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Paramutation is the result of heritable changes in gene
expression that occur upon interaction between alleles.
Whereas Mendelian rules, together with the concept of
genetic transmission via the DNA sequence, can account
for most inheritance in sexually propagating organisms,
paramutation-like phenomena challenge the exclusive-
ness of Mendelian inheritance. Most paramutation-like
phenomena have been observed in plants but there is
increasing evidence for its occurrence in other organ-
isms, including mammals. Our knowledge of the
underlying mechanisms, which might involve RNA
silencing, physical pairing of homologous chromosomal
regions or both, is still limited. Here, we discuss the
characteristics of different paramutation-like inter-
actions in the light of arguments supporting each of
these alternative mechanisms.

Paramutation: history and definition

In 1915, William Bateson and Caroline Pellew reported
the strange behavior of ‘rogue’ (inferior) individuals
among garden pea (Pisum sativum) plants. Plants with
this phenotype always gave rise to other rogue progeny
when crossed with normal-looking plants, whereas the
non-rogue phenotype was permanently lost after being
combined with rogues [1]. It was many years before this
kind of non-Mendelian behavior was reported in other
experimental systems. After extensive genetic analysis of
similar observations in maize involving plant pigmenta-
tion genes in the 1950s, Alexander Brink named the
phenomenon ‘paramutation’ (see Glossary) to reflect both
the similarities and the differences between this phenom-
enon and true genetic modification [2]. Paramutation
resembles a genetic mutation in that it is a heritable
change but differs from it in its high frequency, potential
reversibility and non-random occurrence. Paramutation
does not cause a change in DNA sequence but rather a
change in DNA methylation and chromatin structure, and
is therefore a classical example of an epigenetic modifi-
cation. Paramutation has been observed in several plant
species and recently also in other kingdoms [3,4]. It is now
defined as a trans inactivation between homologous alleles
that leads to a high frequency of heritable changes in the
gene expression of one of the alleles. The changes in
epigenetic state induced by paramutation can also be
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associated with changes in transposition frequency [5],
transposition mechanism [6] or recombination [7]. In
addition, the term paramutation was recently applied to
trans inactivations between non-allelic homologous
sequences [8-10] but, for simplicity, we here use the
term ‘alleles’ for the interacting loci.

Paramutation alleles come in pairs of one ‘paramutable’
allele and one ‘paramutagenic’ allele (Figure 1b). The
paramutagenic allele provokes the change and conveys its
own expression state, whereas the paramutable allele
undergoes the epigenetic change and becomes a para-
mutated allele, in genetic nomenclature often marked
with a prime symbol (for example, R-r'). Once para-
mutated, some (but not all) alleles exhibit secondary
paramutation: they can paramutate naive paramutable
alleles in a subsequent encounter (Figure 1b). A given ‘set’
of paramutable and paramutagenic alleles can consist of
genetically identical pairs [11,12] or of different but homo-
logous alleles [7,8,13]. Alleles that participate in para-
mutation are exceptional: most alleles at a given locus are
neutral to paramutation and are neither paramutable nor
paramutagenic (Figure 1a). Paramutation has become a
biological phenomenon of widespread interest as a result
of the growing number of paramutation-related phenom-
ena recognized in eukaryotes, the links between para-
mutation and other instances of epigenetic gene
regulation, and the potential for paramutagenic alleles
to spread rapidly within populations. In this review, we
provide examples of paramutation-like phenomena, dis-
cuss possible mechanistic models in the light of

Glossary

Epigenetics: stable changes in gene expression or DNA compaction
determined by factors other than DNA sequence (e.g. cytosine methylation
and histone modification). Epigenetic traits can be stably transmitted through
many cell divisions but are potentially reversible.

Paramutation: a trans inactivation between homologous alleles that leads to
reproducible and heritable changes in gene expression at one of the alleles with
a high frequency.

RNA silencing: the post-transcriptional or transcriptional loss of gene
expression induced by RNA-mediated, sequence-specific degradation of RNA
transcripts or modification of homologous DNA.

RNA-directed DNA methylation: sequence-specific methylation of DNA
induced by homologous double-stranded RNA and its derivatives.

trans inactivation: an epigenetic change induced by the presence or
configuration of another sequence at an allelic or ectopic position.
Transcriptional gene silencing: loss of transcriptional activity from a gene —
frequently associated with modification of DNA and histones and formation of
heterochromatin.
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Figure 1. The principle of paramutation. (a) A paramutable, highly expressed allele
(P) maintains the active state when combined with a neutral, non- or weakly
expressed allele (p), with both alleles separating unchanged afterwards. (b) When
combined with a paramutagenic allele (P), the same paramutable allele is
paramutated and expression is reduced. This change in expression is heritable
and the modified allele can now paramutate a newly introduced paramutable allele
(secondary paramutation). The illustrations show the effects of p7 paramutation on
the phenotype of maize kernels (p7 controls kernel pigmentation).

similarities and differences between different paramuta-
tion systems, and describe ongoing efforts to understand
the lasting impressions caused by this genetic encounter.

Paramutation phenomena

Changes in pigmentation are easy to see and usually not
harmful to plants. Therefore, investigations of paramuta-
tion have been based primarily on the behavior of genes
involved in color formation. The maize r1, p1, b1 and pl1
loci [2,9,14,15], the snapdragon nivea locus [5], and the
Petunia an3 [6] and transgenic A1 loci [11] determine the
levels of red and purple plant pigments in various tissues.
The paramutagenic sulfurea locus controls green pigmen-
tation in tomato leaves [16,17]. More recently, loci con-
ferring an indirectly visible phenotype have also become
the subjects of paramutation studies. These are mostly
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transgenic loci and include those encoding B-galactosi-
dase, green fluorescent protein and phosphoribosylan-
thranilate isomerase (PAI), and antibiotic resistance
genes [7,8,18-21]. Paramutation is not a plant-specific
phenomenon — it also affects mice and humans [7,22-25]
(for an extensive list, see Ref. [4]).

Models for paramutation and their basis

The outcome of paramutation — usually transcriptional
gene silencing at the paramutated allele [10,11,21,26—29]
— is similar to that of other epigenetic phenomena and is
therefore expected to involve common epigenetic modifi-
cations. Indeed, analysis of paramutated loci often reveals
the presence of cytosine methylation and other signs of
inactive chromatin [7,9,11-13,19,24,30-32]. On this basis,
two models are currently proposed to explain the various
features of paramutation on a molecular level [4]. The first
model (Figure 2a) posits that paramutation is mediated by
special RNAs derived from the paramutagenic locus that
affect transcription at the paramutable locus in trans.
This mechanism resembles RNA-induced transcriptional
silencing [33-36] and would not require direct physical
contact between the paramutation alleles. In the second
model (Figure 2b), the paramutagenic locus is proposed to
transfer its own transcriptionally inactive state onto the
paramutable counterpart via pairing of homologous
sequences [4,37]. In this model, pairing triggers the
formation of silent chromatin at the previously active
allele. These two models are not mutually exclusive and
neither production of a paramutagenic RNA nor physical
contact would need to occur permanently, provided they
last long enough to trigger the heritable change.

Given the role that both coding and non-coding RNAs
play in epigenetic regulation [34], transcripts are likely to
have some role in paramutation. An RNA signal seems to
be involved in at least two paramutation-like phenomena.
A sequence-specific transmittable silencing factor medi-
ates trans silencing in the fungus Phytophthora infestans,
suggesting RNA involvement [10]. A double-stranded
RNA (dsRNA) derived from the PAII-PAI4 inverted
repeat (IR) locus in Arabidopsis controls trans silencing
of the homologous single-copy PAI loci [38,39]. However,
small RNAs, characteristic of many cases of RNA silenc-
ing, were not found in the PAI system, suggesting that
either dsRNA itself or undetectable levels of small RNAs
serve as the trans-acting signal.

Direct interaction with a target locus appears to play a
role in other silencing phenomena [37,40—43], such as the
transfer of DNA methylation from a methylated to an
unmethylated allele during meiosis in Ascobolus [43].
Polycomb group (PcG) proteins can mediate trans inter-
actions [44,45] and have been shown to be involved in
pairing-dependent silencing and co-suppression in Droso-
phila [46,47]. Methods to analyse long distance physical
cis interactions, such as the 3C method [48], might be
applicable to examine possible ¢rans interactions during
paramutation.

A combination of both models also finds precedents in
other silencing phenomena, such as meiotic silencing
in Neurospora [42] or the silencing of transgenic arrays in
Drosophila and Caenorhabditis elegans [49]. For example,
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Figure 2. Possible mechanisms of paramutation. The specificity of the interaction indicates that a certain degree of nucleotide sequence homology is required. Therefore,
modification of gene expression at the paramutable allele can occur via (a) an RNA signaling mechanism or (b) pairing with the paramutagenic partner. Genomic elements, in
some cases shown to be upstream of the affected genes, could induce (black triangles) or be the target of (white triangles) paramutation. (a) RNA-induced paramutation could
be caused by the formation of double-stranded RNA (dsRNA), produced either by (i) bidirectional transcription or (ii) transcription through regions with inverted repeats. In
both cases, the dsRNA (either directly or after further processing) could modify transcription and chromatin structure at the target sequence. Alternatively, paramutation is
achieved via physical interaction of the two partners resulting in an exchange of chromatin proteins (red circles). In all cases, the previously active gene is transcriptionally
downregulated and inherits this expression state throughout somatic and sexual propagation. The currently known paramutation systems provide arguments for both

mechanisms; the two models are not mutually exclusive.

RNA binding by a specific PcG protein of C. elegans is
essential for its localization and function [50]. Similarities
and differences between the various paramutation sys-
tems indicate that the mechanisms underlying these
phenomena might contain elements of both models to
different degrees.

Secondary paramutation

Once paramutated, paramutable alleles can become
paramutagenic. This ability is called secondary para-
mutation. Most paramutable alleles show efficient second-
ary paramutation [1,11,15,28], whereas, for others,
secondary paramutation was not analysed, has not been
reported or does not occur. In the cases where secondary
paramutation [19,24,27] has not been found this might be
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because the paramutable loci, although possessing
sequence homology, have a different sequence organiz-
ation than the corresponding paramutagenic locus and
therefore lack the features required to become paramuta-
genic (see below).

Stability of the epigenetic state and dosage-dependent
paramutation

Paramutable and paramutagenic alleles are usually
stable [9,14,17,21,51]. However, some paramutable and
paramutagenic alleles can spontaneously change to the
other state, for example, ‘ear rogue’, b1, Al, pll and
Spr12F-spt [1,11,14,15,18], and pl1 [15], respectively. In
addition, some paramutation alleles (sulf, A1, pl1 and p1)
also show intermediate epigenetic states [9,11,15-17]. The
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stability of paramutation alleles can depend on the nature
and presence of the homologous allele. For example, the
paramutable r1, b1, pl1 and Spr12F-spt alleles show more
spontaneous paramutation in a homozygous situation
than when heterozygous with a neutral allele or hemi-
zygous with a deletion allele [15,18,52—55]. This increase
in frequency of spontaneous paramutation is greater than
twofold and therefore not caused merely by the dosage of
the paramutable alleles. In the other direction, the
paramutagenic Pl' state frequently reverts to a less
paramutagenic Pl state when heterozygous with a neutral
allele or hemizygous with a deletion. Remarkably, this
reversion is only heritable in the presence of the neutral
allele, suggesting that allelic pairing might be involved in
fixing the epigenetic state [53].

The frequency of ¢rans inactivation can be influenced
by the ploidy level [21]. Trans inactivation of an active
hygromycin phosphotransferase allele (HPT) by its
silenced counterpart was observed in tetraploid but not
in diploid plants, and was observed only in progeny
resulting from self-fertilization of plants heterozygous for
the active and inactive HPT allele. Small RNAs could not
be detected in the affected plants (O. Mittelsten Scheid,
unpublished). Polyploids endure a more demanding sort-
ing and pairing of the multiple homologous chromosomes
during meiosis [56,57]. Given that HPT paramutation
occurs only in tetraploid plants and seems to require that
active and inactive alleles go through meiosis together, a
pairing-based trans inactivation seems most likely in this
case. If RNA was involved in HPT trans inactivation, one
would expect paramutation already to have occurred in
the F1 generation. Polyploidy has also been shown to
affect paramutagenicity of the sulfurea locus in tetraploid
tomato plants [16].

Repeated sequences

Repeated sequences are involved in several paramuta-
tion phenomena [6,9,12,13,18,19,58], although not in
all [7,8,11,23,29]. Multicopy genes or repetitive inter-
genic regions are a major trigger for the formation of
silenced chromatin [59-62]. Repeated sequences,
whether inverted or direct, can give rise to the pro-
duction of dsRNA, an important trigger for RNA
silencing as well as heterochromatin formation [34,63].
However, repetitive sequences are also able to associate
physically with their homologs in non-meiotic cells [64,65]
(A. Pecinka et al., unpublished). Furthermore, in yeast,
inverted repeats create hotspots for mitotic interchromo-
somal recombination with homologous single copy
sequences [66]. In either case, differences in stability of
the paramutable and paramutagenic states might be
caused by the different sizes and numbers of repeats
involved.

Directly repeated sequences are required for the para-
mutagenic r1 alleles and for paramutation of 61, spt and p1
[9,12,13,18,58]. They are also present in two other examples
of paramutation, although their role in ¢rans inactivation has
not yet been investigated [21,22]. A few cases of paramuta-
tion-related interactions involve IRs. All paramutable rI
alleles contain an IR [13]; two transposons in an inverted
orientation in the an3 gene result in a paramutation-like
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change in transposition mechanism [6]. Remarkably, repeats
located 100 kb upstream of the 51 transcription start are
required not only for paramutation but also for the high
expression levels displayed by the paramutable b1 allele.
Similarly, the repeated sequences required for pI paramuta-
tion contain enhancer activity [9,12].

However, single copy sequences are also competent, in
several cases, to induce paramutation [7,8,11,23,29].
Transcription of single copy sequences in both sense and
antisense directions could give rise to dsRNA. Alterna-
tively, inactivated single copy chromatin regions might
produce a low level of improperly processed or prema-
turely terminated transcripts that can act as templates for
RNA-dependent RNA polymerase to produce dsRNAs [67].
Pairing appears to be less efficient for single copy
sequences than for repetitive regions (A. Pecinka et al.,
unpublished); however, single copy sequences might be
tethered together through specific protein binding sites.
Single copy Polycomb responsive elements (PREs), for
instance, appear to be sufficient for PcG-dependent ¢rans
inactivation [47].

Chromatin and DNA modifications

Silent genes and heterochromatin are characterized by
specific chromatin structures, histone modifications
and DNA methylation [60,67]. Similarly, in several
paramutation systems, a positive correlation is observed
between paramutagenicity and DNA hypermethylation
[7,9,11-13,19,24,25,32]. However, the presence of DNA
methylation alone is not sufficient for paramutation to
occur because hypermethylated, inactivated SUPERMAN
alleles in Arabidopsis are clearly recessive and do not
exert trans inactivation [68]. In some cases, the change in
DNA methylation appears to be a late event in the
paramutation process [12,21], suggesting that chromatin-
based silencing mechanisms act upstream of DNA methyl-
ation. Furthermore, there are cases of paramutation with
no obvious correlation to DNA methylation [10,18].
Nevertheless, DNA methylation could be important for
the maintenance or reinforcement of the paramutated
state. Therefore, it might not be coincidental that para-
mutation has not yet been described in organisms such as
Drosophila, C. elegans, Schizosaccharomyces pombe and
Saccharomyces cerevisiae, which lack extensive DNA
methylation. Additional chromatin parameters of para-
mutation alleles, such as histone modifications, have not
yet been sufficiently well analysed to allow comparison
with other silencing phenomena. The only indication that
paramutation involves a modification in chromatin struc-
ture comes from the decreased nuclease sensitivity at the
paramutagenic b1 and A1 loci compared with that at their
highly transcribed paramutable counterparts [12,31,69].
These differences in nuclease accessibility were confined
mostly to regions also displaying differences in DNA
methylation [12,70].

Mutations affecting paramutation

Plants are well suited to easy, forward-directed screens to
find new components that interfere with epigenetic
regulation, as well as to reverse approaches to deter-
mine the role of previously identified components. The
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application of both approaches is therefore expected to
reveal whether paramutation is mechanistically similar
to, or distinct from, other epigenetic phenomena.

Maize

Several mutations affecting paramutation have been
isolated from maize, including mopI1-1 (mediator of para-
mutation 1-1) [71] and rmrl and rmr2 (required for
maintenance of repression 1 and 2) [72]. The effects of
these mutations on the various maize paramutation
systems differ, suggesting mechanistic differences
between the systems. The mopI-1 mutation interferes
with establishing paramutation in the b1, plI and ri1
system [71]. Furthermore, mop1-1 elevates the transcript
levels of the B’ and P!’ paramutagenic alleles but not that
of a paramutated r1 allele (J. Kermicle and V. Chandler,
personal communication). The rmrl mutation raises B’
and P!’ transcript levels, although the increase in the B’
transcript level is not as dramatic as in a mop1-1 mutant
background [72] (C. Belele, M. Stam and V.L. Chandler,
unpublished). The Pl’ transcript level is also increased by
rmr2. Affects of rmr2 on b1 and r1 paramutation have not
yet been reported.

The paramutagenic pl1 state can heritably revert to a
paramutable state when present in a mopI-1, rmrl or
rmr2 mutant background, although it requires multiple
generations in the case of mop1-1. The paramutagenic b1
and r1 states are affected only transiently in a mopl-1
mutant background. After outcrossing the mopI-1 muta-
tion, b1 and rI alleles immediately regain their para-
mutagenic state [71]. These data are in line with the
observations that the epigenetic states of plI are less
stable than those of b1 and r1.

In a homozygous mopl-1, rmrl and rmr2 mutant
background, Mutator (Mu) transposons have lower levels
of DNA methylation [73] (D. Lisch and J. Hollick, personal
communication). Furthermore, previously silenced Mu
elements become somatically active after multiple gener-
ations of exposure to the mopI-1 mutation. Therefore,
paramutation and transposon regulation seem to share
mechanistic features, although the kinetics, sensitivity
and composition of the regulatory complexes can differ.
Unlike in ddml mutants (one of the most dramatic
Arabidopsis gene silencing mutants [74]), general DNA
methylation levels at ribosomal and centromeric repeats
do not change in mop1-1 mutants. The mop1-1 mutation
results in pleiotropic developmental effects but the rmrI
and rmr2 mutations do not, suggesting that MOP1 has a
more general role than RMR1 and RMR2 [71,72].

Genetic mapping experiments indicate that mop1-1 is
not a homolog of any of the well-known Arabidopsis
mutations affecting gene silencing [4]. Because the mop1,
rmrl and rmr2 genes have not yet been identified, they
cannot at present contribute to the refinement of para-
mutation models.

Arabidopsis

Mutations affecting classical paramutation systems in
organisms other than maize have not been described; the
involvement of existing mutations in paramutation-like
interactions in the model plant Arabidopsis is currently
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under investigation. Two mutations have been tested for
their effects on the maintenance of silencing of the silent
HPT locus in diploid plants [21]. A mutation of MOM1, a
nuclear protein with an incomplete SWI2/SNF2-like
ATPase helicase motif, releases transcriptional gene silenc-
ing from repetitive target loci without affecting their DNA
methylation status [75]. The moml mutation does not
reactivate the inactivated HPT locus, which is paramuta-
genic in tetraploid plants [21], suggesting that the HPT
locus is silenced by a different mechanism. A mutation in
the DDM1 gene that codes for a SWI2/SNF2-like chroma-
tin remodeling factor [76] affects CpG and non-CpG DNA
methylation and reactivates several repetitive targets and
(to a lesser extent) single copy sequences [77]. A strong
ddm1 mutant allele has been shown to release silencing of
the paramutagenic HPT locus; this release of silencing
was partial and occurred only after multiple generations
in a homozygous ddm1 background [21].

The trans inactivation of single copy PAI loci by DNA
methylation is dependent on transcription of the PAI IR.
This resembles RNA-directed DNA methylation (RdDM),
during which promoters are turned off and their DNA is
methylated by a homologous dsRNA trigger [33,35,36].
The effect on PAI trans inactivation of mutations in MET1
(a CpG maintenance methyltransferase) and DDM1, both
of which affect RADM [33], was tested. After multiple
generations in a ddml or metl mutant, the DNA
methylation level at the paramutable single copy loci
was reduced, whereas that of the paramutagenic, tran-
scribed IR was significantly reduced only in a metl
mutant [78]. This indicates that, as in the case of another
RdDM-mediating IR-silencing locus [33], maintenance
methylation of the PAI IR is DDM1 independent. Two
other genes required for RADM can be tested for their
effect on PAI trans inactivation: HDAG6, encoding a
putative histone deacetylase [79,80], and DRD1, encoding
a plant-specific putative SNF2-like chromatin-remodeling
factor [81]. Mutations in HDAG6 affect histone acetylation
and, to a lesser extent, CpG and C(N)G methylation levels
at particular repetitive sequences, whereas drd1 mutants
lack non-CpG methylation at RADM targets.

A forward mutant screen using the PAI system has
identified two additional genes, CMT3 and KYP/SUVH4.
CMTS3 is a chromomethylase required for maintenance of
non-CpG methylation in general and at the single copy
and IR PAI loci [68,82]. KYP/SUVH4, a SET domain
protein with histone H3Lys9 methyltransferase activity,
affects the maintenance of DNA methylation indirectly,
mainly in a non-CpG context [83—85]. It might act
downstream of CpG methylation by reinforcing chromatin
silencing [86]. Maintenance of DNA methylation at the
single copy PAI genes requires H3K9 histone methylation,
whereas maintenance methylation of the PAI IR and
IR-induced de novo methylation of single copy PAI genes
are independent of H3K9 histone methylation. Although
there is good evidence that PAI ¢rans inactivation is
dependent on a specific dsRNA, various mutations in
genes involved in the production and amplification of
dsRNAs did not affect maintenance methylation of any of
the PAI loci [38]. This indicates that the PAI IR-derived
dsRNA itself is capable of triggering ¢rans inactivation,
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either directly or via the production of transiently
expressed or undetectable levels of small RNAs.

Outlook

All cases of paramutation share the feature that allelic or
ectopic interaction results in heritable epigenetic changes
at one of the partners involved, but they also have
additional distinct properties. The mechanisms under-
lying the ¢rans inactivations are not known in any of the
classical examples of paramutation. To reveal these
mechanisms and the extent to which they overlap with
those of other epigenetic phenomena, it will be crucial to
clone the genes involved and to provide a detailed
molecular and biochemical characterization of their gene
products. The isolation of mutants in plants is relatively
easy and has proved to be beneficial. Because current
screens are not likely to be saturated, they should be
continued. The complexity and diversity of epigenetic
regulation indicates that analysis of any single experi-
mental system will provide incomplete answers. There-
fore, it is important that screens are performed in a range
of systems and that mutations are thoroughly character-
ized for effects beyond those queried in the screens. This
should include analysis of their effects on genome-wide
expression levels using cDNA and genomic microarrays,
and the application of recently developed techniques to
analyse sequence-specific chromatin features and global
chromatin organization. To determine whether the vari-
ous mutations act in the same pathway, double mutants
should be examined for epistasis or synergism between the
genetic factors. In addition, it will be important to test the
role of the maize orthologs of the Arabidopsis genes
involved in transcriptional and post-transcriptional
silencing for their role in classical paramutation systems.
The requirement for repeated sequences at several
paramutation alleles indicates that it could be rewarding
to explore other structural distinctions, genomic localiz-
ation or spatial arrangements.

The existence of only a few well-documented cases of
paramutation makes it appear to be an exotic rather than
a general epigenetic regulatory mechanism. This is largely
because the examples analysed have been limited to easily
detectable visible phenotypes. If paramutation is indeed
more common than was previously assumed, transcrip-
tome and proteome analyses of parents and their offspring
should provide a wealth of new examples.

Does paramutation exist incidentally or does it have
biological functions and evolutionary implications? For a
more elaborate discussion, see Refs [4,69]. Paramutation
might be part of the defense system against invasion by
foreign DNA. It might also be involved in creating a
balance between different chromosomes upon polyploid-
ization and hybrid formation. Last, but not least, the
existence of different epigenetic states of an allele might
enable organisms to adapt relatively easily and in a
heritable but reversible manner to changes in the
environment. The rate of genetic mutations is too low to
allow quick adaptation of gene expression levels. What-
ever its function, the recent discovery of related phenom-
ena beyond the plant world shows that the mechanisms
underlying paramutation are conserved throughout all
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kingdoms. Paramutation might therefore have more
widespread implications than previously anticipated.
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