2009-5-3
Reading Cleaning up Mystery-the Original Goal:
Diffusion:
$\left\{\begin{array}{l}\frac{\partial u}{\partial t}+\operatorname{div}(J)=0 \\ J=-D \cdot \operatorname{grad}(n)\end{array}\right.$
Rayleigh-Jeans equipartition law:
$\binom{$ Energy of radiation per unit volumn }{ with the frequencies between v and $v+d v}=\frac{8 \pi}{c^{3}} v^{2} k T d v$ can give the mean square value of the instantaneous VELOCITY that a particle is wilding fluctuating. BUT this VELOCITY is not the VELOCITY that we are seeking.

Divergence $\operatorname{div} \vec{A}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$
Where $\vec{A}=P(x, y, z) \vec{i}+Q(x, y, z) \vec{j}+R(x, y, z) \vec{k}$
Here is only one dimention, so we can simply note
$\operatorname{div}(J)=\frac{\partial J}{\partial x}$
and $J=-D \cdot \operatorname{grad}(n)$
where $\operatorname{grad}(\cdot)$ is a notation of gradient operator, also can be written as $\nabla(\cdot)$
$\operatorname{grad} \vec{n}(x, y, z)=\left(\frac{\partial \vec{n}}{\partial x}, \frac{\partial \vec{n}}{\partial y}, \frac{\partial \vec{n}}{\partial z}\right)$
here we only consider one dimension,
so $\operatorname{grad}(n)=\frac{\partial n}{\partial x}$
where n is the concentration.
Also, we have the relationship

$$
\begin{equation*}
J=n \cdot v \tag{2}
\end{equation*}
$$

$$
\begin{array}{ccc}
\langle\mathrm{Z}\rangle=x & & \langle y\rangle=x \\
\mathrm{Z} & x & y \\
x(t-\tau) & x(t) & x(t+\tau) \\
\text { before } & \text { now } & \text { future }
\end{array}
$$

$\bar{v}=\frac{x(t+\tau)-x(t-\tau)}{2 \tau}$
$P(y \mid x, I)=A \exp \left[-(y-x)^{2} / 2 \sigma^{2}(\tau)\right]$

From Lecture Notes in Statistics, $P(H, D \mid I)=P(D \mid I) P(H \mid D, I)=P(H \mid I) P(D \mid H, I)$

We can get here $P(z, x \mid I)=P(z \mid I) P(x \mid z, I)=P(x \mid I) P(z \mid x, I)$

And $P(x \mid I)=$ const ,
$P(z \mid x, t, I)=A \cdot P(z \mid I) \cdot P(x \mid z, I)$, where $A=\frac{1}{P(x \mid I)}$

The prior probability $P(z \mid I)$ is clearly proportional to $n(z)$,

And from (4), $P(x \mid z, I)=A \exp \left[-(z-x)^{2} / 2 \sigma^{2}(\tau)\right]$

We can get
$\log P(z \mid x, I)=\log n(z)-(z-x)^{2} / 2 \sigma^{2}(\tau)+($ const $)$

The maximum probability of $P(z \mid x, I)=1$, so $\log P(z \mid x, I)=0$

Then from (7), we can get $\log n(z)-(z-x)^{2} / 2 \sigma^{2}(\tau)+($ const $)=0$

Do partial differential about x,
$\frac{\partial}{\partial x}(\log n)-\frac{\partial}{\partial x}\left((z-x)^{2} / 2 \sigma^{2}(\tau)\right)+\frac{\partial}{\partial x}($ const $)=0$
$\frac{\partial}{\partial x}(\log n)-2(z-x) \cdot\left(-\frac{\partial x}{\partial x}\right) / 2 \sigma^{2}(\tau)=0$

In fact, $\frac{\partial}{\partial x}$ is one-dimensional gradient operator.
$(z-x) \cdot / 2 \sigma^{2}(\tau)=\operatorname{grad}(\log n)$

The most probable value of the past position Z is not X, but
$\hat{z}=x+\sigma^{2} \operatorname{grad}(\log n)=x+(\delta x)^{2} \operatorname{grad}(\log n)$

Whereupon, substituting into (3) we estimate the drift velocity to be
$\bar{v}=\frac{\langle x(t+\tau)\rangle-\langle x(t-\tau)\rangle}{2 \tau}=\frac{x-\hat{z}}{2 \tau}=\frac{x-x-\sigma^{2} \operatorname{grad}(\log n)}{2 \tau}=-(\delta x)^{2} / 2 \tau \operatorname{grad}(\log n)(9)$
and our predicted average diffusion flux over the time interval 2τ is

$$
\begin{equation*}
J(x, t)=n \cdot \bar{v}=-(\delta x)^{2} / 2 \tau \operatorname{grad}(n) \tag{10}
\end{equation*}
$$

Bayes' theorem has given us just Einstein's formula for the diffusion coefficient:
$D=\frac{(\delta x)^{2}}{2 \tau}$

