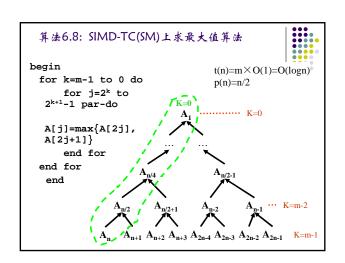
第二篇 并行算法的设计 第四章 并行算法的设计基础 第五章 并行算法的一般设计方法 第六章 并行算法的基本设计技术 第七章 并行算法的一般设计过程



第六章 并行算法的基本设计技术

- 6.1 划分设计技术
- 6.2 分治设计技术
- 6.3 平衡树设计技术
- 6.4 倍增设计技术
- 6.5 流水线设计技术

计算前缀和

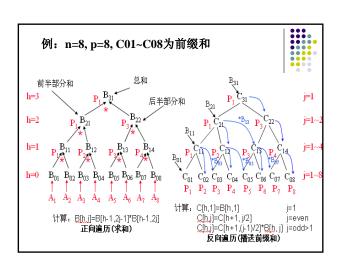
◆问题定义

- n个元素{x₁,x₂,...,x_n},前缀和是n个部分和: S_i=x₁*x₂*...*x_i, 1≤i≤n 这里*可以是+或×
- ◆ 串行算法: S_i=S_{i-1}*x_i 计算时间为 O(n)
- ◆ 并行算法: p154算法6.9 SIMD-TC上非递归算法 ◆A[i]=x_i, i=1~n,

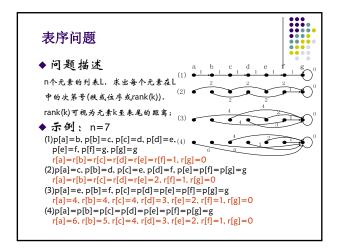
B[h,j]和C[h,j]为辅助数组(h=0~logn, j=1~n/2h) 数组B记录由叶到根正向遍历树中各结点的信息(求和) 数组C记录由根到叶反向遍历树中各结点的信息(播送前 缀和)

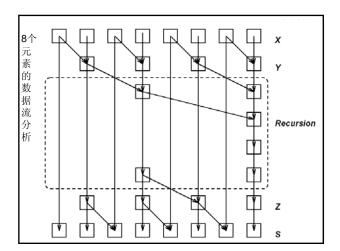
6.3平衡树设计技术

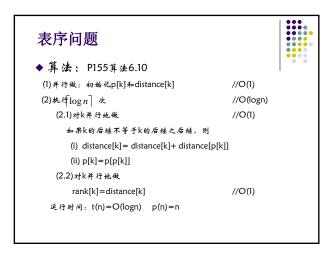
- ◆设计思想
 - 以树的叶结点为输入,中间结点为处理结点, 由叶向根或由根向叶逐层进行并行处理。
- ◆示例
 - 求最大值
 - 计算前缀和



```
input: Sequence x of n=2^k elements of type T, binary associative operator \oplus : T \times T
Putput: Sequence s of n=2^k elements of type T, with s_k=\oplus_{i=1}^k x_i for 1\leqslant k\leqslant n.
                                         if n=1 then
                                             s_1 \leftarrow x_1
 PRAM求前缀和算法
                                             return s
                                         endif
                                         forall i \in 1: n/2 do
SCAN(sequenceT x,
                                            y_i \leftarrow x_{2i-1} \oplus x_{2i}
\theta: T \times T \to T
                                         enddo
                                          \langle z_1, \ldots, z_{n/2} \rangle \leftarrow \text{SCAN}(\langle y_1, \ldots, y_{n/2} \rangle, \oplus)
                                          forall i \in 1:n do
                                             if even(i) then
                                             elsif i = 1 then
                                               s_1 \leftarrow x_1
                                             else
                                               s_i \leftarrow z_{(i-1)/2} \oplus x_i
                                             endif
                                         enddo
                                         return.
```







6.4倍增设计技术

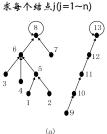
- ◆设计思想
 - 又称指針跳跃(pointer jumping)技术,特别 适合于处理链表或有向树之类的数据结构;
 - も递归调用射,所要处理数据之间的距离逐步加倍,经过k步后即可完成距离为2k的所有数据的计算。
- ◆示例
 - 表序问题
 - 求森林的根

求森林的根

◆问题描述

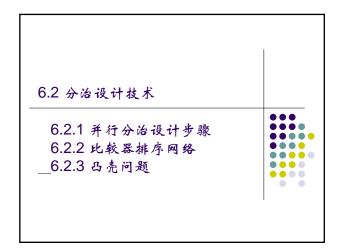
一组有向树F中,如果<i,j>是F中的一条弧,则p[i]=j(即j是i的双亲); 若i为根,则p[i]=i。求每个结点j($j=1\sim n$) 的树根s[j].

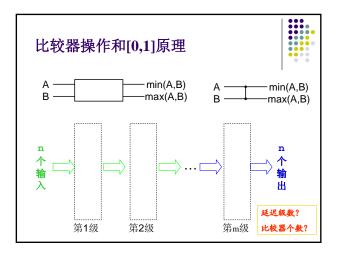
◆ 示例 初始射 P[I]=p[2]=5 p[3]=p[4]=p[5]=6 P[6]=p[7]=8 p[8]=8 P[9]=10 p[10]=11 p[11]=12 p[12]=13 p[13]=13 s[i]=p[i]



Batcher归并、排序网络

- ◆ 比较器操作和[0,1]原理
- ◆ 奇偶归并网络
- ◆ 双调归并网络
- ◆ Batcher排序网络
- ◆ 2D-Mesh上的排序算法





并行分治设计步骤

- ◆ 将輸入划分成若干个规模相等的子问题;
- ◆同时(并行地)递归求解这些子问题;
- ◆ 并行地归并子问题的解,直至得到原问 题的解。

[0,1]原理:如果一个n输入的网络能够排序所有2ⁿ 种0,1序列,那么它也能排序n个数的任意序列。

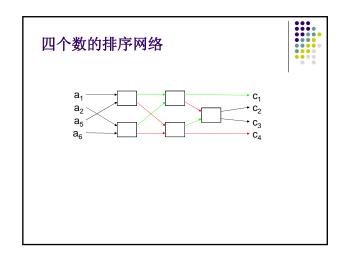
0, 1, 0, 0, 1, 1, 0 => 0, 0, 0, 0, 1, 1, 1

反证法: 设f是单调函数,且网络对于序列 $(a_1,...,a_n)$ 排序的结果 $(b_1,...,b_n)$ 中存在 b_i 有 b_i > b_{i+1} ,即b序列不是有序的.

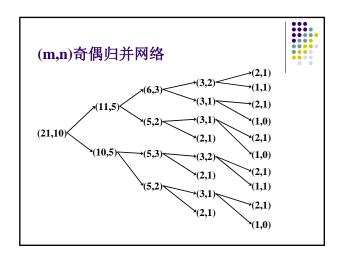
那么,该网络对于序列(f(a₁),...,f(a_n))排序成(f(b₁),...,f(b_n)) 且f(b_i)!=f(b_{i+1})时有f(b_i)>f(b_{i+1}).

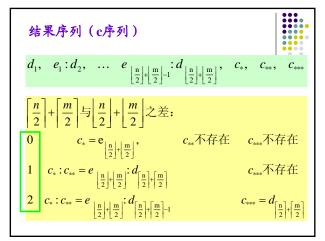
令b_i<b_i:f(b_i)=0; b_i>=b_i:f(b_i)=1,则有

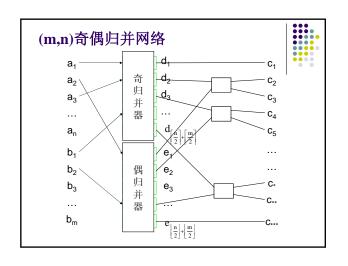
 $f(b_i)=1, f(b_{i+1})=0$,所以 $(f(b_1),...,f(b_n))$ 不是有序的,即不能够对输入的(0,1)序列排序。

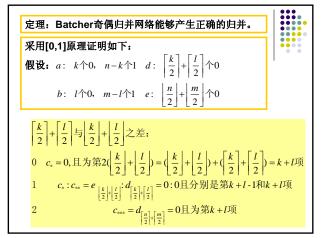


- □ 两个序列中的奇数位元素拿出来组成两个有序序列,由 奇归并器归并;
 □ 两个序列中的偶数位元素拿出来组成两个有序序列,由 偶归并器归并; $(a_1,a_3,...,a_{2\left \lfloor \frac{n}{2} \right \rfloor -1}),(b_1,b_3,...,b_{2\left \lfloor \frac{m}{2} \right \rfloor -1}) \Rightarrow (d_1,d_2,...,d_{\left \lfloor \frac{n}{2} \right \rfloor + \left \lfloor \frac{m}{2} \right \rfloor})$ $(a_2,a_4,...,a_{2\left \lfloor \frac{n}{2} \right \rfloor}),(b_2,b_4,...,b_{2\left \lfloor \frac{m}{2} \right \rfloor}) \Rightarrow (e_1,e_2,...,e_{\left \lfloor \frac{n}{2} \right \rfloor + \left \lfloor \frac{m}{2} \right \rfloor})$ □ 奇归并器输出的第一个数做为结果,第i个数与偶归并器输出的第i+1个两两比较,依次作为结果。
 - $d_1, \quad e_1:d_2, \quad \dots \quad e_{\left \lfloor \frac{\mathbf{n}}{2} \right \rfloor + \left \lfloor \frac{\mathbf{m}}{2} \right \rfloor 1}:d_{\left \lfloor \frac{\mathbf{n}}{2} \right \rfloor + \left \lfloor \frac{\mathbf{m}}{2} \right \rfloor}, \quad c_*, \quad c_{**}, \quad c_{***}$









$$C_{OE}^{M}(m,n) = \begin{cases} \sum_{C_{OE}^{M}(n)}^{mn} \frac{m \leq 1}{2} \\ C_{OE}^{M}(n,n) = C_{OE}^{M}(n,n) \end{cases}$$

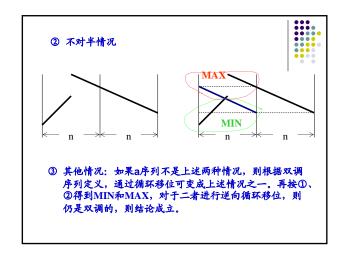
$$= \sum_{n \to \infty}^{mn} C_{OE}^{M}(n,n) = O(n \log n)$$

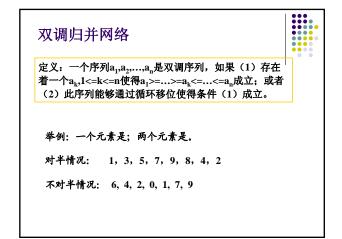
$$m = n = 2^{t} : C_{OE}^{M}(m,n) = 2C_{OE}^{M}(\frac{n}{2}, \frac{n}{2}) + n - 1 = n \log n + 1$$

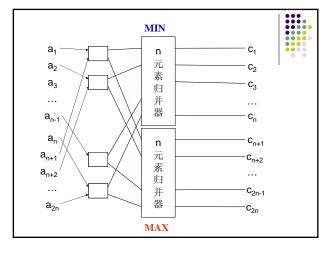
$$= \sum_{n \to \infty}^{mn} C_{OE}^{M}(m,n) = 1 + \max(D_{OE}^{M}(\frac{m}{2}, \frac{n}{2}), D_{OE}^{M}(\frac{m}{2}, \frac{n}{2}))$$

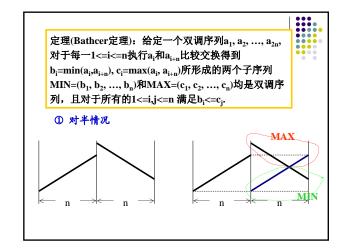
$$= \sum_{n \to \infty}^{mn} C_{OE}^{M}(n,n) = 1 + \max(D_{OE}^{M}(\frac{m}{2}, \frac{n}{2}), D_{OE}^{M}(\frac{m}{2}, \frac{n}{2}))$$

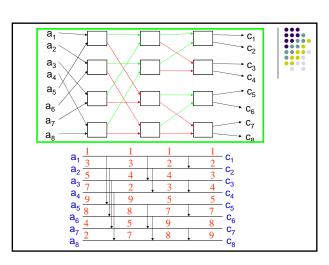
$$= \sum_{n \to \infty}^{mn} C_{OE}^{M}(m,n) = 1 + \log n = 1 + t$$

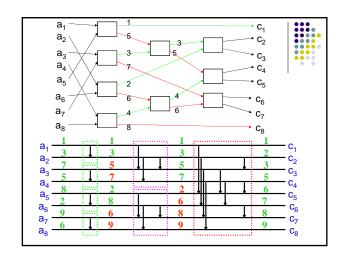






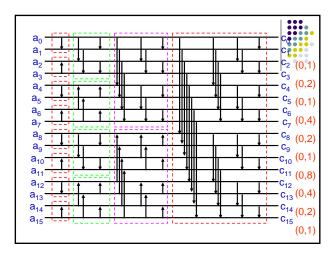


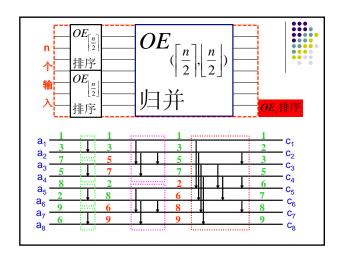




Batcher排序网络

- ◆ 对输入数进行两两比较,以形成长度为2的诸有序序列;
- ◆ 使用奇偶归并网络和双调归并网络,对两两长度各为2的有序序列施行归并,以形成一些长度为4的有序序列;
- ◆ 重复上述步骤,直到形成两个长度各为n/2的有序序列;
- ◆ 对这两个序列进行归并最终形成结果。





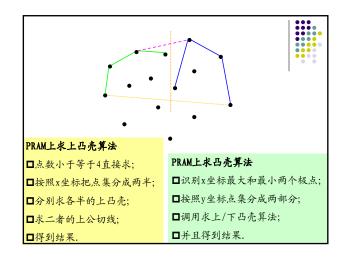
				二维网孔上的排序算法	
0	1	2	3		
4	5	6	7	行主编号:	(0,1)
8	9	10	11		(0,2) (0,1)
12	13	14	15	1,2,1,1,2,1,2,1,2,1	(0,1)
					(0,2)
0	1	4	5	洗牌编号:	(0,1)
2	3	6	7		(8,0)
8	9	12	13	1,1,1,2,1,1,2,2,1,1	(0,4)
10	11	14	15		(0,2)
					(0,1)

$$tr(2^{t}) = S\left(2^{\frac{t}{2}-1}\right) + tr(2^{t-1})$$

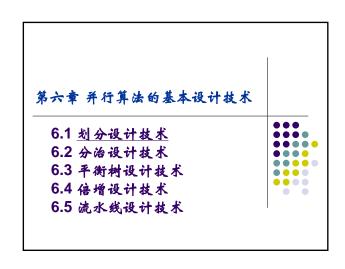
$$\sum_{k=1}^{t} tr(2^{k}) = \sum_{k=1}^{t} (t-k+1)S\left(2^{\frac{k}{2}-1}\right)$$

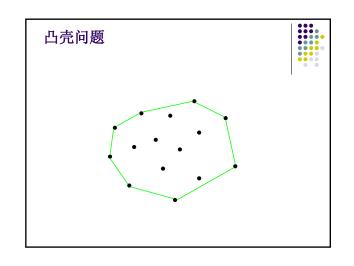
$$k = 2l - 1$$

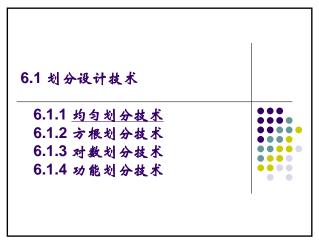
$$k = 2l -$$



算法描述 ◆ Batcher 双调归并算法 输入: 双调序列X=(X₀,X₁,...,X_{n-1}) 输出: 非降有序序列Y=(y₀,y₁,...,y_{n-1}) Procedure BITONIC_MERG(x) Begin (1)for i=0 to n/2-1 par-do (1.1) s_i=min{xi,xi+n/2} (1.2) l_i=max{xi,xi+n/2} end for (2)Recursive Call: (2.1)BITONIC_MERG(MIN=(S₀,...,S_{n/2-1})) (2.2)BITONIC_MERG(MIN=(l₀,..., I_{n/2-1})) (3)output sequence MIN followed by sequence MAX







均匀划分技术

◆ 划分方法

n个元素A[1..n]分成p组,每组A[(i-1)n/p+1..in/p],i=1~p

◆ 示例: MIMD-SM模型上的PSRS排序

begin

(1)均匀划分:将n个元素A[1..n]均匀划分成p段,每个 p_i 处理 A[(i-1)n/p+1..in/p]

(2)局部排序: p_i 调用串行排序算法对A[(i-1)n/p+1..in/p]排序

(3)选取样本: p_i从其有序子序列A[(i-1)n/p+1..in/p]中选取p个样本元素

(4)样本排序:用一台处理器对p²个样本元素进行串行排序

(5)选择主元:用一台处理器从排好序的样本序列中选取p-1个主元,并

播送给其他pi

(6)主元划分: p,按主元将有序段A[(i-1)n/p+1..in/p]划分成p段 (7)全局交换: 各处理器将其有序段按段号交换到对应的处理器中

(8)归并排序:各处理器对接收到的元素进行归并排序

end.

6.1.2方根划分技术

◆ 划分方法

n个元素A[1..n]分成 $A[(i-1)\times\sqrt{n}+1\cdots i\times\sqrt{n}], i=1\cdots\sqrt{n}$

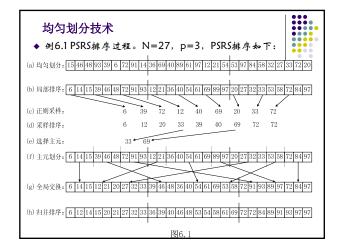
(1)方根划分: A,B分別按 $i\left[\sqrt{p}\right]$ 和 $j\left[\sqrt{q}\right]$ 分成若干段($i=1\sim\left\lfloor\sqrt{p}\right\rfloor$ 、 $j=1\sim\left\lfloor\sqrt{q}\right\rfloor$)

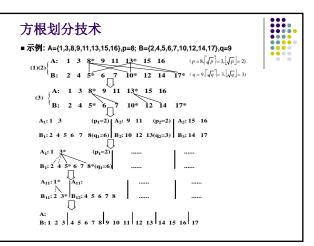
A划分元与B划分元比较(至多 $\left|\sqrt{p}\left|\cdot\right|\sqrt{q}\right|$ 对),确定A划分元应插入B中的区段

(3)段内比较: A划分元与B相应段内元素进行比较,并插入适当位置

(4)递归归并: B按插入的A划分元重新分段,与A相应段(A除去原划分元)构成了成对的段组,对每对段组递归执行(1)~(3),直至组为空时递归结束;各组仍按 $k=|\sqrt{pq}|$ 分配处理器

.





Time Comlexity

- ◆ 在Phase b中,由於各處理器平行進行Quicksort,故所需時間爲O(k log k),其中k=n/p。
- ◆ 在Phase d中,對p2個資料做排序需要O(p² log p²)的時間。在Phase f中各個處理器對本地排序好的list做p-1次binary search(list的長度不大於k),所以總共需要的時間爲O(p² log p² + p log k)。
- ◆ 在Phase h中,各處理器所需要merge的大小不會超過 2k,故Phase h可在O(2k log p)時間完成。
- ・ 將上述结果相加,所需時間爲O(k log k + k log p + p log k + p² log p²)。當n≥p³時,近似於O(k log k) = O((n/p)log n),顯然是cost optimal的。

林育德,A Survey on Parallel Sorting by Regular Sampling (PSRS),台灣大學 R87921104

分析:第4步递归归并时,原来的k台处理器是否够用?

设A和B中各段长度分别为 p_i 和 q_i

$$\begin{split} & \sum p_i = p \sum q_i = q \\ & \sum \sqrt{p_i q_i} \le \sqrt{\sum p_i \sum q_i} \\ & \sum \left| \sqrt{p_i q_i} \right| \le \left| \sum \sqrt{p_i q_i} \right| \le \left| \sqrt{\sum p_i \sum q_i} \right| \le \left| pq \right| = k \end{split}$$

时间复杂度分析

- ◆ 递归归并过程中,各段组中的有序序列均是A,B中的一段, 所以从A的分段来看,每个归并中的两段中,至少有一段其 长度不大于 $|\sqrt{p}|$
- ◆ 假定第i次递归归并中,某归并有一个序列长度为

6.1.4功能划分技术

◆ 划分方法

n个元素A[1..n]分成等长的p组,每组满足某种特性。

- ◆ 示例: (m, n)选择问题(求出n个元素中前m个最小者)
 - 功能划分:要求每组元素个数必须大于m;
 - 算法: p148算法6.4

输入: A=(a1,...,an); 输出: 前m个最小者; Begin

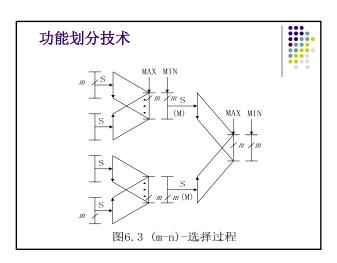
- (1) 功能划分:将A划分成g=n/m组,每组含m个元素;
- (2) 局部排序:使用Batcher排序网络将各组并行进行排序;
- (3) 两两比较:将所排序的各组两两进行比较,从而形成 MIN序列;
- (4) 排序-比较:对各个MIN序列,重复执行第(2)和第(3)步,直至

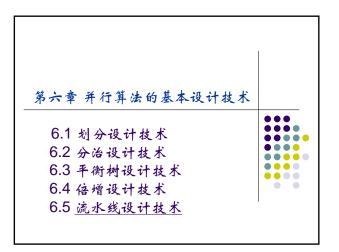
选出m个最小者。

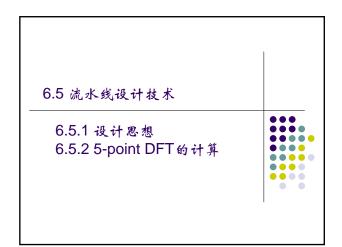
End

分析 ■算法分析 (1)算法在并行递归过程中所需的处理器数 $\leq k = \left| \sqrt{pq} \right|$ 段间比较: \sqrt{p} \sqrt{q} 比较对数 \ll \sqrt{pq} = k , 段内比较: \sqrt{p} $\downarrow \sqrt{q}$ $\downarrow 0 \le \sqrt{pq}$ $\downarrow k$ 递归调用: 设 A,B 分成若干子段对为(p1,q1), (p2,q2),...... $p^{2^{-i}} \geq C$ 则Σp_i≤p, Σq_i≤q, 由Cauchy不等式=> $2^{-i}\log p \ge C'$ $\sum \left| \sqrt{p_i q_i} \right| \leq \left| \sum \sqrt{p_i q_i} \right| \leq \left| \sqrt{\sum p_i \sum q_i} \right| \leq \left| \sqrt{pq} \right| = k$ $2^i C' \leq \log p$ 综上,整个过程可用处理器数 $k = |\sqrt{pq}|$ 完成。 $iC'' \leq \log \log p$ (2)时间分析 记 λ_i 是第i次递归后的A组最大长度,=> λ_0 =p, $\lambda_i \le \left\lfloor \sqrt{\lambda_{i-1}} \right\rfloor \le \cdots \le \left\lfloor p^{2^{-i}} \right\rfloor$ 算法在 $\lambda_i = 常数C$ 时终止递归,即 $p^{2^{-i}} \ge 常数C \implies i \le \log\log p + 常数C_i$ 由(1)知算法中其他各步的时间为 O(1), 所以 Valiant 归并算法时间

 $t_k(p,q) = O(\log \log p)$ $p \le q$







5-point DFT的计算

◆问题描述

5-point DFT的计算。应用素九韶(Horner)法则,

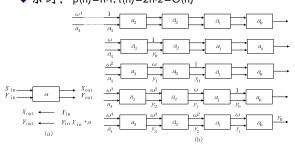
 $\begin{cases} y_0 = b_0 = a_4 \omega^0 + a_3 \omega^0 + a_2 \omega^0 + a_4 \omega^0 + a_0 \\ y_1 = b_1 = a_4 \omega^4 + a_3 \omega^3 + a_2 \omega^2 + a_4 \omega^4 + a_0 \end{aligned} + \begin{cases} y_0 = (((a_4 \omega^0 + a_3) \omega^0 + a_4) \omega^0 + a_1) \omega^0 + a_0 \\ y_1 = (((a_4 \omega^0 + a_3) \omega^0 + a_2) \omega^0 + a_1) \omega^1 + a_0 \end{aligned} + \begin{cases} y_0 = (((a_4 \omega^0 + a_3) \omega^0 + a_2) \omega^0 + a_1) \omega^0 + a_0 \\ y_2 = b_2 = a_4 \omega^0 + a_2 \omega^0 + a_2 \omega^0 + a_0 \omega^0 + a_0 \end{aligned} + \begin{cases} y_0 = (((a_4 \omega^0 + a_3) \omega^0 + a_2) \omega^0 + a_1) \omega^0 + a_0 \\ y_2 = ((((a_4 \omega^0 + a_3) \omega^0 + a_2) \omega^0 + a_1) \omega^0 + a_0 \omega^0 + a$

流水线设计技术

- ◆设计思想
 - 将算法流程划分成P个前后衔接的任务片 断,每个任务片断的输出作为下一个任务片 断的输入;
 - 所有任务片断按同样的速率产生出结果。
- ◆评注
 - 流水线技术是一种广泛应用在并行处理中的 技术;
 - 脉动算法(Systolic algorithm)是其中一种流水 线技术;

5-point DFT的计算

◆ 示例: p(n)=n-1, t(n)=2n-2=O(n)



B(4,3) B(3,4) 矩阵相乘 B(4,2) B(3,2) B(3,3) B(2,3) B(2,4) B(1,4) B(4,1) B(3,1) B(2,2) B(1,3) B(2,1) B(1,2) B(1,1) P2,1 P2,2 P2,3 P2,4 A(3,1) A(3,2) A(3,3) A(3,4) P3.1 P3.4 A(4,1) A(4,2) A(4,3) A(4,4) P4,1 P4,3

第一次大作业

- ◆ 1. 设计3D-Mesh上的排序算法,分别给出算法的原理描述和 具体描述,并进行时间复杂度分析;
- ◆ 2. 设计超立方体上的并行排序算法,分别给出算法的原理描述和具体描述,并进行时间复杂度分析;
- ◆ 3. 编程实现PSRS算法,给出带注解代码和运行测试结果;
- ◆ 4. 给出一个算法例子,该算法能够体现出LoGP模型的全部内容,并给出这个算法的原理描述、具体描述以及分析结果。

考试题

说明:

- 1. 任选一题,完成后书面提交,截至时间本学期第17周;
- 2. 题目中涉及的"并行计算"可能包括结构、模型、算法、性能、 易用性等方面,所以思路要开阔;
- 3. 题目中涉及到要你进行选择的时候,一定要明确你的选择依据或者理由;
- 4. 答卷中需要包含分析或实验的内容,有新见解、完整性好或 者论述充分者得满分。

- 1. 试论述生物学系统中的并行性对并行计算的贡献。
- 2. 试论述工学系统中的并行性对并行计算的贡献。
- 3. 写出一个典型的博弈树搜索问题(或其他同等问题) 的并行算法,编程实现,进行算法分析。
- 4. 写出一个典型的数据挖掘问题的并行算法,编程实现,进行算法分析。
- 5. 试从网络协议级对第八章的选路方法和开关技术进行解释。
- 6. 应用PCAM方法学设计一个并行应用(必须要是临界 问题)。
- 7. 写出一个典型的博弈树搜索问题(或其他同等问题) 的并行算法,给出基于BSP模型和LogP模型的算法描述,进行算法分析。
- 8. 写出一个典型的数据挖掘问题的并行算法,给出基于 BSP模型和LogP模型的算法描述,进行算法分析。