小柯机器人

Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly
2022-06-25 14:43

复旦大学赵东元团队报道了通过单分子界面受限组装构建独特的介孔碳超结构。相关研究成果发表在2022年6月22日出版的《美国化学会杂志》。

构建具有独特孔结构、可控形貌、高可及表面积通过单分子界面约束组装构建独特的介孔碳超结构,和诱人功能性的多层三维(3D)细观结构仍然是材料科学的一大挑战。

该文中,研究人员报道了一种单分子界面受限组装方法,首次制备了一种前所未有的三维介孔掺氮碳超结构。在这种层次结构中,中心有一个大洞(~300 nm),中空壳上均匀分布着一层超薄的球形介孔单层(~22 nm)。同时,在每个小球形中孔的内表面上还形成了一个小孔(4.0–4.5 nm),使上部结构能够完全互连。重要的是,这种相互连接的多孔超微粒由于具有丰富的球形介孔,表现出超高的可及表面积(685 m2 g–1)和良好的水下亲气性。此外,可以精确控制球形介孔的数量(70–150)、超微粒的粒径(22和42 nm)和壳层厚度(4.0–26 nm)。

除此之外,还获得了其他涉及三维空心纳米囊泡和二维纳米片的构型。最后,证明了介孔碳超结构是一种先进的电催化材料,其半波电位为0.82 V(vs RHE),相当于商用铂/碳电极,并且具有显著的氧还原反应(ORR)耐久性。

附:英文原文

Title: Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly

Author: Zaiwang Zhao, Linlin Duan, Yujuan Zhao, Lipeng Wang, Junye Zhang, Fanxing Bu, Zhihao Sun, Tengsheng Zhang, Mengli Liu, Hanxing Chen, Yi Yang, Kun Lan, Zirui Lv, Lianhai Zu, Pengfei Zhang, Renchao Che, Yun Tang, Dongliang Chao, Wei Li, Dongyuan Zhao

Issue&Volume: June 22, 2022

Abstract: Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (~300 nm in diameter), and an ultrathin monolayer of spherical mesopores (~22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0–4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g–1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70–150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0–26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).

DOI: 10.1021/jacs.2c03814

Source: https://pubs.acs.org/doi/10.1021/jacs.2c03814

 

分享到:

0