SEMmMES FTRFRIT

o BT E TR R A
o BTZEREEMHATHE
o BTEEFHEEATEE
o BHREEFTRFFRIAHR

TRt TZE

BRITRTE (c) MERFEH SHEITERFNTTE
for (i= 0; i<N; i++) Afi]=b[i]*b[i+1]; #pragma parallel
for (i= 0; i<N; i++) c[i]=A[il+A[i+1]; #pragma shared(A,b,c)
#pragma local(i)
() ERERIEEEITRRF {
id=my_process_id(); # pragma pfor iterate(i=0;N;1)
p=number_of_processes(); for (i=0;i<N;i++) A[i]=b[i]*b[i+1];
for (i= id; i<N; i=i+p) A[il=b[i]*b[i+1]; # pragma synchronize
barrier(); # pragma pfor iterate (i=0; N; 1)
for (i= id; i<N; i=i+p) c[iI=A[i+A[i+1]; for (i=0;i<N;i++)c[i]=A[i]+A[i+1];
#F: MPI,PVM, Pthreads }
(Ob) rBEITES BIF: SGlpower C

my_process_id,number_of_processes(), and barrier()

A(0:N-1)=b(0:N-1)*b(1:N)
c=A(0:N-1)+A(1:N)

(d) B#131T: Autopar

#1F: Fortran 90 (e) HIBOFHITIES: ‘Linda. Ocean
BRI SRR SRR

- BRARFERIT
< FFATRF R E RN REE

® AT HERA RGNS

ARG —

® HTABRETEFRBEE

o FHEPTARZRKGELKY, GEIRTT RARHTE R
o PRI IR

® BAMSHTHE, HPH—LFHEH

o HRAR: RFRE. HOFE. HEHT

< M#4T (Phase Parallel)

< 4847 (Divide and Conquer Parallel)
< FAEIAT (Pipeline Parallel)

< EMIHFAT (Master-Slave Parallel)

< THE#IHAT (Work Pool Parallel)

FTRFRITIMES TR

- FTRFRITRE
* B R RS0k
o AT HHR Lt TAH %
® HEBEREBRED
o HHRERGPEG T2 EORF
o EARTRFIOTERY, RERALSRRIAREERHA
o HRAG: AHEGTE. XHET. RFRAA. KHEIAE
® HMEIR: BYA P TR PR RESETR
EELEFRTR. EHTR. BRAVIAS
RRIA

31T (Phase ParalleD)

o —H@AELY ()

“ FALEHHE
o FHERE. AY

“ BSP (423)
o AT A
- HERBETRES i! i! é

F—M3FH1T (Master-Slave Parallel)

o E#E: BT WRES
o F#E: HEFES

< MAFEAR (6.1)

© GHHTHEE

o IR

Master

T{EfF1T (Work Pool Parallel)

o ERA — T

< P N BUE S AT

o WFEEFESBERF
 BEESFMEE

“ BTRRYHE

o ERERE (AEHEEE)

Work Pool

438317 (Divide and Conquer Parallel)

& ﬁﬁﬁ#ﬂﬁﬁﬁ%ﬂl T3

o ﬁyg

o BRETHENF

< HHEEITEAR (6.2)
o AT

FTRFRITRE

< BA AT (Implicit Parallel)
< ¥ IH4T (Data Parallel)

< ¥ HE (Shared Variable)
< 4 K45 (Message Passing)

k& F(T (Pipeline Parallel)

o —HHR

o AL ﬁ
- RALTIEA (65)

B

a7 (Implicit Parallel)

o B

¢ BFRARZNEAEERE

+ GEBRETXFRAREDRMNHTRE
o 4%,\’{

4 EXHE

& THHEBE

+ 258, FTARMRIEE#AY

& BERME

#iBFH1T (Data ParalleD)

o L
4 SIMDHy B REA
& BT H YRR RS
o K
+ BEE
& FTRETROMELH (K4)
& BHES
& B R
¢ WAREHA
® BABEIH

Machine Model 2b: Vector Machines

“» Vector architectures are based on a single processor
4 Multiple functional units
4 All performing the same operation
4 Instructions may specific large amounts of parallelism (e.g., 64-way)
but hardware executes only a subset in parallel
*» Historically important
4 Overtaken by MPPs in the 90s
*» Re-emerging in recent years
4 At a large scale in the Earth Simulator (NEC SX6) and Cray X1
4 Atasmall sale in SIMD media extensions to microprocessors
SSE, SSE2 (Intel: Pentium/IA64)
Altivec (IBM/Motorola/Apple: PowerPC)
VIS (Sun: Sparc)
+» Key idea: Compiler does some of the difficult work of finding
parallelism, so the hardware doesn’t have to

Programming Model 2: Data Parallel

«+Single thread of control consisting of parallel operations.
«“Parallel operations applied to all (or a defined subset) of a data
structure, usually an array

=Communication is implicit in parallel operators

©Elegant and easy to understand and reason about

=Coordination is implicit — statements executed synchronously
«»Drawbacks:

=Not all problems fit this model

<Difficult to map onto coarse-grained machines

A=arrayofal|data A OIITTTTTTTIITTTTTTTT]
fA =f(A) f
s =sum(fA) fA I I I I I T IITITT]

sum
S!

Vector Processors

«» Vector instructions operate on a vector of elements
4 These are specified as operations on vector registers

QOQ [I [[J[we [[..]]
‘ (logically, performs # elts
E adds in parallel)
[1.1]

« A supercomputer vector register holds ~32-64 elts

4 The number of elements is larger than the amount of parallel hardware,
called vector pipes or lanes, say 2-4

+* The hardware performs a full vector operation in

(actually, performs #
pipes adds in parallel)

Machine Model 2a: SIMD System

+A large number of (usually) small processors.
<A single “control processor” issues each instruction.
=Each processor executes the same instruction.
<=Some processors may be turned off on some instructions.

“»Machines are very specialized to scientific computing, so they
are not popular with vendors (CM2, Maspar)
“*Programming model can be implemented in the compiler
=mapping n-fold parallelism to p processors, n >> p, but it's hard
(e.g., HPF)

control processor

[interconnect

Cray X1 Node

«“ Cray X1 builds a larger “virtual vector”, called an MSP
& 4 SSPs (each a 2-pipe vector processor) make up an MSP
& Compiler will (try to) vectorize/parallelize across the MSP

custom

12.8 Gflops (64 bit) blocks

25.6 Gflops (32 bit)

s168/s
25-41GBIs |

2 MB Ecache 0.5 MB 0.5 MB 0.5 MB 0.5 MB
$ $ $ $

TT T 1T T T T 1T T T T T T T 17

Atfrequencyof ¢+ v v ¢ ¢ b
400/800 MHz To local memory and network: 25.6 GB/s i
12.8 - 20.5 GBIs |

Figure source J. Levesque, Cray

Earth Simulator Architecture

1

[T —]

Parallel Vector
Architecture

* High speed (vector)
processors

* High memory
bandwidth (vector
architecture)

* Fast network (new
crossbar switch)

main() {
long i,j,t,N=1000000;
double local[N],tmp[N], pi, w;
w=1.0/N;
forall (i = 0; i<N; i ++) {
local[i] = (i + 0.5)*w;
tmpli] = tmp[i] + 4.0/(1.0+local[i] * local[i]);

}
pi=sum(tmp);
Rearranging commodity printf(“pi is %f \n”, pi *w);
parts can’t match this
Sare memmony 04M 516681 performance }
HEEBAENHERER #EZTE (Shared Variable)
o B
& PVP, SMP, DSM# § AR A
o R
J‘l 4 dx Z 4 1 ® $##: SPMD, MPMD
= ~ _— P
2
01+X 0Si<N 1+('+0-5)2 N —
+ BRFY
N ¢ BRARELA
@ RAAE

TEERENGES KB
#define N 1000000
main() {
double local, pi = 0.0, w;
long i;
w=1.0/N;
for (i=0; i<N; i ++) {
local = (i + 0.5)*w;
pi = pi +4.0/(1.0+local * local);
}
printf(“pi is %f \n”, pi *w);

Programming Model 1: Shared Memory

“»*Program is a collection of threads of control.
&Can be created dynamically, mid-execution, in some languages
«“+Each thread has a set of private variables, e.g., local stack variables
++Also a set of shared variables, e.g., static variables, shared common blocks,
or global heap.
&Threads communicate implicitly by writing and reading shared
variables.

&Threads coordinate by synchronizing on shared variables

Shared memory
S=..
y=.5..
E Private E
memory

‘@ @

Shared Memory Code for Computing a Sum

static int s =0;

Thread 1 Thread 2
fori=0,n/2-1 fori=n/2,n-1
s =s + f(A[i]) s =s + f(A[i])

* Problem is a race condition on variable s in the program
« A race condition or data race occurs when:
- two processors (or two threads) access the same
variable, and at least one does a write.
- The accesses are concurrent (not synchronized) so
they could happen simultaneously

#define N 1000000
main() {
double local, pi = 0.0, w;
long i;
w=1.0/N;
#Pragma Parallel
#Pragma Shared(pi,w)
#Pragma Local(i,local)
{
#Pragma pfor iterate(i=0;N;1)
for (i =0; i<N; i ++){
local = (i + 0.5)*w;
local = 4.0/(1.0+local * local);

}
#Pragma Critical
pi = pi + local;

}
printf(“pi is %f \n”, pi *w);

}
Shared Memory Code for Computing a Sum e \ .
i putng JHE 5% (Message Passing)

Thread 1 Thread 2 & MPP,COWEY & ##2

b “ AR

compute f([A[i]) and put in reg0 7 compute f([A[i]) and put in reg0 9 ¢ BB

regl=s 27| regl=s 27 + 7Y

regl =regl +reg0 34| regl=regl+reg0 36 & SHHBE

s =regl 34| s=regl 36 & BARS

¢ BRABFERA AR BLE

« Assume s=27, f(A[i])=7 on Threadl and =9 on Thread2 & BRERE

« For this program to work, s should be 43 at the end
« but it may be 43, 34, or 36

« The atomic operations are reads and writes
« Never see % of one number
« All computations happen in (private) registers

Improved Code for Computing a Sum

static int s = 0;
static lock Ik;
Thread 1 Thread 2
local_s1=0 local_s2=0
fori=0,n/2-1 fori=n/2,n-1
local_s1 =local_s1 + f(A[i]) local_s2=local_s2 + f(A[i])
lock(lk); lock(lk);
s=s +local_sl s =s +local_s2

unlock(lk); unlock(lk);

« Since addition is associative, it's OK to rearrange order

« Most computation is on private variables
- Sharing frequency is also reduced, which might improve speed
- But there is still a race condition on the update of shared s
- The race condition can be fixed by adding locks (only one
thread can hold a lock at a time; others wait for it)

Programming Model 2: Message Passing

“»Program consists of a collection of named processes.
+Usually fixed at program startup time
“Thread of control plus local address space -- NO shared data.
<Logically shared data is partitioned over local processes.
“»Processes communicate by explicit send/receive pairs
<Coordination is implicit in every communication event.
@MPI is the most common example .
Private

(T (L LTI memory
sz]| [1s:4] ERtY

receive Pn,s

~{Bl [BF™\E
send P1l,s

[Network]

Computing s = A[1]+A[2] on each processor

° First possible solution —what could go wrong?

Processor 1 Processor 2
xlocal = A[1] xlocal = A[2]
send xlocal, proc2 send xlocal, procl
receive xremote, proc2 receive xremote, procl
s = xlocal + xremote s = xlocal + xremote

o

If send/receive acts like the telephone system? The post office?

Second possible solution

Processor 1 Processor 2
xlocal = A[1] xloadl = A[2]
send xlocal, proc2 receive xremote, procl
receive xremote, proc2 send xlocal, procl
s = xlocal + xremote s =xlocal + xremote

HZFHEIFTRE

< Cilk
*» Pthreads
< OpenMP

MPI - the de facto standard

In 2002 MPI has become the de facto standard for parallel
computing
The software challenge: overcoming the MPI barrier

MPI created finally a standard for applications development in the
HPC community

Standards are always a barrier to further development

The MPI standard is a least common denominator building on
mid-80s technology

Programming Model reflects hardware!

“I'am not sure how | will program a Petaflops computer,
but I am sure that | will need MPI somewhere” — HDS 2001

Cilk
« Cilk is a language for multithreaded parallel programming based
on ANSI C. Cilk is designed for general-purpose parallel
programming, but it is especially effective for exploiting dynamic,
highly asynchronous parallelism, which can be difficult to write in
data-parallel or message-passing style. Using Cilk, our group has
developed three world-class chess programs, StarTech, *Socrates,
and Cilkchess. Cilk provides an effective platform for
programming dense and sparse numerical algorithms, such as
matrix factorization and N-body simulations, and we are working
on other types of applications. Unlike many other multithreaded
programming systems, Cilk is algorithmic, in that the runtime
system employs a scheduler that allows the performance of
programs to be estimated accurately based on abstract complexity
measures.
The Cilk language has been developed since 1994 at the MIT
Laboratory for Computer Science.
http://supertech.csail.mit.edu/cilk/

int MP1_Reduce (void *sendbuf,
void *recvbuf, int count,

#define N 1000000 MPL_ Détitype datatype
main() { MPI:Op op, int root, M;:‘I_Comm comm)
double local, pi, w;
long i,taskid,numtask;
w=1.0/N;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
MPI_Comm_Size(MPI_COMM_WORLD,&numtask);
for (i = taskid; i<N; i =i+numtask) {
local = (i + 0.5)*w;
local = 4.0/(1.0+local * local);

}
MPI_Reduce(&local,&pi,1,MPI_Double, MPI_MAX,0,MPI_
COMM_WORLD);
if(taskid==0)printf(“pi is %f \n™, pi *w);
MPI_Finalize();

WIKIZE X

oo
o

Cilk is a general-purpose programming language designed for
multithreaded parallel computing.

The biggest principle behind the design of the Cilk language is that
the programmer should be responsible for exposing the
parallelism, identifying elements that can safely be executed in
parallel; it should then be left to the run-time environment,
particularly the scheduler, to decide during execution how to
actually divide the work between processors. It is because these
responsibilities are separated that a Cilk program can run without
rewriting on any number of processors, including one.

oo
o

Commercialization of Cilk Technology

*» Prior to ~2006, the market for Cilk was restricted to high-
performance computing. The emergence of multicore processors
in mainstream computing means that hundreds of millions of new
parallel computers are now being shipped every year. Cilk Arts
was formed to capitalize on that opportunity: In 2006, Professor
Leiserson launched Cilk Arts to create and bring to market a
modern version of Cilk that supports the commercial needs of an
upcoming generation of programmers. The company closed a
Series A venture financing round in October 2007, and Cilk++ 1.0
shipped in December, 2008. Cilk++ differs from Cilk in several
ways: support for C++, operation with both Microsoft and GCC
compilers, support for loops, and "'Cilk hyperobjects' - a new
construct designed to solve data race problems created by parallel
accesses to global variables.

Charles Eric Leiserson is a computer scientist, specializing in the
theory of parallel computing and distributed computing

Cilk Language

* Cilk is a faithful extension of C
—if Cilk keywords are elided — C program semantics

* |diosyncrasies
—spawn keyword can only be applied to a cilk function
—spawn keyword cannot be used in a C function
—cilk function cannot be called with normal C call conventions
— must be called with a spawn & waited for by a sync

Basic parallelism with Cilk

«»spawn -- this keyword indicates that the procedure call
it modifies can safely operate in parallel with other
executing code. Note that the scheduler is not obligated
to run this procedure in parallel; the keyword merely
alerts the scheduler that it can do so.

«“sync -- this keyword indicates that execution of the
current procedure cannot proceed until all previously
spawned procedures have completed and returned their
results to the parent frame. This is an example of a
barrier method.

Cilk Terminology

* Parallel control = spawn, sync, return from spawned function

* Thread = maximal sequence of instructions not containing
parallel control (task in earlier terminology)

mlk int fib{n) { Thread A: if statement up to first spawn
2} return n;

i Thread B: computation of n-2 before 2™ spawn
intni, n2

n1=spawn fib(n-1); | Thread C: n1+ n2 before the return

n2 = spawn fib(n-2);
sync;

return (n1 + n2); fibin)
}} [continuation o J

Introducing Cilk

cilk int fib(int n) {
ifin<2) return n;
else {
int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

* Cilk constructs !
—cilk: Cilk function. with it, functi are lard C
spawn: call can execute asynchronously in a concurrent thread
—sync: current thread waits for all locally-spawned functions

* Cilk constructs specify logical parallelism in the program
—what computations can be performed in parallel
—not mapping of tasks to processes

“ fr#continuation, Jt3LANRE —ANE K AHLH.

RATRZW AR 7 MR %M, FHA Activation records # ™ Stack framesfe
BRMRTE & 3 2| 4 3 & B B A context, —AMrame/recordt & — AN & #0897 36
LTFXBER, REFANRBEBNESP, PCRATAME (BRIBINN, FER/H
TENGERETAREN, S0 ERRNEIR AL EE L Tstack frame. FH,
BHRLE, RMTANFAEENURET) . SRR AAEEEME — LpushkRF
contextf &, & $R B RREBUH L W W record/frame, $RE E— AR
record/frame.
Kpascal XA X FH BB, WHFE—MFIMRARRFR B R framedtt.
i, Ligtef], EEARE, RAREFORE -NMENLHIER, —MEH—E
B/, B frameR BN R T
Continuationfil % % — ﬂ‘&ﬁﬁfﬂﬁi EARAERERFLTX, TRERDREH
R F 7 continuation record#. 3X #continuation recordfu3f 4% #activation record#y X
HETF, ERRABNEBWEMEN KX, BiArecord AR —HFH (RFH) , A—
ARG N BERETLLUNVELER—ATIR, REERAFABSHE
BAFHFR, M HHNEBEFTFALNFREEBRF A,
%;z égiﬂﬂﬂ%%ﬂagarbage collection R4 . wwRRA §) X Arecord, MEHET
Y
A E IR 7 AR T A SR AT ER?
BAWFARE, BTURENER—ANFEBRE T —AF K, AALEFEERT R
—B—BireturnF R, W, EENHERA, GREA-ANETEEHFE
&, FATU&FEreturnB AN BK, TARBABENREEE CWHAHE. K
BTUE-NBRGETLEEFE TN ETXER, BB, EUEENE L tyet
A, ARAEHEA A BRETREE G CAENTE,

Cilk Program Execution as a DAG

lihidy
L.u.-.......,u-_...- o o each circle
represents
~
<

. a thread
" o ~
fibi) * T2y
(D60 | (D0 |
P LT | v .

1

s lik2) 6.3 |I1:_]| ligly 1 iyl
759 ([6) (&) &)
¥ A}
1 Py
4 o Legend
o A — continuation
-====p Spawn

------- —# retum

Properties of Performance Measures

* T, 2T,P
—P processors can do at most P work in one step
—suppose T, < T,/P, then PT, < T, (a contradiction)
* T2T
—suppose not: T, <T
—could use P of unlimited processors to reduce T
* T,/ T,=speedup
—with P processors, maximum speedup is P (for simplified model)
—possibilities
~ linear speedup: T,/ T_= &(P)
— sublinear speedup: T,/ T, = ofP)
~ superlinear speedup: T/ TP= 2{P) (never with simplified model)

* TJT =maximum speedup on = processors

Performance Measures

* T,=seq tial work; mini running time on 1 processor

* T, =minimum running time on P processors

* T = minimum running time on infinite number of processors
—equivalent to longest path in DAG — critical path length

Analyzing Parallelism in Cilk

cilk int fib{int n) { cilk int fib{int n) {
if (n < 2) return n; if (n < 2) return n;
else { else {

int ni, n2; int n1, n2;

n1 = spawn fib{n-1);
n2 = serial_fib{n-2);

n1= spawn fib(n-1);
n2 = spawn fib(n-2);

sync; sync;
return (n1 + n2); return (n1 + n2);
i }
} }
How much avg parallelism do we expect in each case?
(27 /n) 2

What is the length of the critical path in each case?
(counting operations, not threads)

O(n) Of27)
What do we expect for parallel execution time?
O(2%P+n) 027

"

Ron Cytron, et.al. Automatic Generation of DAG Parallelism. ACM PLDI’89

Work and Critical Path Example

i If all threads run in unit time
¢ Ty= 47

* T = 8 (critical path length)

The number of function
invocations for such a
function is
exponential, that is:
0O(2m

The number of leaves, in
general, is precisely
Fib (n+1).

0,1,1,2,3,5,8,13,21,...

Scheduling Tasks in Cilk

* Alternative strategies
work-sharing: thread scheduled to run in parallel at every spawn
~ benefit: maximizes parallelism
- drawback: cost of setting up new threads is high — should be avoided
—work-stealing: processor looks for work when it becomes idle
- lazy parallelism: put off work for parallel execution until necessary

- with precisely as much par ism as needed
inimi; the ber of threads that must be set up
runs with same efficiency as serial program on uniprecessor

* Cilk uses work-stealing rather than work-sharing

Greedy Scheduling

* Types of schedule steps
—complete step
—~ at least P threads ready to run
- select any P and run them
—incomplete step
- strictly < P threads ready to run
— greedy scheduler runs them all

Theorem: On P processors, a greedy scheduler executes any
computation G with work T, and critical path of length T in
time T, sT,/P+ T

Proof sketch

—aonly two types of steps: compl i p

—cannot be more than T,/P complete steps, else work > T,

—every incomplete step reduces remaining critical path length by 1
- nomore than T incomplete steps

15

Call Stack of Executing Process

steal

push | stack
frame

call
stack

pap

* Stack grows downward

* Stack frame contains local variables for a procedure invocation

* Procedure call - new frame is pushed onto the bottom of the stack
* Procedure return — bottom frame is popped from the stack

* Stack maintains order (synchroni k caller and callee 13

Race Conditions

* Two or more concurrent accesses to the same variable
* At least one is a write

cilk int f) { serial semantics? parallel semantics?
intx=0; f returns 2 let's look closely
spawn g(&x);
spawn g(&x);
sync;
return x;

}

parallel execution of two instances of g: g, g
many interleavings possible

one interleaving
cilk void g(int *p) :::: x
{'p+“1' |:> :Zaddf add 1 l::) f returns 1!
o : add 1
} wite X write x
write x

Cactus Stacks

Cilk uses a cactus stack

* A cactus stack enables sharing of C function’s local variables
void A() { B()i C()i }

void B() { D(}; E(); } each procedure's view of stack
id ¢ F(): 5 . 3
e R A B (D E F

void E() {}
void F() {}

call tree
A

/\ Rules

—pointers can be passed down call chain

B c
/\ \ —aonly pass pointers up if they point to heap
o E F — functions cannot return ptrs to local variables

What's the Problem with Races?

* Different interleavings can produce different resuits

* Race conditions cause non-deterministic behavior
ions may not be rep bl

- iF i may yield di results

Programming with Race Conditions

abort

* Approach 1: avoid them completely
—no read/write sharing between concurrent tasks
—only share between child and parent tasks in Cilk

* Approach 2: be careful!
—sometimes, outcome of a race won't affect overall result
- e.g. processes sharing a work queue
the order in which p grab tasks is i ial to the
result that the work gets performed
—avoiding data corruption
- word operations are atomic on microp
definition of a word varies according to processor: 32-bit, 64-bit

~ use locks to control icity of aggregate str
acquire leck
read and/or write protected data

release lock

* Syntax: abort;
* Where: within a cilk procedure p
* Purpose: terminate execution of all of p's spawned children

* Does this help with our nqueens example?
cilk void nqueens(n j, placement) {
precondition: placed | queens so far
if {f == n) return placement
for (k= 0; k < n; k++)
place j+1 queen in k™ position
if this is a legal placement of j+1 queens
spawn ngueensfn +1....)
syne;
if some child found a legal result return one, else return mull

i

Mot yet! need a way to invoke abort when a child yields a solution

References

* Cilk 5.4.1 reference manual.

* Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems.
hitp:/itheory.les.mit.edu/classes/6.895/fall03/scribe/master.ps

inlet

* Normal spawn: x = spawn f£(..);
—result of £ simply copied into caller’s frame

* Problem
—might want to handle receipt of a result immediately
—nqueens: handle legal from child ptly

* Solution: inlet
—block of code within a function used to incorporate results
—executes atomically with respect to enclosing function

* Syntax (inlet must appear in declarations section)

cilk int 1.3 {
intet void my_inlet{ResultType® result, iarg2, .., jargm) {
1/ atomically incorporate result into f's variables
return;
}
T el{spawn gi...). farg2, ..., jargn)
}
Challenge Problem: N Queens
Using an inlet
* Problem
—place N queens on an N x N chess board A simple complete example
—no 2 queens in same row, column, or diagonal
« Solution sketch cilk int fib{int n) { cilk int fib{int n) {
if (n < 2) return n; int result = 0;
cilk void nqueens(n, j placement) { else { et vold add(int)
& precondition; placed | queens so far int ni, n2: result += r;
if (j == n) return placement n1= spawn fib{n-1); return;
for (k= 0; k< n; k++) n2 = spawn fib(n-2);
place j+1 quear in k™ position sync; if (n < 2) return n;
if this is a legal placement of j+1 queens }relurn {01+ n2); e::f:n n2: inlet has
Wi ngueensinj+1,...) } add(spawn fib(n-1)); access to
cilk guarantees | ot fib's
inlet instances from all add|zpawn fi{n-2)); iabl
if some child found & legal resull relurn one, else retum il spawned children are sync; vanabies
) atomic w.r.t one another }relurn roa L,
* An inefficiency and caller too }

—asingle ffices; no need to all legal
—so far, no way to i hild loring alternate

10

N Queens Revisited

New solution that finishes when first legal result discovered

citk void ngueens(n | placement) {

int *reseit = null -——‘—-—'_‘_" function initializes result

& precormdiion piaced | gueen, 2 far
it void (chitdplacement) {
#f (ehitdpiacement == nul) return; else { resull = childplacement, abart;)
1
if {j == i) reduin placement

for{k=0:k<n; k++)
place j+1 quean in k™ position
if this yields a legal placesment of j+1 queens if solution
(spawn nqueensing+1,..)) found, inlet
S)TIC updates
return resull result and
¥ aborts
siblings

SYNCHED

* Determine whether a procedure has any currently outstanding
children without executing sync
if children have not completed
SYNCHED =0
otherwise
SYNCHED =1

* Why syNCHED? Save storage and enhance locality.

statel = Cilk_alloca(state_size);

spawn foo(statel); /+* fill in statel with data */
if (SYNCHED) state2 = statel;

else state2 = Cilk_alloca(state_size);

spawn bar(state2);

sync;

Implicit inlets

* General spawn syntax
—statement: [hs op] spawn proclargt, ..., argn);
—{lhs op] may be omitted
~ spawn update(&data);
—if Ihs is present
- it must be a variable matching the return type for the function
- opmay be

= *= = %= = = <<= 3>= = A= |=

* Implicit inlets execute atomically w.r.t. caller

Locks

* Why locks? Guarantee mutual exclusion to shared state
—only way to guarantee atomicity when concurrent procedure
instances are operating on shared data
* Library primitives for locking
Cilk_lock_init(Cilk_lockvar k
€ilk_lock(Cilk_lockvar k)
Cilk_unleck(Cilk_lockvar k)

must initialize a
lock variable
before using it!

Using an implicit inlet

Concurrency Cautions

cilk int fib{int n) {
if {n < 2) return n;
else {
int n1, n2;
n1= spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

implicit inlet instances
from all spawned
children are atomic w.r.t
one another and caller

cilk int fib{int n) {
int result = 0;
if (n < 2) return n;
else {
int n1, n2;
result += spawn fib{n-1)};
result += spawn fib{n-2));
sync;
raturn result;

cilk guarantees }

* Cilk atomicity guarantees
—all threads of a single pi dure operate atomically
—threads of a procedure include
- all code in the procedure body proper, including inlet code

* Guarantee implications
—can coordinate caller and callees using inlets without locks

* Only limited g t bet d dants or tor
—DAG precedence order maintained and nothing more
—don't icity L different procedures!

1

Sorting in Cilk: cilksort

Variant of merge sort
Divide array into four quarters A,B,C,D of equal size
Sort each quarter recursively in parallel
merge sorted A & B into tA and C & D into tC (in parallel)
merge sorted tA and tC into A

High-level sketch

cilk void cilksort(low,tmp,size){
sized = size/d
if size <= 1 return input
spawn cilksort(A,th,sized); spawn cilksort(B,tB, sized);
spawn cilksort(C, tC, sized);
spawn cilksort(D, tD, size-3*sized);
sync;
spawn cilkmerge(A, A + sized-1, B, B + sized-1l, thA);
spawn cilkmerge(C, C + sized-1, D,low + size-1, tC);
sync;
spawn cilkmerge(tA, tC-1, tC, tA + size-1, A);
sync;

Cilk: Behind the Curtain

* cilkc generates two copies of each procedure
—fast: for optimized execution on a single processor
—slow: used to handle execution of “stolen procedure frames™
~ key support for Cilk's work ling schedul

* Two schedulers
heduler: piled into cilk program
— execute cilk procedure and spawns in exactly the same orderas C
- on one PE: when no micrescheduling needed, same order as C

ffici dination with micr

—microscheduler
~ schedule procedures across a fixed set of processors

- imp ized work: ing scheduler
when a processor runs out of work, it becomes a thief

steals from victim processor chosen uniformly at random

Merging in Parallel

How can you incorporate parallelism into a merge operation?
Assume we are merging two sorted sequences A and B

m, & processos works on subrotine a until;

tine 4

and starts work on

e, the processor pushes o to the bottom of the ready dey

2. o returns

o I the d i sl beging working oa it

Optimizing Performance of cilksort

.

Recursively subdividing all the way to singletons is expensive

When size(remaining sequence) to sort or merge is small (2K)
—use sequential quicksort
—use sequential merge

Remaining issue: does not optimally use memory hierarchy

Funnelsort is optimal in this regard
—split input into n'? sections of size n??
—sort each recursively in parallel
n'? sorted using an n"?-way merger
—funnelsort({n): only O(1+(n/L){1+log.n))} cache misses if z = Q(L?)
See [Frigo MIT PhD 59]

t proceed. then the procesor
* Without loss of generality, assume A larger than B
Algorithm Sketch -
- qucus cud
1. Find median of the elements in A and B (considered together).
2. Do binary search in A and B to find its position. Split A and B at
this place to form A,, A,, By, and B,
3. In parallel, recursively merge A, with B, and A, with B,
- stack end
o The processar choases a victim uniformly at random,
puh 1 pop
o If the victim's degue is empty, the processor tries again.
s Otherwise, the processor steals the top (oldest) thread of the victim and begins to work on it
Nanscheduler Sketch

* Upon entering a cilk function Using fast procedure
—allocate a frame in the heap
—initialize the frame to hold the function’s shared state
—push the frame into the bottom of a deque (doubly-ended queue)
— one-to-one pairing between frames on stack and in degue
* Ataspawn
—save the state of the function into the frame
- only live, dirty variables
—save the entry ber | ition in the f into the frame
—call the spawned procedure with a normal function call
* After each spawn
—check to see if if the pr has been mig d
= if the current frame is still in the deque, then it has not
—if so, clean up C stack

* Each sync becomes a no-op

* When the procedure returns
—pop the frame off the deque
—resume the caller after the spawn that called this procedure 17

12

Microscheduler

Schedule procedures across a fixed set of processors

* When a processor runs out of work, it becomes a thief

—steals from victim p chosen uni y at

* When it finds victim with frames in its deque
—takes the frame (least ly pushed)
—places frame into its own deque

—qgives the corresponding procedure to its own nanoscheduler

* Nanoscheduler executes slow version of the procedure
—recelves only pointer to frame as argument
~ real args and local state in frame
—restores pgm counter to proper place using switch stmt (Duff's device)

—at a sync, must wait for children
—before the procedure returns, place return value into frame

Nanoscheduler Overheads

Basis for comparison: serial C

* Allocation and initialization of frame, push onto deque
—a few assembly instructions

* Procedure's state needs to be saved before each spawn
—aentry number, live variables

Y SY ization for non-sequentially consistent SMPs

* Check whether frame is stolen after each spawn
—two reads, compare, branch (+ memory synch if needed)

* On return, free frame - a few instructions
* One extra variable to hold frame pointer

* Overhead in practice
—fib{n) runs ~ factor of 2 or 3 slower than seq C

References

* Cilk 5.4.1 reference manual.

* Matteo Frigo. Portable High-performance Programs. PhD
thesis. MIT,1999.

* Charles Leiserson, Bradley Kuszmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems.
http:/itheory.les. mit.edu/classes/6.895/fall03/scribe/master.ps

13

