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 This is a Response to a recent Comment [F.Y. Wu et al., Phil. Mag. 88, 3093 

(2008), also arXiv:0811.3876] on the conjectured solution of the three-dimensional 

(3D) Ising model [Z.D. Zhang, Phil. Mag. 87, 5309 (2007)]. Several points are made: 

1) Conjecture 1, regarding the additional rotation, is understood as performing a 

transformation for smoothing all the crossings of the knots; 2) The weight factors in 

Conjecture 2 are interpreted as a novel topologic phase; 3) The conjectured solution 

and its low- and high-temperature expansions are supported by the mathematical 

theorems for the analytical behavior of the Ising model. The physics behind the extra 

dimension is also discussed briefly. 
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  In the preceding paper, Wu et al. [1] comment on the conjectured solution of the 

three-dimensional (3D) Ising model presented in [2]. The comments that Wu et al 

make regarding the presentation (length, usage of some words, placement in 

Appendix) will not be replied to here. Their comments concerning content concentrate 

on the low- and high-temperature expansions given in [2] and on the different choices 

of the weight functions wy and wz. The latter problem needs clarification; the first two 

objections have been anticipated and are rejected in [2]. Although it is not necessary 

to repeat here what is already in the original paper, I shall underline several issues 

with new ideas. 

 First of all, as is clear from the references quoted in [2], I do not contest the 

statement that the Ising model has been well-studied for over 80 years, mainly in great 

contributions of many distinguished scientists, including the authors of [1]. However, 

present knowledge cannot serve as a standard for judging the conjectured solution, 

because the 3D case is not yet fully understood. There are two “dark clouds”: 1) the 

divergence of the so-called “exact” low-temperature expansions and the existence of 

an unphysical singularity; 2) the possibility of the occurrence of a phase transition at 

infinite temperature (T = ∞, β = 1/(kBT) = 0) according to the Yang–Lee theorems [3].  B

 It is regrettable that the objections of the authors of [1] are limited to the 

outcome of the calculations and that they did not comment on the topology-based 

approach underlying the derivation. The putative solution was deduced using (among 

other steps) two conjectures, which at the moment cannot be qualified as rigorous. 

Therefore, the validity of the solution hinges on the validity of the conjectures. The 
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logic of Conjecture 1 is very simple: The topologic problem of the 3D Ising system, 

which is the origin of the difficulties, can be dealt with by introducing a boundary 

condition, i.e., an additional rotation matrix , to smooth the crossings of numerous 

knots hidden in the boundary condition (equation 15) for the matrix V ≡ V

4'V

3⋅V2⋅V1 [2]. 

(The equation number in the preceding sentence and those given later in this article 

refer to equations in [2]). There are two choices for smoothing a given crossing (×), 

and thus 2N states of a diagram with N crossings [4]. Mathematically, the state 

summation 1S

S

K K S δ −= ∑ , producing the bracket polynomial, appears as a 

generalized partition function defined on the knot diagram and provides a connection 

between knot theory and physics [4]. Here, <K⎜S> is the product of vertex weights, 

⎜⎜S⎜⎜ - the number of loops in the state S. Therefore, the matrix V consists of two 

kinds of contributions: those reflecting the local arrangement of spins and others 

reflecting the non-local behaviour of the knots. After smoothing, there will be no 

crossing in the new matrix 1234 ''''' VVVVV ⋅⋅⋅≡  [2], which precisely includes the 

topologic contribution to the partition function, which becomes diagonalizable. The 

intrinsic non-local behaviour caused by the knots requires by itself the additional 

rotation matrix as well as the extra dimension to handle the procedure in the much 

larger Hilbert space, since in 3D the operators of interest generate a much larger Lie 

algebra [5]. This merely performs a transformation on the Hamiltonian and the 

wavevectors of the system. Because the well-recognized “correct” high- and 

low-temperature expansions never take into account the global topologic effect, they 

cannot be correct at finite temperatures in 3D. The only exception is that the 
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high-temperature expansions in 3D can be correct at/near β = 0, where the interaction 

does not exist (or is extremely weak) so that the global effect is negligible.  

I recognize that one of the key assumptions, Conjecture 2 concerning the weight 

factors wx, wy and wz, was not presented in a logical sequence in [2], mainly because 

the details were moved to the Appendices in view of length considerations. The 

weight factors were defined in the range [-1, 1] and, considering symmetry, their roles 

can be interchanged without altering the eigenvalues (equation 29) or the partition 

function (equation 49) (see p. 5372). It is possible to generalize the weight factors in 

the eigenvectors (equation 33) as complex numbers ⎢wx⎢ xie φ , ⎢wy⎢
yie φ

, and 

⎢wz⎢ zie φ with phases φx, φy, and φz. However, only the real part of the phase factors 

appears in the eigenvalues (29), (30), (31), (49), etc. of the system, so that wx, wy and 

wz can be replaced by ⎢wx⎢Re xie φ
, ⎢wy⎢Re yie φ

 and ⎢wz⎢Re zie φ
, respectively. 

They may be understood as the results of performing a transformation of the 

eigenvectors of the 3D Ising system to the “quaternion” Hilbert space and 

subsequently projecting them back to 3D [2]. Various geometrical phase factors, like 

the Aharonov-Bohm phase and the Berry phase, among others [6], have been 

discovered in the past decades, which are related to the global topologic behavior of 

quantum systems. The potential in quantum mechanics was viewed as a connection 

that relates with phases at different locations [6], which should be true also for the 3D 

Ising interactions. The present phase factor, which originates from the geometrical 

behaviour of the 3D Ising system, is novel. This topologic phase is a function of the 

interactions and temperature, depending sensitively on whether the knots exist or not. 

 4 



Thus, the value of the weight factors changes at/near T = ∞ owing to the change of the 

geometrical (topologic) structure, while it crosses over from ⎢wx⎢ Re xie φ
 = 1, 

⎢wy⎢Re yie φ
 = 0 and ⎢wz⎢Re zie φ

 = 0 (their role can interchange, as mentioned, 

to maintain the 4-fold integral) for 3D to ⎢wx⎢Re xie φ
 ≡ 1, ⎢wy⎢Re yie φ

 ≡ 0 and 

⎢wz⎢Re zie φ
 ≡ 0 (to reduce to the 2-fold integral) for 2D. The latter results in a 

crossover of the critical exponents. The phase factor eiφ is akin to the one appearing in 

Feynman’s path-integral theory [7], where the transition amplitude between an initial 

and a final state is the sum over all paths, connecting two points, of the weight factor 

[ ]i S x
eh , with S [x] the action of the system. Our action here is topologic, which arises 

from the overall geometry of the path [6], similar to other topologic phases.  

One of the criticisms repeatedly voiced in [1] is based on the “fact” that the 

convergence of the low- and high-temperature series was rigorously proved. It is 

argued that the expressions (equations (49), (74) and (99)) cannot be the true solution 

because the weight factors result in a difference between expressions for the 

high-temperature limit (equation A.12) and the result for more general temperature 

(equation A.13), for which wx = 1, wy = 0 and wz = 0 was chosen. But attention has 

never been paid to the possibility of the existence of a phase transition at/near β = 0 

([2], page 5371). The Lee-Yang theorems [3], which are rigorous and very general, 

can be suitable for the 3D Ising model. It would not violate other rigorous results [8], 

if the singular behaviour at β = 0 served as a necessary condition adding to the 

convergence of the series. Proving only the radius of convergence of the series is 

insufficient (especially in 3D). Lebowitz and Penrose [9] proved a theorem for the 
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high-temperature series and distinguished β > 0 and β = 0. They stated clearly that, 

since β = 0 lies on the boundary of the region E of (β, z) space, there is no general 

reason to expect a series expansion of p or n in powers of β to converge (p. 102 of [9]). 

A qualitative picture is given in Griffiths' review [10], showing the shape of the 

region in the T-H plane (Fig. 6) where all is analytic, but he started with the condition 

β > 0. The inequality (equation 2B.8) (or other similar ones) of [10], which is 

important for proving rigorous results, is valid only for β > 0. Actually, if we plotted 

Griffiths' T-H plane as a β-H plane, there should be a singularity at β = 0. Therefore, 

distinguishing “at/near infinity” and “finite temperature” is reasonable. Sachdev 

claimed in Figs. 4.3 and 11.2 of his book [11] that the so-called "lattice high-T" phase 

at very high temperatures has non-universal critical behaviour. Though the singularity 

in the 1D quantum model (mapping to the 2D Ising model) might not be strong 

enough to give any sort of transition, it is our understanding that the geometrical 

change in the 2D quantum model (mapping to the 3D Ising model) may introduce a 

transition at T = ∞. Usually, mathematical theorems [8-10] prove analytical 

behaviours in a very general form of functions based on some assumptions (for 

instance, the Peierls condition, β > 0 for Theorem 2.1. in Sinai [8]; sufficiently small 

λ or ε in Theorem 18.1.2, Corollary 18.1.4, Theorem 18.3.1, Proposition 18.4.2, 

Theorem 18.5.1, and assumptions P1, P2 and E ≥ c + 5 in Theorems 20.3.1-2, 

20.4.1-2 and small β in (20.5.4) in Glimm and Jaffe [8]), which do not guarantee the 

analytic behaviour of the low- and high-temperature expansions in their well-known 

expansion basis (for example,. the divergence of the low-temperature series is 
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contradictory to these theorems). From another angle, we could think that the analytic 

nature of the expansions for the conjectured solution is supported by these 

mathematical theorems [3,8-10]. In addition, the conjectured solution reduces to 

Zandvliet et al.’s results of the anisotropic 3D Ising model where two of the three 

exchange energies are small compared to the third one [12], which agree with Fisher’s 

rigorous formulae in this limit [13]. 

The necessity of introducing the extra dimension can be understood from another 

angle. The basic issues are some key points being often overlooked in quantum 

statistical mechanics. To introduce the concept of thermal equilibrium (strictly 

speaking, an undefined (or multidefined) concept), our Ising model is made part of a 

system big enough for statistical concepts to be useful [14]. In a quantum statistics 

system, besides the average in a quantum state (expectation value), one also averages 

with respect to the probability distribution of systems in an ensemble [7,14,15], i.e., a 

whole collection (a large number N) of identical Ising models of m rows and n 

columns and l planes connected together by infinitely weak forces which allow the 

Ising models to exchange energy but that do not contribute to the total energy of the 

system. Namely, a piece of substance is isolated from everything; any part of the 

substance must be in equilibrium with the rest serving as a heat reservoir that well 

defines a temperature [15]. But the temperature in statistical mechanics is actually the 

time in quantum field theory [7], since the Euclidean time interval can be consistently 

identified with β. The partition function Z = Tr e-βH can be represented in the 

Schrödinger picture as HZ dx x e xβ−= ∫ , which is merely the transition amplitude 
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with the identification t = -iβ. This indicates that the time t is hidden in the framework 

of the statistical mechanics for an equilibrium system. Therefore, one has a clue that 

the framework of the statistical mechanics for the 3D Ising systems should include the 

time, being in the (3+1) dimensional Euclidean spacetime. The same should be true 

for the 2D quantum model as is shown by the well-known mapping [11].  

In quantum mechanics, at any instance of time, the wave function Ψ of a truly 

isolated system can be expressed by a linear superposition of a complete orthonormal 

set of stationary wave functions Φn: n n
n

cΨ = Φ∑  where cn is a complex number and 

is generally a function of time [15]. In quantum statistical mechanics, the wave 

function Ψ depends on both the coordinates of the system under consideration and the 

coordinates of the external world (an additional dimension is indeed needed). Φn 

denotes a complete set of orthonormal stationary wave functions of the system, while 

cn is interpreted as a wave function of the external world (depending on its 

coordinates). Thus, the scalar product (cn, cm) of the nth and the mth wave function of 

the external world is also a function of time. This means that the average value of a 

large number of measurements of an operator, instantaneously given its expectation 

value, depends indeed on the time, although in the laboratory we measure not its 

instantaneous value but a time average [15]. However, with the postulates of equal a 

priori probability and random phase, the wave function of the system can be regarded 

as  with the phases of the complex numbers bn n
n

bΨ = Φ∑ n being random, to take 

into account the effect of the external world in an average way. It was emphasized 

that for this reduction to be effectively valid, the system must interact with the 
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external world. Otherwise, the postulate of random phase is false, because the 

randomness of the phases means no more and no less than the absence of interference 

of probability amplitude. However, such a circumstance cannot be true for all time 

though it may be true at an instant [15]. The postulates of quantum statistical 

mechanics are regarded as working hypotheses whose justification lies in their 

agreement with experiments [15]. Such a point of view is not entirely satisfactory and 

a rigorous derivation is lacking (see pp. 184-188 of [15]). So, the immediate questions 

are how the system interacts with the external world (it may be somehow inconsistent 

with what we accepted for infinitely weak forces) and what the missing part is during 

employing the postulates. To answer in detail these questions is beyond the scope of 

this reply. But the discussions above show the necessity of the extra dimension, and 

also imply the existence of flaws in the Comment. 

In summary, admitting that there are some open questions related to the choice of 

the weight factors, which will need more research, we have argued that the correct 

reproduction of the high-temperature expansion cannot be a coincidence and the 

failure in reproducing term by term the low-temperature expansion does not 

disqualify the new approach to deal with knots by means of an extension into a fourth 

dimension.  
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