稀土离子实现多模式量子中继及1小时光存储
2022-04-01 17:37

   量子不可克隆定律赋予了量子通信基于物理学原理的安全性,而这一定律也决定了光子传输损耗不能使用传统的放大器来克服,这使得远程量子通信成为当今量子信息科学的核心难题之一。

   量子中继和可移动量子存储是实现远程量子通信的两种可行方案,其共性需求是高性能的量子存储器。在量子中继方面,国际已有实验研究都聚焦于发射型存储器的架构,无法同时满足确定性发光和多模式复用这两个关键技术需求。可移动量子存储方面,国际上光存储的时间最长仅1分钟,无法满足可移动量子存储小时量级存储时间的需求。

   中国科学技术大学郭光灿院士团队李传锋、周宗权研究组基于稀土离子掺杂晶体研制出高性能的固态量子存储器,并在上述两条技术路线上取得了重要进展,实现了一种基于吸收型存储器的多模式量子中继,并成功将光存储时间提升至1小时。相关成果于2021年4月22日和6月2日分别发表于《自然—通讯》和《自然》。

   研究组基于参量下转换技术制备了两套纠缠光源,并基于独创的“三明治”结构制备了两套固态量子存储器。每对纠缠光子中的一个光子被“三明治”型量子存储器所存储,而每对纠缠光子中的另一个光子被同时传输至中间站点进行贝尔态检验。一次成功的贝尔态检验会完成一次成功的纠缠交换操作,使得两个空间分离3.5米的固态量子存储器之间建立起量子纠缠,尽管这两个存储器没有发生任何直接的相互作用。量子中继基本链路的演示实验中实现了4个时间模式的复用,使得纠缠分发的速率提升了4倍,实测的纠缠保真度达到了80.4%。该工作证实了基于吸收型量子存储构建量子中继的可行性,并首次展现了多模式复用在量子中继中的加速作用。

   研究组结合理论预言首次实验测定掺铕硅酸钇晶体在ZEFOZ磁场下的完整能级结构。在此基础上,研究组结合原子频率梳(AFC)量子存储方案以及ZEFOZ技术,成功实现了光信号的长寿命存储。实验中光信号首先被AFC吸收成为铕离子系统的光学激发,接着被转移为自旋激发,经历一系列自旋保护脉冲操作后,最终被读取为光信号,总存储时间长达1小时。■

 

 

《科学新闻》 (科学新闻2022年2月刊 封面)

分享到:

0