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Abstract. - Plenty of algorithms for link prediction have been proposed and were applied to
various real networks. Among these algorithms, the weights of links are rarely taken into account.
In this Letter, we use local similarity indices to estimate the likelihood of the existence of links in
weighted networks, including Common Neighbor, Adamic-Adar Index, Resource Allocation Index,
and their weighted versions. We have tested the prediction accuracy on real social, technological
and biological networks. Overall speaking, the resource allocation index performs best. To our
surprise, sometimes the weighted indices perform even worse than the unweighted indices, which
reminds us of the well-known Weak Ties Theory. Further experimental study shows that the weak
ties play a significant role in the link prediction, and to emphasize the contributions of weak ties
can remarkably enhance the prediction accuracy for some networks. We give a semi-quantitative
explanation based on the motif analysis. This Letter provides a start point for the possible weak
ties theory in information retrieval.

Introduction. – Many complex systems can be well
described by networks with nodes representing individu-
als or agents and links denoting the relations or interac-
tions between nodes [1–5]. Recently, the link prediction in
complex networks has attracted increasing attention from
computer scientists [6, 7] and physicists [8, 9]. Link pre-
diction aims at estimating the likelihood of the existence
of a link between two nodes, based on the observed links
and the attributes of the nodes. For example, classical
information retrieval can be viewed as predicting miss-
ing links between words and documents [10], and the pro-
cess of recommending items to users can be considered as
a link prediction problem in the user-item bipartite net-
works [11,12]. The problem of link prediction can be cat-
egorized into two classes: One is the prediction of existed
yet unknown links, such as food webs, protein-protein in-
teraction networks and metabolic networks; the other is
the prediction of links that may appear in the future of
evolving networks, like on-line social networks. For the
former task, since the discovery of links is costly in the
laboratory or the field, to predict based on the links al-
ready known and focus on those links most likely to exist,
instead of blindly checking all possible links, may reduce
the experimental costs. For the latter task, very likely but
not yet existent links can be recommended as promising

friendships, which can help users in finding new friends
and thus enhance their loyalties to the web sites.

Some algorithms based on Markov chains [13] and ma-
chine learning [14] have been proposed recently, and an-
other group of algorithms are based on the measurements
of node similarity. In this Letter, we concentrate on the
latter. Node similarity can be defined by using the essen-
tial attributes of nodes, namely two nodes are considered
to be more similar if they have many common features.
However, the essential features of nodes are usually not
available, and thus the mainstream of similarity-based link
prediction algorithms consider only the observed network
structure. Liben-Nowell and Kleinberg [15] systematically
compared some structure-based node similarity indices for
link prediction problem in co-authorship networks, and
Zhou et al. [16, 17] studied nine well-known local similar-
ity indices on six real networks extracted from disparate
fields, as well as proposed two new local indices.

Up to now, most studies of link prediction do not take
weights of links into consideration. Murata and Moriyasu
[18] proposed three weighted similarity indices, as variants
of the Common Neighbors, Adamic-Adar and Preferential
Attachment indices respectively. They applied these in-
dices to the networks of Question-Answer Bulletin Boards
System, and the results show that with the considera-
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Table 1: Algorithm’s accuracy, measured by precision. Each number is obtained by averaging over 100 implementations with
independently random divisions of the training set and probe set. The numbers inside the brackets denote the standard
derivations. For example, 0.592(48) means the precision is 0.592, and the standard derivation is 0.048. The abbreviations,
WCN*, WAA* and WRA*, represents the highest precisions obtained by Eqs. (7-9), respectively. The corresponding optimal
values of α are shown in Table 2. US, CE and CS stand for USAir, C.elegans and CGScience, respectively.

CN WCN WCN* AA WAA WAA* RA WRA WRA*
US 0.592(48) 0.443(48) 0.617(45) 0.606(49) 0.517(50) 0.639(48) 0.626(39) 0.558(48) 0.633(41)
CE 0.132(26) 0.162(38) 0.182(40) 0.136(31) 0.170(35) 0.188(39) 0.128(32) 0.155(31) 0.164(36)
CS 0.625(59) 0.299(45) 0.782(57) 0.780(49) 0.292(51) 0.917(37) 0.963(15) 0.938(17) 0.969(16)

tion of weights the prediction accuracy can be enhanced.
To our surprise, when we apply the weighted indices to
the co-authorship network and the US air transportation
network, we find that the weighted indices perform even
worse than the unweighted ones. Actually, Liben-Nowell
and Kleinberg [15] reported the similar observation for
weighted Katz index. These unexpected results remind
us of the well-known Weak Ties Theory [19, 20]. Further
experimental study shows that in some networks the weak
links play a significant role in the link prediction, and to
emphasize the contributions of weak links can remarkably
enhance the prediction accuracy.

Data and Method. – Considering an undirected
simple network G(V, E), where V is the set of nodes and E
is the set of links. The multiple links and self-connections
are not allowed. For each pair of nodes, x, y ∈ V , we as-
sign a score, sxy, according to a given similarity measure.
Higher score means higher similarity between x and y, and
vice versa. Since G is undirected, the score is supposed to
be symmetry, say sxy = syx. All the nonexistent links are
sorted in a descending order according to their scores, and
the links at the top are most likely to exist. To test the
algorithm’s accuracy, the observed links, E, is randomly
divided into two parts: the training set, ET , is treated as
known information, while the probe set, EP , is used for
testing and no information therein is allowed to be used for
prediction. Clearly, E = ET ∪ EP and ET ∩ EP = ∅. In
this paper, the training set always contains 90% of links,
and the remaining 10% of links constitute the probe set1.
To quantify the prediction accuracy, we use a standard
metric called precision, which is defined as the ratio of rel-
evant items selected to the number of items selected. We
focus on the top L predicted links2, if there are Lr relevant
links (i.e., the links in the probe set), the precision equals
Lr/L. Clearly, higher precision means higher prediction
accuracy.

1We have checked that the choice of such a proportion will not
qualitatively affect the phenomena reported in this Letter unless
the fraction of data in the probe set is too large (then the known
information is too sparse to give reasonable predictions) or too small
(then the fluctuation is too large and the statistical regularities are
hardly to be observed).

2In the literature, L usually ranges from 10 to 100, and the preci-
sion tends to decrease with the increasing of L [21]. We have checked
that within such a range, the varying of L has little effects on the
results reported in this Letter, but for small L the fluctuation of
precision is very large. We therefore set L = 100 in this Letter.

The empirical data used in this paper include (i)
USAir—the US air transportation network, which con-
tains 332 airports and 2126 airlines (see Pajak Datasets).
The weight of a link is the frequency of flights between
two airports. (ii) C.elegans—the neural network of the
nematode worm C.elegans, in which an edge joins two
neurons if they are connected by either a synapse or a
gap junction [22]. This network contains 297 neurons and
2148 links. (iii) CGScience—the co-authorship network
in computational geometry till February 2002 (see Pajek
Datasets). This network contains 7343 authors and 11898
links. Two authors are linked if they co-authorized at least
one paper/book, and the weight of a link is the number of
co-authorized papers/books.

Unweighted Similarity Indices Based on Local
Information. – Among many similarity indices, Liben-
Nowell and Kleinberg [15] showed that the Common
Neighbors (CN) and Adamic-Adar (AA) index [23] per-
form best, which has been further demonstrated by sys-
tematically comparing CN, AA index with seven other
well-known local similarity indices [16]. In addition, Zhou
et al. [16] proposed a new index named Resource Alloca-
tion (RA) index, which can beat both CN and AA index.
Therefore, in this paper, we concentrate on CN, AA index
and RA index, whose definitions are as following.

(i) CN. In common sense, two nodes, x and y, are more
likely to form a link if they have many common neighbors.
Let Γ(x) denote the set of neighbors of node x. The sim-
plest measure of the neighborhood overlap is the directed
count:

sxy = |Γ(x) ∩ Γ(y)|, (1)

where |Q| is the cardinality of the set Q.
(ii) AA index. It refines the simple counting of common

neighbors by giving the lower-connected neighbors more
weights, as:

sxy =
∑

z∈Γ(x)∩Γ(y)

1
logk(z)

, (2)

where k(z) is the degree of node z, namely k(z) = |Γ(z)|.
(iii) RA index. Considering a pair of nodes, x and y,

which are not directly connected. The node x can send
some resource to y, with their common neighbors playing
the role of transmitters. In the simplest case, we assume
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that each transmitter has a unit of resource, and will av-
eragely distribute to all its neighbors. As a results the
amount of resource y received is defined as the similarity
between x and y, which is:

sxy =
∑

z∈Γ(x)∩Γ(y)

1
k(z)

. (3)

A common drawback of all the common-neighbor-based
indices (including CN, AA, RA, etc.) is that their ef-
fectiveness depends on the clustering of networks. If the
target network has a low clustering coefficient, for most
node pairs their similarities are zero. As reported by Zhou
et al. [16], those common-neighbor-based indices can give
relatively accurate predictions only if the target network
is of a high clustering coefficient. Clearly, to increase the
links in the probe set will reduce the clustering coefficient
for the training network (we have checked it for the three
real networks used in this Letter), and thus depress the
precision. That is to say, if the known information is little
(corresponding to a small training set and a low cluster-
ing coefficient for the training network), the prediction is
hardly to be accurate, which is an explicit instance of the
so-called sparsity problem [24] in information retrieval.

Empirical analysis shows that [16] comparing with CN
and AA, RA can enhance the prediction accuracy mea-
sured by the area under a receiver operating character-
istic curve (AUC) [25], especially for the networks with
large average degrees (in such cases, the difference be-
tween RA and AA is big). AUC takes into account the
whole ranking, while precision only concentrates on the
top L predicted links. As shown in Table 1, subject to
precision, RA still performs overall better than CN and
AA. Here comes a simple but significant result, the RA
index outperforms the CN and AA indices, and thus can
find its applications in better characterizing the proximity
of nodes in networks.

Weighted Similarity Indices. – The above-
mentioned similarity indices only consider the binary re-
lations among nodes, however, in the real world, links are
naturally weighted, which may represent the transporta-
tion load between two airports in an airline network or
the number of co-authorized papers in a co-authorship
network. We expect the similarity indices taking into ac-
count link weights can give better predictions. Murata and
Moriyasu [18] proposed a simple way to extend a similarity
index for binary networks to a weighted index. Following
this method, the weighted CN, weighted AA index and
weighted RA index (denoted by WCN, WAA and WRA,
respectively) are:

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y), (4)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)
log(1 + s(z))

, (5)
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Fig. 1: (Color online) Precision as a function of α for USAir,
C.elegans and CGScience. The inset in the plot for CGScience
shows the precision of CN for α ∈ [−5, 1]. Each data point
is obtained by averaging over 100 realizations, each of which
corresponds to an independent division of the training set and
probe set.
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Table 2: Optimal values of the parameter α subject to the
highest precisions. For CGScience, with the decreasing of α
the precision increases monotonously and eventually reaches a
stable value, 0.782, at the point α = −4.15.

WCN* WAA* WRA*
USAir -0.41 -0.40 -0.24

C.elegans 1.41 1.44 1.56
CGScience -4.15 -0.60 0.13

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)
s(z)

. (6)

Here, w(x, y) = w(y, x) denotes the weight of the link
between nodes x and y, and s(x) =

∑
z∈Γ(x) w(x, z) is the

strength of node x. Note that, since s(z) may be smaller
than 1 we use log(1+ s(z)) in Eq. (5) to avoid a negative
score.

To our surprise, when we apply the weighted indices to
the three real networks, as shown in Table 1, we find that
except the C.elegans, the weighted indices perform even
worse than the corresponding unweighted ones. Especially
for CN in USAir and CGScience, with consideration of the
weights the precisions are sharply decreased. These un-
expected results remind us of the well-known Weak Ties
Theory [19, 20], which states that people usually obtain
useful information or opportunities through the acquain-
tances but not their close friends, namely the weak ties in
their friendship networks play a significant role. Recently,
Onnela et al. [26] demonstrated that the weak ties mainly
maintain the connectivity in mobile communication net-
works, and Csermely [27] found that the weak ties could
maintain the stability of biological systems. In contrast,
the role of weak ties in link prediction problem has not
been investigated yet.

Role of Weak Ties. – In this section, we provide a
start point to investigate the role of weak ties in link pre-
diction by introducing a free parameter, α, to control the
relative contributions of weak ties to the similarity mea-
sure. The parameter-dependent indices for WCN, WAA
and WRA are:

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α, (7)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α

log(1 + s(z))
, (8)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α

s(z)
, (9)

where s(x) =
∑

z∈Γ(x) w(x, z)α. When α = 0, s(x) is the
degree of node x, and the indices degenerate to the un-
weighted cases. When α = 1, the indices is equivalent to
the simply weighted indices, as shown in Eqs. (4-6). The
numerical results are given in Figure 1, Table 1 and Table
2. Except C.elegans, the optimal values of α are all smaller

Fig. 2: (Color online) Normalized number of motifs for USAir
(square), CGScience (circle) and C.elegans (triangle). There
are in total seven motifs under consideration (below the X-
axis), with thick lines representing strong links and thin lines
representing weak links.

than 1. That is to say, for some weighted networks, the
weak links play a more important role in the link predic-
tion than indicated by their weights. A big surprise is that
sometimes the optimal values of α are negative. In these
cases the weak links actually play a more important role
than the strong links. Although it is well-known that the
weak ties mainly maintain the network connectivity [26],
this result is still striking for us.

Motif Analysis. – It is observed that the weak ties
play different roles in link prediction for different networks.
For the scientific collaboration network, CGScience, and
the transportation network, USAir, the weak ties play a
more significant role than the strong ties, while the situ-
ation is opposite for the neural network of C.elegans. To
get an in-depth understanding of the role of weak ties,
we apply a motif analysis inspired by Milo et al. [28, 29].
However, different from the method proposed by Milo et
al. [28, 29], we consider not only the connecting pattern,
but also the weights of links. We concentrate on the motifs
consisted of three connected nodes. Each link is classified
into two categories: weak links and strong links. As shown
in Fig. 2, there are in total seven different motifs under
our consideration.

The basic idea in the neighborhood-based similarity in-
dices (e.g., CN, AA and RA) for link prediction is to esti-
mate the likelihood between two nodes based on the com-
mon neighbors connecting them. Here we go one step
further to see how the common neighbors connect to the
two nodes: through strong links or weak links? In Table
3 we report the number of motifs, where all the links are
ranked in a descending order of weights with the first 50%
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Table 3: Number of motifs in USAir, CGScience and C.elegans. The IDs of motifs (1-7, from left to right) are in accordance
with the order shown in Fig. 2 (e.g., the motif consisted of three strong links is of ID 1). Ni (i = 1, 2, · · · , 7) denotes the number
of the ith motifs (i.e., motifs-i).

Network/Number of Motifs N1 N2 N3 N4 N5 N6 N7

USAir 3943 5246 6020 1784 1208 2104 7731
CGScience 4327 3259 21397 2023 3981 7220 23914
C.elegans 687 1329 4412 291 934 3433 6991

Table 4: ps and pw for the three real networks.

USAir CGScience C.elegans
ps 0.7393 0.4315 0.4345
pw 0.7572 0.5819 0.3442

are considered to be the strong links and the other 50%
the weak links3. To see clearly, as shown in Fig. 2, each
number is normalized by the number of motifs-1 (i.e., tri-
angles consisted of three strong links) in the corresponding
network. We here do not use the Z-score based on null
models since we are not interested in the comparison with
random ensembles, but the relative abundance of different
motifs in real networks.

As indicated by Fig. 2, the reasons why weak links play
a more significant role in USAir and CGScience are dif-
ferent. For USAir, it is because the very small number
of motifs-6 compared with motifs-4 and motifs-5. That is
to say, if two nodes are connected by a path consisted of
two weak links, the probability that they are not directly
connected (expressed by motif-6) is low. For CGScience,
a path consisted of two strong links is not a good indi-
cator because the motifs-3 are relatively abundant. Let’s
consider a simple question: Given that (x,z) and (y,z) are
two strong links, what is the probability that x and y are
neighboring. Obviously, this probability, denoted by ps, is

ps =
3N1 + N2

3N1 + N2 + N3
. (10)

Analogously, the probability that x and y are neighboring
provided that (x,z) and (y,z) are two weak links is

pw =
3N4 + N5

3N4 + N5 + N6
. (11)

Table 4 reports the values of ps and pw for the three real
networks. For USAir and CGScience, in which the weak
ties are more significant in link prediction, one can see

3In general, all the links can be classified into three categories: a
fraction p for weak links, a fraction q for strong links and 1− p− q
others. However, this method is complicated and the information
of a fraction 1 − p − q of links is waste. Or we can set a fraction
p of links to be weak links while the others are strong links. We
here set p = 0.5 because it is a natural and fair choice, otherwise
some bias may occur. For example, if we choose p = 0.9 (i.e., 90% of
links are weak links), for all the three networks, ps > pw (see later
analysis), which is not meaningful or distinguishable. It is because
the number of the sixth subgraph, N6, becomes too large and leads
to a relatively small pw.

that pw > ps. In contrast, ps > pw for C.elegans where
the strong ties are more significant.

Conclusions and Discussion. – In this Letter, we
applied three local similarity indices, Common Neighbor,
Adamic-Adar index and Resource Allocation index, to
the link prediction problem in three real networks, US-
Air, C.elegans and CGScience. We found that our pre-
viously proposed index, RA [16], performs overall best.
Furthermore, with the consideration of weights, we tested
three weighted variants of CN, AA and RA, denoted by
WCN, WAA and WRA. To our surprise, except C.elegans,
the weighted indices perform even worse than their corre-
sponding unweighted versions. These unexpected results
remind us the weak ties theory [19, 20] which claims that
the links with small weights yet play a more important role
in social networks. Our experimental study shows that in
some networks the weak ties play a more significant role
in link prediction, and to emphasize the contributions of
weak ties can remarkably enhance the prediction accuracy.
In another word, the weak links in such network are not
as weak as their weights suggested.

Although the prediction accuracies of both the un-
weighted indices (Eqs. (1-3)) and the simply weighted in-
dices (Eqs. (4-6)) can be further improved by introducing
the parameter α (Eqs. (7-9)), this Letter does not aim at
highlighting these parameter-dependent indices. Instead,
we attempted to uncover the role of weak ties in the link
prediction problem. We gave a semi-quantitative expla-
nation for the observed experimental results based on the
motif analysis. Despite of the lack of a full understanding
of the role of weak ties, this Letter provides some insights
about the link prediction of weighted networks. In addi-
tion, the motif analysis method for weighted networks may
be further extended to detect the correlations between link
weights and local topologies, as a complementary method
to some other approaches [30–32].

In the early stage of the studies of weak ties theory in
social science, whether a tie is weak or strong is mostly
determined qualitatively [33]. For example, Lin et al.
[34] identified acquaintances or friends of friends as weak
whereas friends, relatives and neighbors were considered
to be strong, and Friedkin [35] treated asymmetrical con-
tact as a weak tie and reciprocal contact as a strong tie.
Recently, the available of automatically saved data makes
it possible to quantitatively analysis the role of tie strength
in huge-size social networks. For example, the strength of
a tie can be measured by the cumulative time spent in tele-
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phone communication in a time period [26, 36]. And the
concept of weak ties has been applied in many branches
of science beyond the social network analysis, such as the
biological science [27] and the information science [37]. Al-
though the majority of previous works focused on the role
of weak ties on dynamics, such as the information flow [38],
rumor spreading [36] and knowledge transfer [39], some
recent works suggested that the weak ties also play a key
topological role, like to maintain the connectivity of a net-
work [26] and to affect the emergence of community struc-
ture [40]. In contrast to the above-mentioned works, the
definition of the tie strength in this Letter is not limited to
social science or to a specific method. Indeed, the strength
of a tie can be obtained by a standard method that maps
a multi-edge network to a weighted network (for C.elegent
and CGScience, see the method reported in [41]) or by
a functionally relevant measurement (the real traffic be-
tween two airports for USAir). The concept of weak ties
in this manuscript is less explicit but may provide a wider
horizon than the traditional studies on weak ties. Espe-
cially, this concept is new in the information filtering prob-
lem and thus we do not want to make it specific, explicit
but narrow. In a word, we hope this work can provide a
start point for the possible weak ties theory in information
retrieval.
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