
Transposable elements and the plant pan-genomes
Michele Morgante1,2, Emanuele De Paoli1 and Slobodanka Radovic1
The comparative sequencing of several grass genomes has

revealed that transposable elements are largely responsible for

extensive variation in both intergenic and local genic content,

not only between closely related species but also among

individuals within a species. These observations indicate that a

single genome sequence might not reflect the entire genomic

complement of a species, and prompted us to introduce the

concept of the plant pan-genome, which includes core

genomic features that are common to all individuals and a

dispensable genome composed of partially shared and/or non-

shared DNA sequence elements. Uncovering the intriguing

nature of the dispensable genome, namely its composition,

origin and function, represents a step forward towards an

understanding of the processes that generate genetic diversity

and phenotypic variation. The developing view of

transcriptional regulation as a complex and modular system, in

which long-range interactions and the involvement of

transposable elements are frequently observed, lends support

to the possibility of an important functional role for the

dispensable genome and could make it less dispensable than

previously thought.
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Introduction
With the advent of high-throughput re-sequencing tech-

nologies that are based either on chip hybridization [1] or

on sequencing by synthesis (SBS) [2,3], we have entered an

exciting era in which we can finally learn what differences

are found among individuals within a species at the DNA

sequence level. Recent data obtained from different plant

species have shown us how plastic, dynamic and variable

plant genomes are. Transposable element movement is

largely responsible for variation both in intergenic region

sequence content and in local genic content. Both class I

(long terminal repeat [LTR]-retrotransposons) and class II
www.sciencedirect.com
(DNA transposons of different superfamilies) transposons

contribute to sometimes dramatic differences in local

sequence content among individuals belonging to the same

species. A comparison of four randomly chosen genomic

regions between the maize inbred lines B73 and Mo17

revealed that, on average, only 50% of the sequences are

shared. Approximately 25% of the sequences were

observed in a homologous location in one of the inbred

lines but not in the other [4]. Similar, but less dramatic,

differences have been observed in rice [5] and barley [6].

These observations have prompted us to borrow the con-

cept of the pan-genome, which has been proposed for

bacterial species [7�], to describe the developing view of

genomic variation within plant species. In this review, we

use maize as an example to describe the contribution of

transposable elements to the creation of the pan-genome,

and discuss the implications of pan-genome structure for

our understanding of the genetic bases of phenotypic

variation.

The pan-genome concept: a core and a
dispensable genome
The comparison of the genomic sequences of eight strains

of the bacterial species Streptococcus agalactiae [7�] revealed

that a bacterial species can be best described by its ‘pan-

genome’ (from the Greek word pan, meaning whole). The

pan-genome includes a core genome containing genes that

are present in all strains and a dispensable genome com-

posed of partially shared and strain-specific DNA sequence

elements. Unique genes were detected in each of the

eight sequenced genomes, and mathematical modelling

indicates that new genes will still be found after sequen-

cing many more strains. Thus, the genomes of multiple,

independent isolates are required to understand the global

complexity of bacterial species. We propose that the same

concept of the pan-genome be used to describe the gen-

ome of plant species such as maize. In the two previously

mentioned inbred lines, taking the estimates from the

cited paper [4], the pan genome (Figure 1) would comprise

a core genome representing the 50% of the genome that is

shared between the two lines (corresponding to a size of

1.67 Gb, if we assume an approximate total genome size for

each of the lines of 2.50 Gb) and a dispensable genome of

the same total size that is equally distributed among the

two lines. The core genome comprises both single-copy

sequences (including most if not all genes) and transpo-

sable elements that are found among all individuals in a

certain genomic location. The dispensable genome is made

up mostly of transposable elements of different types that,

although present in multiple copies in each individual, can

be found in a specific location only in some of them. A

gene-like fraction can also be found in the dispensable
Current Opinion in Plant Biology 2007, 10:149–155

mailto:michele.morgante@uniud.it
http://dx.doi.org/10.1016/j.pbi.2007.02.001


150 Genome studies and molecular genetics

Figure 1

A pan-genome view of the maize genome as defined by comparison

of sequenced genomic regions in the B73 and Mo17 inbred lines.

The relative and absolute sizes of the core and the dispensable

genome are obtained from data provided in [4]. The results of an

experiment in which the dispensable genome is selectively deleted

are shown on the right. The different colours used for the genomes of

the two lines indicate that while the structure of the core genome is

the same for the two lines, allelic variations that are due to point

mutations (i.e. single nucleotide polymorphisms [SNPs]) can still be

observed.
maize genome. If the core genome is what we normally

think of as a genome of a species, what remains to be

determined is the role of the dispensable maize genome,

namely its composition, origin and functional role.

The dispensable genome: origin and
composition
The comparison described above of four orthologous

genomic regions between two US maize inbred lines,

representing a heterotic pattern used in agriculture,

showed that approximately 50% of the sequences are

not shared between the two lines [4]. Similarly, sequence

diversity ranged from 25% to 84% in a horizontal com-

parison of the bronze (bz) genomic region among eight

maize cultivars, with the physical size of the region

varying between 52 and 159 kb [8��]. In both studies,

the differences in intergenic regions were accounted for

by the transposition of several different families of retro-

elements. These retroelements are present in specific

inbred lines, and have been inserted significantly more

recently than the shared retroelements. Discrepancies in

gene content resulted from insertions of complete or

truncated genes that, unlike the shared genes, could

not be found in the orthologous rice regions, suggesting

their absence from the ancestral genome [4]. Similar

observations have been made in barley in an approxi-

mately 300 kb region surrounding the Rph7 leaf rust

disease resistance locus, which was sequenced from

two different cultivars [6]. Furthermore, two rice sub-

species, japonica and indica, presented extensive differ-

ences in intergenic regions, with only 72% of the

sequences being collinear [5]. These and other results
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have paved the way to a new scenario of genome

plasticity, in which genomic regions of common ancestry

appear to have evolved very recently into a mosaic of

syntenic blocks that have independently diverged

between grass species [9�]. Different blocks have under-

gone specific processes of expansion and contraction in

both genic and intergenic space, owing to differential

insertions of repetitive elements and episodes of gene

mobilization, which sometimes resulted in deep allelic

differences even at the intraspecific level. Interestingly,

the transposable element (TE) insertion polymorphisms

observed by means of transposon display between two

ecotypes of Lotus japonicus suggest that exceptions to

microcolinearity also occur in dicotyledons [10].

What is evident is that the large amount of genomic

variation in grasses and the occurrence of non-shared

(‘dispensable’) genomic features can be ascribed to the

very young age of their extant repetitive component.

LTR-retrotransposons have undergone independent

amplification in distinct lineages within single plant gen-

era, i.e. at the species level, over shorter periods of time

than previously supposed. In maize, the dating of retro-

transposon insertions revealed that the majority of events

have taken place within the past 400 000 years [4]. It is

likely that there has not been enough time for many of the

new insertions to be either eliminated from or fixed in the

gene pool, either through genetic drift or through selection,

so that they appear today as intraspecific polymorphisms.

Episodes of recent (within the past million years) and

lineage-specific amplification of LTR-retrotransposon

have also occurred in the rice genus, leading to one case

of genomic obesity in Oryza australiensis [11�]. In addition,

the 130-kb intergenic region that is flanked by the leaf rust

disease resistance gene Lr10 and a second resistance gene

analog (RGA2) diverged by more than 70% between

diploid and tetraploid wheat, in part because of transposi-

tion activity that has occurred during the past two million

years [12]. Latest data from cotton [13�] and the legume

species Vicia pannonica [14], Lotus japonicus [10] and

Medicago truncatula [15] show that this feature is widely

recurrent outside of the grass family.

Recent TE mobilization also accounts for the intraspe-

cific differences in gene content reported in maize and

barley. One mechanism is based on the insertional

activity of helitrons, a class of DNA transposons, which

appear to move by a copy-and-paste strategy that involves

rolling-circle replication [16]. In maize, non-autonomous

helitrons acquire and carry fragments of genes from differ-

ent locations in the host genome through a duplicative

mechanism, referred to as ‘transduplication’, which pre-

serves the exon–intron structure of the gene fragments

that are involved [17–20].

Transduplication capability is observed in other class II

DNA transposon families. Mutator-like elements, namely
www.sciencedirect.com
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Pack-MULEs in rice [21,22], Arabidopsis [23��] and lotus

[10] and the newly identified TA-flanked transposons

(TAFTs) in maize [8��], appear to capture and transport

host DNA fragments. The presence of an non-autonomous

element of the CACTA superfamily that carries gene

fragments in soybean [24] extends this ability to three

different DNA transposon superfamilies, and new ones

might be uncovered with further sequencing. Last, a

different mechanism of gene mobility is mediated by

retrotransposons. Here, a peculiar replication strategy,

involving an RNA intermediate, is supposed to facilitate

the fortuitous reverse-transcription of spliced host

mRNAs and their insertion (retroposition) into new

genomic positions to form intron-less retrogenes, some

of which might be functional [25]. Retroposition is

responsible for the generation of large numbers of

retrogenes in rice [26] and has also been observed in

Arabidopsis, in which 69 retrosequences have been ident-

ified [27]. Unexpectedly, intact genes, probably transferred

by a not-yet-elucidated cut-and-paste mechanism, have

also been found within LTR-retrotransposons in maize

[28], confirming the unpredicted wealth of processes by

which TE can mediate extensive sequence rearrange-

ments and yield diversification of genomes.

Is the dispensable genome really
dispensable?
The inevitable question of whether the dispensable

genome contributes to phenotypic variation emerges when

its significant size and its composition are taken into

consideration. The best experimental approach to answer-

ing this question would be to remove the dispensable

genome fraction from each of the two maize lines that

we have previously used to describe the pan-genome

concept, leaving them with just their core genomes

(Figure 1; see [29] for a small-scale but elegant example

of such an experiment in mouse). At this point, we could

use the DNA-stripped-down lines to test if the dispensable

genome is important in determining phenotype, that is,

whether each of the two lines look like their genome-obese

counterparts. We could also test if the dispensable genome

is important in determining phenotypic variation among

maize lines, that is, if the two lines look more similar or

more different than before the DNA reduction. In reality,

such a large-scale DNA deletion experiment is not feasible,

and so we must resort to circumstantial evidence to try to

address the role of the dispensable genome in determining

phenotypic variation. For decades, repetitive elements

have been referred to as ‘selfish’ or even ‘junk’ DNA that

expands by cloning itself in the host genome, contributing

to the phenotype merely by insertional mutagenesis. Just

recently, these simplistic and self-centred concepts of the

major component of eukaryotic genomes have been recon-

sidered. We have begun to recognize repetitive elements

as natural molecular tools that have shaped the organiz-

ation, structure, and function of genes and genomes

throughout their evolution [30].
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The latest findings in flowering plants have shown that

transposable elements recurrently duplicate and move

cellular gene sequences from one location to another

through either transduplication or retroposition. One

could hypothesize that the movement of genes into a

different chromosomal context could lead to a novel

regulation of an existing gene and/or provide redundancy

of a crucial function. What is more, through ‘exon shuf-

fling’ whereby fragments of genes are fused together,

transduplication and retroposition provide a potentially

rich mechanism for the evolution of new genes. Indeed,

thousands of duplicated fragments appear to be a part of

the transcriptome. This, however, does not necessarily

indicate imminent functionality of these fragments. Clo-

ser inspection of the fragments carried by Pack-MULES

and helitrons revealed that the vast majority represent

pseudogenes. Still, there are rare but potentially import-

ant examples demonstrating that transduplicates can

retain protein-coding capacity and evolve novel func-

tions. For example, the Arabidopsis KAONASHI (KI)

family of MULEs carry an apparently functional ubiqui-

tin-like protein–specific protease (ULP)-like gene [23��]
and a maize non-autonomous helitron contains an intact

gene coding for a putative cytidine deaminase [20]. In the

light of these discoveries, it might be more relevant to

investigate whether transduplicates contribute to pheno-

typic variation by generating small interfering RNAs,

which might participate in RNA-mediated silencing of

the host genes from which the fragments were duplicated,

and which therefore potentially represent trans-acting

regulatory factors [31]. LTR-mediated retroposition

seems to make a greater contribution than transduplica-

tion to the evolution of new protein functions. A survey of

the rice genome identified 1235 primary retrogenes [26],

which for the most part were not only functional but also

have recruited nearby exons and regulatory sequences

and have reincarnated into a novel chimeric genes.

Cellular genes that are nested in LTR-retrotransposons

can show expression patterns that differ from those of

their non-nested paralogs, implying that they have dis-

tinct roles and distinct regulation [28]. It is not known

whether this difference in expression is based on the

regulatory elements of the retrotransposon that flanks the

gene. However, an increasing body of evidence, especi-

ally from mammals [32–35] and Drosophila [36�], suggests

that TEs that are located in or near genes could affect

their expression by providing transcriptional regulatory

signals and through epigenetic silencing [37]. In view of

these findings, it is interesting to note that maize, which

harbours an extraordinary level of polymorphism in

intergenic regions due to recent insertions of different

LTR-retrotransposons, shows a widespread variation in

allelic-expression owing to cis-regulatory effects ([38,39];

Figure 2). The intriguing connection between these two

observations is strengthened by well-studied cases of

phenotypic variation: variation at the teosinte branched1
Current Opinion in Plant Biology 2007, 10:149–155
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Figure 2

Coding variation versus cis-regulatory variation. The effects of different types of mutations (yellow lines/boxes) in a specific gene (green box)

at the transcript and protein level. For cis-regulatory variation, we depict the very different types and extents of intergenic sequence variations

that are commonly observed in species where cis-regulatory variation has been analysed (humans and mouse on one side, maize on the other).
(tb1) [40��] and yellow1 (y1) [41] loci in maize has been

attributed to intergenic polymorphisms that could be

transposon indel polymorphisms rather than simple single

nucleotide changes in specific regulatory elements. Ret-

rotransposon methylation in rice [42] and Arabidopsis
[43,44] has been found to modulate the activity of neigh-

bouring genes, supporting another mechanism by which

polymorphic retrotransposon insertions can affect cis-
regulatory variation. Finally, a clear example of the phe-

notypic effects that can result from LTR-retrotransposon

insertion, as well as from partial excision by intra-element
Figure 3

Model for the generation of variability in berry colour in grapevine (Vitis vinif

anthocyanin biosynthetic genes, and its transcriptional activity is required to

movement of an LTR-retrotransposon of the Gret1 family (belonging to the

the creation of new phenotypes [46].
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unequal recombination [45], is provided by mutational

events in the VvmybA1 gene in grape [46], which regulates

the activity of the anthocyanin biosynthetic pathway that

leads to berry pigmentation (Figure 3).

Until recently, it had been thought that plant TEs are

dormant under normal conditions and become activated

by genetic and environmental cues that potentially result

in somaclonal variation. Discovery of effective transposi-

tion of the rice hAT superfamily transposon under natural

growth conditions [47] tempts us to speculate that, in fact,
era). The transcription factor gene VvmybA1 regulates the

have anthocyanin production in the berry. We show here how the

Gypsy group) affects the transcription of VvmybA1, determining

www.sciencedirect.com
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at least some of the genomic changes necessary for the

uniqueness of individuals within a population might be

driven by the activities of mobile elements.

Conclusions
Recent observations on DNA sequence variation in the

maize genome imply that a complete description of the

genomic structural variants and composition of the

species can only be obtained by analysing more than

one individual, and that we can apply the concept of

the pan-genome, composed of a core and a dispensable

genome. In maize, the dispensable genome is composed

of sequences, i.e. TEs, that can have similar copies else-

where in the genome but that are unique in their location

and genomic context. How many different individuals

will have to be sequenced before the pan-genome is

completely described remains to be seen. Analysis of

the bz region in eight maize lines [8��] reveals that

although the core genome does not decrease dramatically

in comparison to that defined by a pairwise comparison,

for example, between the B73 and Mo17 inbred lines, the

size of the dispensable genome increases as each one of

the lines is added to the picture. Each line shows unique

insertions of different sequence elements in their inter-

genic regions. The contribution of the dispensable gen-

ome to phenotypic variation within a species is still to be

determined and is, of course, mainly dependent upon the

possibility that different types of transposons contribute

to the regulation of the neighbouring genes. In both

animals and plants, the developing view of transcriptional

regulation as a complex and modular system [48], in

which long-range interactions are frequently observed

[40��] and where transposable elements frequently pro-

vide regulatory elements [49,50], lends support to the

possibility of an important functional role for the dispen-

sable genome, and might make it less dispensable than

previously thought. The creation of novel regulatory

variants in plants by the movement of TEs is well

demonstrated, for example, in determining berry colour

in grape (Figure 3; [46]). The somatic mutations that give

rise to red berries from white berry plants also provide an

example of how TE movement can be responsible for the

frequent creation of de novo mutations, which are then

utilized in the breeding process, thus defining an import-

ant role for the pan-genome concept in applied science.

How likely we are to identify a model of genome variation

similar to that observed in maize, i.e. a pan-genome model,

in other plant species will depend upon different factors.

Species that have larger genomes have a higher density of

TEs and are therefore more likely to show variation that is

due to their movement. The recent transpositional activity

of the elements is also a very important factor: the obser-

vation that, in most angiosperms analysed to date, TEs

have moved in very recent evolutionary times or are still

moving encourages us to think that they might contribute

to extant intraspecific sequence variation. Finally, the
www.sciencedirect.com
mating system of the species could have an influence:

outcrossing species usually have larger effective popu-

lation sizes than selfing species, and therefore new TE

insertions will have greater persistence in a polymorphic

state, i.e. longer periods before they are either lost or fixed

due to genetic drift, in large outcrossing populations than in

selfing populations.
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