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© systematic procedure that produces—in a finite number of steps—the
answer to a question or the solution of a problem.

& |n computer science, a parallel algorithm, as opposed to a
traditional serial algorithm, is onewhich can be executed a piece at
atime on many different processing devices, and then put back
together again at the end to get the correct result.
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PARTITION_R(A,lo,hi)
4 1~ RANDOM (hi-lo+1)+lo
+ A HA[lo]FrA[r]

# return PARTITION(A,lo,hi)

QUICKSORT_R(A,lo,hi)
#iflo <hi
% pPARTITION_R(A,lo,hi)
4 QUICKSORT_R(A,lo,p)

4 QUICKSORT_R(A,p+1,hi)
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(1) for j=1 to l=n/p do
B(l(s-1)+j):=A(1(s-1)+3)
endfor
(2) for h=1 to log n do
(2.1) if (k-g-h>=0) then
for j=2kMi(s-1)+1 to 2kMis do
B(j):=B(2j-1)+B(2j)
endfor
endif
(2.2) if(s<=2k") then
B(s):=B(2s-1)+B(2s)
endif
endfor
(3) if(s=1)then S:=B(1l) endif
end
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¢ QHHEMH S EN: send(X,i)freceive(Y j)
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Wl PRERFAX
Begin
(1) Compute z=Bw
(2) if i=1 then y=0 else r eceive(y,left) endif
(3) y=y+z
(4) send(y,right)
(5) if i=1 then receively,|eft)
End
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Hill: S=Xa
Begin
(1)s=0 (2.3) lock(S)
(2)for all Pi where 0<ti<p-1 do S=StL
(21) L=0 (2.4) unlock(S)
(2.2) for j=i ton step p do end for
L=L+g End
end for
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4 PRAM isan abstract machinefor designing the
algorithms applicable to parallel computers. It
eliminates the focus on miscellaneous issues such as
synchronization and communication

PRAMi5 % % &

PRAM-EREWE F#&EF5

4 Exclusive Read (ER) — all processors can
simultaneously read from distinct memory locations

4 Exclusive Write (EW) —all processors can
simultaneously write to distinct memory locations

PRAM-CREW# £ EFEF

4 Concurrent Read (CR) — All processors can
simultaneously read from any memory location

PRAM-CRCW3# X ## X 5

4 Concurrent Write (CW) — All processors can write to
any memory location

Parallel Random Access Machine (PRAM)
Collection of numbered processors

Accessing shared memory cells
Each pracessor could have local

memory (registers)

Each processor can access any =
shared memory cell in unit time [——: Private —
i Memory |
Input stored in shared memory e ! N
cells, output also needs to be prommeee ey Global
stored in shared memory L private !
PRAM instructions execute in 3- {HMEmoF E | Memory
phase cycles
= Read (if any) from a shared
memory cell
= Lecal computation (if any) T =
« Write (if any) to a shared memory L—:Private —
cell i Memory i

Processors execute these 3-phase
PRAM instructions synchronously

Concurrent Write (CW)

What value gets written finally?

4 Priority CW — processors have priority based on which
write value is decided

4 Common CW — multiple processors can
simultaneously write only if values are same

4 Arbitrary/Random CW — any one of the values are
randomly chosen

PRAM # &

Unbounded number of local memory cells

Each memory cell can hold an integer of unbounded size
All operations take unit time

Unbounded collection of RAM processors— PO, P1, ...,
Each processor has unbounded registers

Unbounded collection of shared memory cells

Processors have aread, compute, write phase that happen
synchronously

% eg.forali, doA[i] = Afi-1]+1;

4 Read Ali-1], compute add 1, write A[i]
Some subset of the processors can remainidle
Think of it as SIMD parallelism

Strength of PRAM models

Model A is computationally stronger(>=) than model B iff
any algorithm written for B will run unchanged on A

Priority >= Arbitrary >= Common >= CREW >= EREW

Most Least
powerful powerful
Least Most
realistic realistic

Terew = O(TCREW -log p) = O(TCRCW -log p)




Theorem. A p-processor CRCW algorithm can be no more
than O(log p) time faster than the best
p-processor EREW algorithm for the same problem.

Proof.

The proof isa simulation argument. We simulate each step of the
CRCW algorithm with an O(log p)-time EREW computation.

Because the processing power of both machinesisthe same, we
need only focus on memory accessing.

Let'spresent the proof for simulating concurrent writes here.
Implementation of concurrent reading isleft a exercise.

End of the proof

Sincethearray A issorted by first coordinate, only one
of the processor s writing to any given location actually
succeeds, and thusthe writeis exclusive.

This process thusimplements each step of concurrent
writing in the common CRCW model in O(log p) time

The p processorsin the EREW PRAM simulate a concurrent write
of the CRCW algorithm using an auxiliary array A of length p.

1.When CRCW processor P, for

12 |g i=01,...,p-1, desrestowritea
datum x; to location |;, each

29 corresponding EREW processor P;
instead writes the ordered pair (1;,%;)
to location A[i].

26 |92 2. Thiswritesare exclusive, since
each processor writes to a distinct
memory location.

RERRRE
,
&

3. Then, thearray A is sorted by the first coordinate of the
ordered pairsin O(log p) time, which causes all datawritten
to the same location to be brought together in the output

The issue arises, therefore, of which model is preferable —
CRCW or EREW
Advocates of the CRCW models point out that they are easier to program
than EREW model and that their algorithmsrun faster

Critics contend that hardware to implement concurrent memory
operationsis slower than hardware to exclusive memory operations, and
thusthe faster running time of CRCW algorithm isfictitious.

4 Inreality, they say, one cannot find the maximum of n valuesin O(1)

time

Others say that PRAM isthewrong model entirely. Processors must be
interconnected by a communication network, and the communication
network should be part of the model

Itis quite clear that the issue of the “right” parallel model is
not going to be easily settled in favour of any one model. The
important think to realize, however, isthat these models are
just that: models!
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Simulated Simulated B 8
CRCW CRCW | simulaiing dason ™" [
globa | gort global anERE&/ SSAM L = 2
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2% |92

4. Each EREW processor P; now inspects A[i]=(1;,x) and A[i-1]=
(IX), where j and k are valuesin the range O<j k<p-1. If I; # I,
or i=0then P; writes the datum x; to location |; in the global
memory. Otherwise, the processor does nothing.

A Basic PRAM Algorithm

= Let there be "n” processors and “2n” inputs
= PRAM model: EREW
= Construct a tournament where values are compared

Pracessor k is active in step j
if (k % 2) ==
At each step:
Compare two inputs,
Take max of inputs,
Write result into shared memory

PO P1P2P3P4P5P6 P7 Details:

Need to know who is the “parent” and
whether you are left or right child
\Write to appropriate input field




Example CREW-PRAM

PRAM-CRCW L+ 3 5 & ok
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Assumeinitially table A contains[0,0,0,0,0,1] and we Begin
havethe parallel program for each processor i do  repeat for each processor i<>root do
for each 1 <4 < 5 do in parallel root=i if (A<Ap) V (A=A A\i<F) then
Ali]; = Ali] + A[i + 1] fi=root LCq=i
LC=RC=n+1 if i=LC;; then exit else f,=LC; endif
then the consecutive values of the tables A (in parallel end for else
|I~ step 0. 1,2, 3, 4, 5) correspond to the Pascal triangle, RC=i
the nonzero elements in the n-th row are if i=RC, then exit else f=RC, endif
@ (@D s ---Q endif
forn = 0,1,2,3,4,5,6. end repeat
End
Pascal triangle
@ G @y - e [ e e L[]

forn = 0,1,2,3,4,5,6.

PRAM CREW

for each 1 <4 < 5 do in parallel

Alil;= Ali] + Ali +1)

Finding Maximum: CRCW Algorithm

Given n elements A[0, n-1], find the maximum.
With n? processors, each processor (i,j) compare Afi] and A[j], for 0< i, j =n-1.

FAST-MAX(A): 1[/]

L n—length[A)

2 fori—0ton-1, in parallel 5692 8m

1 do m[i] «true -

. for | —0 to n-1and j <0 to n-1, in parallel SETTET)FE
do if Ali] < A[j] Al oF FT FT|F

& then m[i] «false C

p for | <0 to n-1, in parallel NEFFFFT

8 do if m[i] =true 2TTTFT|F

N then max — A[i]

w. return max OF FF F FIT

max=4

The running time is (1),
Note: there may be multiple maximum values, so their processors
Will write to max concurrently. Its wark = 712 x ({ 1) =0(r?).

PRAM # &
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How practical is PRAM

Unbounded number of local memory cells

4 Not true, memory is the bottleneck of many
applications

Each memory cell can hold an integer of unbounded size
4 Wedon't care much about this

All operations take unit time

4 Very unrealistic for memory operations

4 Aswetraverse up the memory hierarchy, accesstime
changes by afactor

Some variants of PRAM

LPRAM
4 Charge acost of L unitsto access globa memory

4 Any agorithm that runs properly in a p processor
PRAM can run in this model with aloss of factor L

BPRAM
4 Charge L unitsto access first message
4 B unitsfor each subsequent message

PRAM — unaccounted costs

Non-local memory access

Latency

Bandwidth (greater problem in PRAM)
Memory access contention
Synchronization

% What were the synchronization issuesin our example
problem

A% XK

4h ik, BRE B, PRAMFILARPBSEA F iyt 8 LR
47%%, Journal of Software, Feb. 2004,15(2):159-
169

Some variants of PRAM

Bounded shared memory PRAM, PRAM(m)

% Globa memory segmented into modules

4 Any given step, only m memory accesses can be
serviced

Bounded number of processor PRAM

4 Any problem that can be solved for a p processor
PRAM int steps can be solved in ap’ processor PRAM
int'=0(tp/p’)steps

# % APRAM # &

ERBA

4 X4 (Phase) PRAMEZMIMD-SM, &FAN4&
HRALRHEEE. Afue. RHE
F; BeREd, SAEZRIIL, A
B AMATRN; LAEBEARMXR, &
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phasel read 1 * *
i rteto B i ¢ HiValiant(1990) Communication
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s &ﬁ&, A network
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sz - - BB, MK
. . HHRRLE RA
write to B write to I %%#ﬁ, iklﬂ
£ BREF.
* write to wite to B
read D read &
wnite to B L. 6. Valiant. A bridging model for parallel computation.
[SEgl= Communications of the ACM, 33:103-111, 1990.
APRAM#EZ! BSP # 4!
T
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A BSP computer consists of a collection of processors,
each with its own memory. It is a distributed-memory
computer.

Access to own memory is fast, to remote memory
slower.

Uniform-time access to all remote memories.

No need to open the black box of the communication
network. Algorithm designers should not worry about
network details, only about global performance.
Algorithms designed for a BSP computer are portable:
they can be run efficiently on many different parallel
computers.




The BSP model emphasized the separation of communication from
computation by incorporating the bulk-synchrony with a distributed

memory model over message passing.

* A set of processor-memory pairs.

¢« A communication network that
delivers messages in a point-to-point
manner.

* A mechanism for the efficient barrier
synchronization for all or a subset of
the processes.

* There are no special combining,
replicating, or broadcasting facilities.

BSP algorithm

A BSP agorithm consists of a sequence of supersteps.

A computation superstep consists of many small steps, such
as the floating-point operations (flops) addition, subtraction,
multiplication, division.

A communication superstep consists of many basic
communication operations, each transferring a data word
such asareal or integer from one processor to another.

In our theoretical algorithms we distinguish between the
two types of supersteps. This helpsin the design and
analysis of parallel algorithms.

In our practical programs, we drop the distinction and mix
computation and communication freely in each superstep.

The communication network or router is described by only two
parameters:

The message latency L : the time needed by a short message to
travel across the network to its destination processor.

The bandwidth factor g : the parameter corresponds to a capacity
constraint on the network. More precisely, it is defined as the ratio

of local operations performed by all processors in one time unit to
the total number of messages delivered by the router in the same
time unit.

A BSP program is a sequence of supersteps. During each
superstep, the processors (processor/memory modules) perform
arbitrary local computations. At the end of each superstep,

the processors synchronize and communicate by sending
messages over the network (router). The router realizes
supersteps in which each processor sends and receives at

most A messages (4-relation). This pattern of independent
computations followed by synchronization and communication
steps is called bulk-synchronous.

nA 7% E{X1,x2,....xn}, H Ffo Rnind 9do:
Si=x1*x2%.. .*xi, 1<i<n % L* T A + KX

x1 x2 x3 x4 x5 X6 X7 x8

k=3 1 12 123 14 15 16 17 18

Ig p. supersteps such that during the k't superstep,
the processes in the range 2¢-! < i < p each
combine their local partial sums with process i-2k-1.

P(0) P(1) P{2} P(3) P(4)

‘ comp

e

‘ ‘ | comp

W comm

int bsp_allsumsl( int x ){
int k, left, right;
bsp_pushregister( &left, sizeof(int));
bsp_sync();
right = x;
for(k=1; k<bsp_nprocs(); k*=2){
if( bsp_pid()+k < bsp_nprocs())
bsp_put( bsp_pid()+k, &right, &left, 0,
sizeof( int ));
bsp_sync () ;
if( bsp_pid() >= k ) right = left + right;

Barrier

}
bsp_popregister( &left );

return( right ); Push to remote memory

10



Time of an h-relation on an 8-processor IBM SP2

BSP BSP BSP BSP  BSPBarrier
Prapass. Pracess Pracess Process Synchranization
Time 4 Network
1 2 3 4 Local Cofputation
\ \ Commufication
e Bafer
Synchropization
1 3 5 7 Local Cofputation
‘—\_E Commufication
-—__“% Bafer
Synchropizalion
1 3 6 0

Messured dus
Letshipmar b1

r =212 Mflop/s, p = 8, g = 157 flop (0.88:8),
| = 118212 flop (698 us)

Communication superstep: h-relation

2-relations:

/ {{'}' '{E‘\
®&—60 66—

= An /-relation is a communication superstep in which
every processor sends and receives at most /: data
words: & :Ilil:\'{!&’\.fh-}.

= ;. is the maximum number of data words sent by a
processor.

® /i, is the maximum number of data words received by a
processor.

Cost of computation superstep

T =w + |, where w is the maximum number of flops of a
processor in the superstep.

Processors with less than w flops have to wait. This waiting
timeiscaledidletime.

To measure T, awall clock is needed, giving the elapsed
time. A CPU timer will not work, since it does not measure
idletime.

Same | asin communication superstep, for simplicity.

Cost of communication superstep

T(h) = hg + |, where g isthe time per data word and | the
global synchronization time.

Motivation hg: h determines communication time, since
entry/exit of processor isthe bottleneck .

Motivation I: contains fixed overhead such as start-up costs
of sending data, costs of checking whether all data have
arrived at their destination, and costs of the synchronization
mechanism itself.

Cost of algorithm

The cost of a BSP algorithm is an expression of the form
a+bg+cl:

4 This cost is obtained by adding the costs of al the
supersteps.

% Notethat g = g(p) and | = I(p) arein general afunction
of the number of processors p.

% The parameters a; b; ¢ depend in general on p and on a
problem size n.

1



Parallel algorithm '\ | |
supersteps

Cost of BSP agorithm for p
=5,9=251=20is320
flops.

First computation superstep
costs 60 + 20 = 80 flops.
First communication

omm

‘omm

‘omp

logP # &

AR

% BCuller(199Q)ER K1y, B—Romisfkey. &3
BB S AEHME, LBk —HSEHR,
ETRARS.

#USH

4 L: network latency

4 0: communication overhead

4 g: gap=Vbandwidth

superstep costs 4*5*2.5 + % P: #processors
20=70flops. . E: LfngRik T BF LN A E
Summary Deriving the LogP Model

= An abstract BSP machine is just a BSP(p. 1, 4. 1)
computer. This is all we need to know about the machine
for developing algorithms. The parameters are:

p number of processors

r computing rate (in flop/s)

i communication cost per data word (in flop time units)
| global synchronisation cost (in flop time units)

= The BSP model consists of

= a distributed-memory architecture with a black box
communication network providing uniform-time access
to remote memories;

= an algorithmic framework formed by a sequence of
supersteps;

= a cost model giving cost expressions of the form
a+ by + el

Lachurs 17 sk Bchveruoes Pratel Wil

°

Processing
— power ful microprocessor, large DRAM, cache =P
Communication
+ significant latency
+ limited bandwidth
+ significant overhead
- on both ends
— no consensus on topology
=> should not exploit structure

o

(100's of cycles) =>L
(1-5% of memory bw) =>¢g
(10's—100'sof cycles) =>0

+ limited capacity
— NOo consensus on programming model
=> should not enforce one

42 A3t KA
4.2.1 PRAM 4 A
4.2.2 # 5 APRAM# &
4.2.3 BSP# A
4.2.4 logP4 A

LogP
~——— P (processors )————*

(] @

o (overhead)
g (9ap)

Limited Volume
(L/g toorfrom
aproc)

L atency in sending a (small) message between modules
overhead felt by the processor on sending or receiving msgy
Qap between successive sends or receives (/BW)
Processors

12



Using the Model

Model Time Varying Message Size & Machines

10000 [omemer
=73
L ,
time
1000 machine r
¢ Send n messages from procto procin time 20 + L +g(n-1) s
— each processor doeson cyclesof overhead e
. 100 —»— Quadrics/Shm|
—has(g-0)(n-1) + L available compute cycles i
° Sendn messages from oneto many e
in sametime 7 e w0 vy
° Send n messages from many to one \
in sametime
—all but L/g processors block E/ ! 8 16 %@ 6 128 25 512 1024 2043 4096 8192 16384 32768 65536 131072
so fewer available cycles ™~
Latency and Bandwidth Model — Measured Message Time )

Timeto send message of length n isroughly
Time = latency + n*cost_per_word

= latency + n/bandwidth
Topology isassumed irrelevant.
Often called “ a—B model” and written

Time =a +n*B
Usually o >> f >> time per flop.
% Onelong message is cheaper than many short ones.

o+ n*B << n*(o + 1%B)
% Can do hundredsor thousands of flopsfor cost of one
message.

Lesson: Need large computation-to-communication ratio to
be efficient.

Sum of gap]

10000

1000 machine =

—+— T3E/Shm
—=— TIEIMPI
—+— BMILAPI
5 IBMIMPI

-0

—s—Quadrics/MP1
Myrinet/GM
Myrinet/MP1
GigE/VIPL
GigE/MPI

8 16 32 64 128 25 512 1024 2048 4096 8192 16384 32768 65536 131072

Alpha-Beta Parameters on Current Machines

These number s wer e obtained empirically

machine o B . )

T3E/Shm T2 ooo3] ¢S 'Ba\j\?'.‘cy o usees
TR 5003 P'S in usecs per Byte
IBM/LAPI 9.4 0.003

IBM/MPI 7.6 0.004

Quadrics/Get 3.267| 0.00498

Qs lies/Slinm 13| 0005 i well does the model
Quadrics/MPI 7.3 0.005 Time = a + n*
Myrinet/GM 7.7| 0.005 predict actual performance?
Myrinet/MPI 7.2 0.006

Dolphin/MPI 7.767| 0.00529

Giganet/VIPL 3.0 0.010

GigE/VIPL 4.6 0.008

GigE/MPI 5.854| 0.00872

End to End Latency Over Time

1000
nCube/2
100 v CMS 352
8 ¢ nCubel2 * SPY, PZ‘ gﬁﬁ 3
ube, s Cenju
3 coms 3 BESLST + SP-Power:
inet
10 +CS2 s\m}g ics
+ T3E
* T3D
* SPP v
. ‘ ‘ o TE. ‘ +Quadrics
1990 1992 1994 1996 1998 2000 2002
Year (approximate)

Latency hasnot improved significantly, unlike Moore's Law
4 T3E (shmem) was lowest point —in 1997

Data from Kathy Yelick, UCB and NERSC
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LogP Parameters: Overhead & Latency

Non-overlapping
overhead

Send and recv overhead
can overlap

Osend

EEL = End-to-End Latency
= Osend +L+ Orecv

EEL =f(Ognas L+ Oreey)
2> MaX(Ogngs L+ Orecy)

Send Overhead Over Time

14

1p 1§ NCube/2 ® CM5

10

a

3 — SP3 )
g w—Cenjt4 L} = Dofphin
E 6 ———8CM5 8 T3En-Se} mIDOliin

4 = Meiko -

@ Paragon © Myrinet

24 8 Meiko . iMyrinet2K

0 # T3D s T3E 8 Compaq

1990 1992 1994 1996 1998 2000 2002

Year (approximate)

Overhead has not improved significantly; T3D was best
4 Lack of integration; lack of attention in software

Data from Kathy Yelick, UCB and NERSC

LogP Parameters: gap

The Gap isthe delay between sending
messages
Gap could belarger than send ovhd
4 NIC may be busy finishing the Ogerd
processing of last message and 9ap
cannot accept a new one. -
% Flow control or backpressureon  9ap
the network may prevent theNIC ——————
from accepting the next message to

send.
4 Nooverlap =
time to send n messages =

(Ogeng + L +Ory -0aP) +n*gap=a +n*P

Limitations of the LogP Model

The LogP model has a fixed cost for each messages
% Thisisuseful in showing how to quickly broadcast a single word
@ Other examplesalso in the LogP papers
For larger messages, thereisa variation LogGP
& Two gap parameters, onefor small and onefor large message
4 Thelarge message gap isthef in our previous model

No topology considerations (including no limitsfor bisection
bandwidth)

¢ Assumesa fully connected network
4 For some algorithms with nearest neighbor communication, but
with “all-to-all” communication we need to refine thisfurther
Thisisaflat model, i.e., each processor is connected to the network
@ Clustersof SMPsare not accurately modeled

Results: EEL and Overhead

usec

25
20 —|
15 -
10 I—.
g I
0 ! = ; ; = Q ; ; ; ;
Q@Q ) \Q&qf«;}@ @\‘Q ) \V‘??\ é&g\ 0(1\‘2& ,}02"& @@Q 3 4‘_\0@,0\@(2 ) @8\/
/\"J&@‘? & §¢ S \{o&@ XU &
oA AN AN

‘D Send Overhead (alone) B Send & Rec Overhead @ Rec Overhead (alone) O Added Latency ‘

Data from Mike Welcome, NERSC

400

350

300

Bandwidth Chart

—— TIEPI
- T3E/Shmem

4 IBMMPI
IBMILAP!

s
/ e

Bandwidth (MB/sec)

100

e~ Compag/Get
S P

—— M2KIGM
Dolphin/MPI

~*— GiganetVIPL
SysKonnect

2048 4006 8102 16384 32768 65536 131072

Vessage Size (Bytes) Data from Mike Welcome, NERSC
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BSPvs. LogP

# BSP>LogP: BSPH:FE $->BSPF£F H>BSPitf:
*tE ¥ =LogP

% ?uspﬂu#&lﬂ%&#ﬂmgp, LogP BAxt#k B F 4
XBSP

4 BSP=LogP+Barriers— Overhead

+ BSPRG T EFEOREIFE, LogPEIMAMA T
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