因修饰技术对蛋白质视黄素和角膜蜡进行逆向加工,作为纳米结构的基础。

在图灵模式的背景下,这些构建基块分别履行激活剂和抑制剂的作用。然后,他们建立低成本的视黄素生产,并将这种合成蛋白与蜡混合,以对各种具有昆虫样形态、抗粘连或抗反射功能的人造纳米涂层进行前瞻性设计。因此,他们结合的反向工程和正向工程方法提供了一种从可生物降解的材料,经济地生产功能纳米结构涂层的方法。

据了解,昆虫的眼睛具有抗反射涂层,这是由于角膜表面上的纳米结构在空气的折射率与镜片材料的折射率之间形成了折射率梯度。这些纳米涂层还被证明具有抗粘连功能。在节肢动物中,角膜纳米涂层的形态非常多样,其乳头状结构可以组织成阵列或融合成脊状结构。这种多样性可以归因于Alan Turing开发的反应扩散机制和图案化原理,这些原理在许多生物学环境中都有应用。昆虫角膜上的纳米涂层就是这种图灵图案的一个例子,也是纳米级图灵图案的第一个已知例子。

附:英文原文

Title: Reverse and forward engineering of Drosophila corneal nanocoatings

Author: Mikhail Kryuchkov, Oleksii Bilousov, Jannis Lehmann, Manfred Fiebig, Vladimir L. Katanaev

Issue&Volume: 2020-09-16

Abstract: Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material1,2. These nanocoatings have also been shown to provide anti-adhesive functionality3. The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures4. This diversity can be attributed to a reaction–diffusion mechanism4 and patterning principles developed by Alan Turing5, which have applications in numerous biological settings6. The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns4. Here we demonstrate a clear link between the morphology and function of the nanocoatings on Drosophila corneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.

DOI: 10.1038/s41586-020-2707-9

Source: https://www.nature.com/articles/s41586-020-2707-9

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0