小柯机器人

在复杂微生物组中单一细菌属维持根系的生长
2020-10-02 23:30

美国北卡罗莱纳大学教堂山分校Jeffery L. Dangl及其研究小组发现在复杂微生物组中单一细菌属对于维持根系的生长至关重要。该研究于2020年9月30日在线发表于《自然》杂志。

在本研究中,为了了解微生物之间的相互作用如何影响拟南芥根的生长,研究人员建立了植物、微生物与环境之间相互作用的模型系统。研究人员将幼苗接种于含185个细菌的合成群落,并操纵非生物环境以及测量植物的细菌定殖。该模型系统使得研究人员可以将合成群落分为四个模块的共生菌株。研究人员在这些模块的基础上解构了合成群落,并确定了决定根表型微生物之间的相互作用。这些相互作用主要涉及单个细菌属(Variovorax),它完全逆转了由多种细菌菌株以及整个185个成员群落引起的对根系生长的严重抑制。

研究人员证明了Variovorax通过调控植物激素水平来平衡生态上人工合成根系对根系生长的影响。研究确定了生长素降解操纵子,在所有可用的Variovorax基因组中都保守,并且对于逆转根生长抑制是必要和充分的。因此,代谢信号干扰会影响细菌-植物间的通讯网络,并且对于维持根部的发育程序至关重要。优化根系化学相互作用网络为研发具有高抗灾力和高产作物提供了一种潜在的生态策略。

据了解,植物生长在复杂的物种网络中,这些物种之间以及其与植物之间存在相互作用。这些相互作用受各种化学信号的影响,因此,根系化学信号可以强烈影响根的健康和发育。

附:英文原文

Title: A single bacterial genus maintains root growth in a complex microbiome

Author: Omri M. Finkel, Isai Salas-Gonzlez, Gabriel Castrillo, Jonathan M. Conway, Theresa F. Law, Paulo Jos Pereira Lima Teixeira, Ellie D. Wilson, Connor R. Fitzpatrick, Corbin D. Jones, Jeffery L. Dangl

Issue&Volume: 2020-09-30

Abstract: Plants grow within a complex web of species that interact with each other and with the plant1–10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7–9,11–18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria–plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops. Experiments using an ecologically realistic 185-member bacterial synthetic community in the root system of Arabidopsis reveal that Variovorax bacteria can influence plant hormone levels to reverse the inhibitory effect of the community on root growth.

DOI: 10.1038/s41586-020-2778-7

Source: https://www.nature.com/articles/s41586-020-2778-7

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0