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The basic theory of K41 of the velocity field:
structure function
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So, nat’s ralists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller yet to bite ’em,
And so proceed ad infinitum.
Thus every poet, in his kind,
Is bit by him that comes behind.

—— Jonathan Swift: On Poetry: Rhapsody (1733)

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(in the molecular sense).

—— Lewis Richardson (1922)

1 Physical Picture

We must emphasize here that the Kolmogorov theory is a phenomenol-
ogy theory. The physical picture of this theory is a very simple sketch that
it is not responsible for describing the real turbulence exactly and there may
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be some places even unreal. However, as we shall see, this theory grasps the
essential features of the turbulence and can give some valid predictions.

In K41 theory, the turbulence can be considered to be composed of eddies
of different scales. The characteristic velocity of the biggest eddies v(1) and
the scale r(1) are always large. Thus the Reynolds number of the biggest
eddies

Re(1) =
v(1)r(1)

ν
is very large. The biggest eddies are unsteady and then will smash into
smaller eddies with smaller characteristic velocity. The characteristic velocity
and the scale of these eddies are denoted as v(2) and r(2). The smashing
processes will continue until the nth Reynolds number of the eddies

Re(n) =
v(n)r(n)

ν

is too small to smash into smaller eddies, for the viscous will then dominate
the processes and make the nth eddies stable. In the above equation, rn

is the characteristic scale of the smallest eddy and is called the Kolmogorov
scale which is always denoted by η. The smashing processes as stated above
are always called cascade processes.

During the cascade processes, the motions of the children eddies are ran-
domly transferred by their mothers. Thus we can image that, when the
length of the cascade processes is very large, the anisotropic and the inhomo-
geneous information of the big eddies will lost during the cascade processes
and the small eddies will become statistically isotropic and homogeneous.
For guaranteeing large length of the cascade processes, the Reynolds number
of the turbulent flow

Re =
UL

ν
must be very large, where U is the characteristic velocity and L is the charac-
teristic scale of the flow. The picture stated above forms the first hypothesis
of K41 theory, as we shall see in Sec. 2. We emphasize here that the sta-
tistical isotropy and homogeneous is local. That is to say, the statistical
isotropy and homogeneous is satisfied in a small space domain which scale is
far smaller than L. However, we should not recognize that the eddies
of the whole flow field, which scales are far smaller than L, are
statistically isotropic and homogeneous.

From the energy point of view, the energy from the external forms the
large eddies and maintains their motions, and then is passed successively to
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form the smaller eddies and maintain their motions by the cascade processes.
During this processes, the viscosity is negligible by comparing with the inertia
as the Reynolds numbers of the eddies are very large. Hence, there is almost
no energy dissipated during the cascade processes. However, at the end of
the energy transfer processes where the Reynolds number of the eddies is
very small, the viscosity is effective in dissipating the kinetic energy. From
above discussions, we can see that the range of scale ℓ of the eddies can be
divided into three parts. When ℓ is on the order of r(1) which approximates
to L, most external energy will enter the eddies of scales in this range which
is called energy-containing range. The motions of the eddies in the energy-
containing range are impacted by the external and may be anisotropic. When
η < ℓ ≪ L, the cascade processes pass the energy inviscidly and we thus call
this range inertial subrange. The range of ℓ < η is called dissipation range
as the energy is mainly dissipated in this range. Both the inertial subrange
and the dissipation range are called universal equilibrium range.

2 Hypothesis of K41

The Definitions and Hypothesis discussed as follows are refereed to Kol-
mogorov (1941a). The velocity field of the flow is denoted by u(r, t). The
differences between the velocities at two different locations are denoted by
wi(r,x, t) = ui(x + r, t) − ui(x, t)(i = 1, 2, 3). If we pick out N points in the
space domain G, then we have N random variables of w(k)(k = 1, 2, · · · , N).
The joint PDF of w(k) are denoted by FN . Why are the statistics of the veloc-
ity differences used in K41? The answers are refereed to Frisch (1995), where
they discussed that the velocity differences can be seen as the characteristic
velocities of the eddies.

Definitions of Local Homogeneous. The turbulence is called locally
homogeneous in the space domain G, if for every fixed N and r(k)(k =
1, 2, · · · , N), the N-point PDF FN is independent of x and u(x, t).

Definitions of Local Isotropy. The turbulence is called locally isotropic
in the space domain G, if it is homogeneous and if, besides, the PDF FN is
invariant with respect to rotations and reflections of the coordinate axes of
the original system.

The Hypothesis of the Finiteness of the Energy Dissipation. The

energy dissipation ⟨ε⟩ = ν

⟨
∂ui

∂xj

∂ui

∂xj

⟩
. We suppose that

⟨
∂ui

∂xj

∂uk

∂xl

⟩
is finite
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and the finiteness of the energy dissipation can be satisfied.
The Hypothesis of Local Isotropy. In an arbitrary turbulent flow

with a sufficiently large Reynolds number, the turbulence is local isotropy
with good approximation in sufficiently small time interval and domains G
not lying near the boundary of the flow or its other special regions [The ex-
pression here has a little difference from Kolmogorov (1941a), see Tsinober
(2001)]. By a ‘sufficiently small time interval’, we mensa here a time interval
whose characteristic scale is small in comparison with T = U/L (that is, the
turbulence can be considered as a stationary flow field approximately). By
a ‘sufficiently small domains G’, we mensa here a domain G whose charac-
teristic scale is small in comparison with L or r(1) (that is, the scale of G is
in the universal equilibrium range).

What is the results of the isotropy (including reflection)? For the scalar
field T (r) and the vector field T(r), the isotropy requires that

T (r) = T (Or)

Ti(r) = O−1
ij Tj(Or),

where O is the rotation and reflection transform operator. Then the forms
of T and T can be easily deduced from above transform rules,

T (r) = A(r) (1)

Ti(r) = A(r)ri. (2)

The higher-order isotropic tensor can be decomposed by the 1-order isotropic
tensor field Ti(r) and the 2-order isotropic tensor δij. For example, the 2-
order isotropic tensor can be decomposed as follows,

Tij(r) = f1(r)Ti(r)Tj(r) + f2(r)δij

= A(r)rirj + B(r)δij.

For the 3-order tensor field, there are four kinds of isotropic compositions
which are TiTjTk, Tiδjk, Tjδik and Tkδij, respectively. Thus, the 3-order
isotropic tensor can be written as

Tijk(r) = A(r)rirjrk + B(r)riδjk + C(r)rjδik + D(r)rkδij + E(r)εijk,

where εijk is Levi-Civita symbol and

εijk =

∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣
4
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We note that the higher-order isotropic tensor field Tijk...(r) constructed by
above method satisfies the following transform rule

Tijk...(r) = O−1
iℓ O−1

jmO−1
kn . . . Tℓmn...(Or). (3)

We now use above results to obtain some useful results of locally isotropic
turbulence. According to the definition of local isotropy, the distribution FN

can be regarded as a isotropy scalar functional with respect to r. Thus by
Eq. (1), we have

FN [w(r)] = f(w1, w2, w3; r),

that is, the shape of FN does not depend on the direction of r. If we reflect
x axis with respect to y axis, the shape does not change and we thus have

f(−w1, w2, w3, r) = f(w1, w2, w3, r), (4)

that is, FN is a even function with respect to w1. In fact, FN is a even
function with respect to any velocity component. If we exchange x axis and
y axis, the shape also dose not change and we thus have

f(w2, w1, w3, r) = f(w1, w2, w3, r).

that is, FN is a symmetric function with respect to w1 and w2. In fact, FN is
a symmetric function with respect to any two velocity components. Any non-
random function defined on this isotropic turbulent field is isotropic. Thus
the form of these function will be the same as the isotropic tensor which we
have deduced above.

Why does the local isotropy require a large Reynolds number? For a large
Reynolds number, there will be a wider scale range of cascade processes and
at the end of this processes there would be a range independent of internal
impacts, that is there would be a inertial subrange. This inference will be
clearly seen after we define the Kolmogorov scale at Sec. 3.

The First Hypothesis of Similarity. For the locally isotropic turbu-
lence the distributions FN are uniquely determined by the quantities ν and
⟨ε⟩, where ⟨ε⟩ is the mean dissipation rate per unit mass.

The Second Hypothesis of Similarity. If η ≪ r ≪ L, then the distri-
butions FN is uniquely determined by the quantity ⟨ε⟩ and does not depend
on ν, as the cascade processes are independent of the viscosity. However,
why dose FN depend on the dissipation rate? In the inertial subrange, we
may naturally suppose that FN depends on the energy transfer rate from
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large scale to small scale. Just as the cascade is independent of viscosity, the
energy is mainly dissipate at Kolmogorov scale and the energy transfer rate
approximates the dissipation rate.

3 Main Results

In this section, we derive some results from above hypothesis, which make the
experimental verification of the physical picture introduced in Sec. 1 possible
in particular cases. The following discussions are referred to Pope (2000).

3.1 Second-order statistics

Kolmogorov (1941a) defined the second-order structure function Dij by

Dij(r,x, t) = ⟨[ui(x + r, t) − ui(x, t)][uj(x + r, t) − uj(x, t)]⟩.

For the locally isotropic turbulence, the structure function Dij is a 2-
order isotropic tensor and only related to r. Thus it can be written as

Dij(r) = DN2(r)δij + [DL2(r) − DN2(r)]
rirj

r2
, (5)

where DL2 and DN2 are called, respectively, the longitudinal and transverse
structure function. If the coordinate system is chosen so that r is in the x
direction, then we obtain

D11 ≡ DL2(r)

D22 = D33 ≡ DN2(r) (6)

Dij = 0, if i ̸= j

Here we give an example, that is D22 = D33, to test above results. First, the
structure function of D22 is

D22 =

∫
d∆u2(∆u2

2)

∫
d∆u1

∫
d∆u3F (∆u1, ∆u2, ∆u3)

where ∆u2 = u2(x + rex) − u2(x). Then we exchange y-axis and z-axis by
the rotation and reflection of x-y axes. In the new system of coordinate axes,
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the structure function D′
22 is

D′
22 =

∫
d∆u′

2(∆u′
2
2
)

∫
d∆u′

1

∫
d∆u′

3F
′(∆u′

1, ∆u′
2, ∆u′

3)

=

∫
d∆u′

2(∆u′
2
2
)

∫
d∆u′

1

∫
d∆u′

3F (∆u′
1, ∆u′

3, ∆u′
2)

= D33.

For the isotropic flow, the distributions of w do not vary during the coor-
dinate transformation, that is, F ′(∆u′

1, ∆u′
2, ∆u′

3) = F (∆u1, ∆u2, ∆u3), and
hence, D′

22 = D22. Finally, we have

D22 = D33.

According to the continuity equation of the incompressible fluid

∂ui/∂ri = 0,

the differential of the structure function is

∂Dij

∂ri

=

⟨
[ui(x + r) − ui(x)]

∂[uj(x + r) − uj(x)]

∂ri

⟩
= lim

∆r→0

⟨
[ui(x + r) − ui(x)]

[uj(x + r + ∆rei) − uj(x + r)]

∆r

⟩
(7)

For the locally isotropic turbulence (considering Eq. (4)), we then have

∂Dij

∂ri

= 0. (8)

According to Eqs. (5) and (8), we can obtain

∂Dij

∂ri

=
∂DN2

∂r

ri

r
δij +

[
∂DL2

∂ri

− ∂DN2

∂ri

]
rirj

r2
+ (DL2 − DN2)

∂(rirj/r
2)

∂ri

=
rj

r

∂DL2

∂r
+ (DL2 − DN2)

[
2
rj

r2
+

1

r2

∂rj
2

∂rj

+ rirj
∂(1/r2)

∂ri

]
=

rj

r2

[
r
∂DL2

∂r
+ 2(DL2 − DN2)

]
It then follows that DN2 is uniquely determined by DL2 according to

DN2 = DL2 +
1

2
r

∂

∂r
DL2 . (9)

7
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When r ≪ L, that is in the universal equilibrium range, DL2 is
only related to three variables, r, ν and ⟨ε⟩, according to the first similarity
hypothesis. The units of the three variables are L, L2T−1 and L2T−3. Thus,
we can obtain one independent non-dimensional group from these variables,
which can conveniently be taken to be r⟨ε⟩1/4/ν3/4 = r/η. As we shall see, η
is just the Kolmogorov scale. Then it can be obtained

DL2

(⟨ε⟩r)2/3
= f

(
r

η

)
, (10)

where f(r/η) is a non-dimensional universal function for any turbulence.
When η ≪ r ≪ L, that is in the inertial subrange, DL2 is only

related to two variables, r and ⟨ε⟩, according to the second similarity hy-
pothesis. In this case there is no non-dimensional group that can be formed
from r and ⟨ε⟩, so DL2 is given by

DL2 = C2(⟨ε⟩r)2/3, (11)

where C2 is a universal constant. The transverse structure function is, from
Eq. (9),

DN2 =
4

3
DL2 =

4

3
C2(⟨ε⟩r)2/3,

and hence, from Eq. (5), Dij is given by

Dij = C2(⟨ε⟩r)2/3

(
4

3
δij −

1

3

rirj

r2

)
.

When r is very small, that is, r is in the dissipation range and
is far less than the Kolmogorov scale η, the transverse and longitudinal
structure functions are

DL2 ≈ r2

⟨(
∂u1

∂x1

)2
⟩

DN2 ≈ r2

⟨(
∂u2

∂x1

)2
⟩

. (12)

As in the discussions of Eq. (7), the 4-order tensor ⟨(∂ui/∂xj)(∂uk/∂xl)⟩ is
isotropic, and hence can be written⟨

∂ui

∂xj

∂uk

∂xl

⟩
= αδijδkl + βδikδjl + γδilδjk,

8
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where α, β and γ are scales which are independent of space variables in the
small domain G. In view of the continuity equation ∂ui/∂xi = 0, it shows
that ⟨

∂ui

∂xi

∂uk

∂xk

⟩
= 9α + 3β + 3γ = 0,

and hence,
3α + β + γ = 0. (13)

As the local isotropy, we have⟨
∂ui

∂xi

∂uk

∂xk

⟩
= 9α + 9β + 27γ = 0,

and hence,
α + β + 3γ = 0. (14)

According to Eqs. (13) and (14), we have⟨
∂ui

∂xj

∂uk

∂xl

⟩
= β

(
δikδjl −

1

4
δijδkl −

1

4
δilδjk

)
.

By this equation, it shows that⟨(
∂u1

∂x1

)2
⟩

=
1

2
β,

⟨(
∂u1

∂x2

)2
⟩

= 2

⟨(
∂u1

∂x1

)2
⟩

, (15)

and

⟨ε⟩ = ν

⟨
∂ui

∂xj

∂ui

∂xj

⟩
= βν

(
9 − 3

4
− 3

4

)
=

15

2
νβ = 15ν

⟨(
∂u1

∂x1

)2
⟩

. (16)

From Eqs. (15), (16) and (12), we can obtain

DL2 ≈ r2

⟨(
∂u1

∂x1

)2
⟩

=
r2⟨ε⟩
15ν

DN2 ≈ r2

⟨(
∂u2

∂x1

)2
⟩

=
2r2⟨ε⟩
15ν

= 2DL2(r).

By above equations, we can estimate the characteristic scale of the small-
est eddies

ℓ ∼
(uℓν

ε

)1/2

. (17)

9
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The energy dissipation rate approximates energy transfer rate and can be
estimated by

ε ∼ u3
ℓ

ℓ
∼ U3

L
(18)

According to Eqs. (17) and (18), we have

ℓ ∼
(

ν3

ϵ

)1/4

.

We thus define the Kolmogorov scale by convention, which is just the length
scale η in Eq. (10)

η =

(
ν3

⟨ϵ⟩

)1/4

.

The relationship of η/L and the Reynolds number Re is then

η

L
∼ Re−3/4. (19)

and hence, we can see that the bigger is the Reynolds number the wider is
the inertial subrange.

We also can use Eq. (19) to estimate the computational time by the
Direct Numerical Stimulation(DNS). In the Fourier space, L and η can be
regarded as the largest and smallest wavelength of the Fourier modes respec-
tively. Thus the total number of the modes needed to describe 3-dimensional
turbulent field is

N ∼
(

L

η

)3

∼ Re9/4.

According to the Discrete Fourier Transformation theory(My Report , 2008),
the number of the grid points equals to N and is thus proportional to Re9/4.
The integral time steps during the time on the order of the turbulent de-
cay time(or large eddy turnover time, defined as ⟨uiui⟩/2⟨ε⟩) per grid point
is(Pope , 2000)

M ∼ L

η
∼ Re3/4.

We suppose that 1,000 floating point operations per grid point per time step
are needed. Then the computational time in days, T , needed to perform a

10
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simulation at a computing rate of 1 gigaflop (109 floating point operation per
second) is

T =
103NM

109 × 60 × 60 × 24
∼

(
Re

4400

)3

. (20)

According to Eq. (2) and by DNS, 33 years and a gigaflop computer are
needed to simulate the turbulence with Reynolds number Re ∼ 105 which
is the largest value obtained in the laboratory of today. In the atmospheric
turbulence, the Reynolds number is 2 or 3 orders of magnitude greater and
the computational time can be as long as 30,000,000 years. Thus it imprac-
ticable to stimulate turbulence with gigaflop computers by DNS, especially
the nature turbulence with high Reynolds number and complex boundary
conditions.

There is also another method to obtain above results. As the non-
dimensional function f(r/η) in Eq. (10) is universal for any turbulence, we
thus assume that the flow field is globally isotropic and homogeneous, that
is, the distribution function of u(x) is isotropic and homogeneous, and then
re-derive Eq. (8). We define the two-point correlation

Rij(r,x) ≡ ⟨ui(x)uj(x + r)⟩. (21)

From the substitution x′ = x + r, we have

Rij(r,x) = Rji(−r,x′),

and hence, for a statistically homogeneous field,

Rij(r) = Rji(−r).

The relation of the structure function and the two-point correlation for ho-
mogeneous turbulence with ⟨u⟩ = 0 (which is satisfied when the turbulence
is globally isotropic) is

Dij(r) = 2Rij(0) − Rij(r) − Rji(r)

= 2Rij(0) − Rij(r) − Rij(−r),

and hence,
∂Dij

∂ri

=
∂Dij

∂rj

= 0.

11
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3.2 Higher-order statistics

According to the second hypothesis of similarity and the dimensional analy-
sis, the higher-order structure functions in the inertial subrange are

DLn = Cn(⟨ε⟩r)n/3,

where DLn = ⟨[u1(x+r)−u1x]2⟩ and Cn are universal constants. Kolmogorov
(1941b) has computed the 3-order structure function by using the Navier-
Stokes equation and obtain C3 = 4/5, that is so called 4/5 law. In the
following discussion, we will assume that the flow is global isotropic and
homogeneous and derive the 4/5 law(Pope , 2000; Davidson , 2004).

First, we derive the Karman-Howarth equation expressed in terms of two-
point correlation for isotropic and homogeneous turbulence. By using the
Novier-Stokes equation

∂ui

∂t
= −∂(uiuk)

∂xk

− 1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
k

,

we obtain

∂

∂t
⟨uiu

′
j⟩ = −⟨ui

∂u′
ju

′
k

∂x′
k

+ u′
j

∂uiuk

∂xk

⟩ − 1

ρ
⟨ui

∂p′

∂x′
j

+ u′
j

∂p

∂xi

⟩

+ν⟨ui

∂2u′
j

∂x′
k
2 + u′

j

∂2ui

∂x2
k

⟩, (22)

where u′ = u(x + r) and x′ = x + r. Before simplifying above equation,
we note that: (1) the ensemble average and the differentiation commute; (2)
∂/∂xi = −∂/∂x′

j = −∂/∂ri, if they operate on averages; (3) ui is independent
of x′ and u′

j is independent of x. For isotropic and homogeneous turbulence
(the flow is not stationary, for we use the Navier-Stokes equation of the
free decaying flow), the isotropic pressure terms is ⟨p′ui⟩ = A(r)ri. For
incompressible flow, we have ∂⟨p′ui⟩/∂ri = 0, and hence, ⟨p′ui⟩ = ari/r

3.
When r = re1, ⟨pui⟩ = a/r2. If the flow is isotropic, ⟨pui⟩ = 0, and hence
a = 0. Finally, the pressure terms equal to zero. Eq. (22) then simplifies to
the more compact result,

∂Rij

∂t
=

∂

∂rk

[Sijk + Sjki] + 2ν∇2Rij, (23)

12
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where Sijk = ⟨uiuju
′
k⟩ and the pressure terms is zero. As in Eq. (6), the

two-point correlation in Eq. (23) is

Rij = u2

(
f − g

r2
rirj + gδij

)
, (24)

where u = ⟨u2
1⟩1/2 = ⟨u2

2⟩1/2 = ⟨u2
3⟩1/2 = [(1/3)⟨|u|2⟩]1/2. Moreover the

incompressible requires that
∂Rij

∂ri

= 0,

and hence,

g(r, t) = f(r, t) +
1

2
r

∂

∂r
f(r, t). (25)

The two-point correlation of triple velocities is isotropic and depends only
on r. We can write it as

Sijk = Arirjrk + Briδjk + Crjδik + Drkδij.

A similar line of argument of Rij allows us to rewrite Sijk as a function of
K(r) = S111/u

3 only,

Sijk = u3

[
K − rK ′

2r3
rirjrk +

2K + rK ′

4r
(riδjk + rjδik) −

K

2r
rkδij

]
. (26)

Substituting Eqs. (24) and (26) into Eq. (23), we can obtain the Karman-
Howarth equation expressed in terms of two-point correlation.

∂

∂t
[u2r4f(r, t)] = u3 ∂

∂r
[r4K(r)] + 2ν2 ∂

∂r

[
r4∂f(r)

∂r

]
. (27)

Next we derive the Karman-Howarth equation re-expressed in terms of
structure functions. We note that Eq. (27) has two independent functions
f(r, t) and K(r, t) and hence is not a closure equation. We here discuss the
properties of f(r, t) and K(r, t). If r = re1, we reflect the x-axis and have

f(−r) = f(r)

−K(−r) = K(r).

When r is very small, the Taylor expansion of f and K are

f(r) = 1 +
f ′′(0)

2!
r2 + · · ·

K(r) =
k′′′

3!
r3 + · · · , (28)

13
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where K ′(0) = 0 for the incompressibility. If r = 0, we can obtain many
properties about f :(

1

r

∂f

∂r

)
r=0

= f ′′(0, t) =
∂2f

∂r2
, (29)

−u2f ′′(0, t) = −u2 lim
r→0

∂2

∂r2
f(r, t)

= − lim
r→0

∂2

∂r2
⟨u1(x + re1, t)u1(x, t)⟩

= − lim
r→0

⟨(
∂2u1

∂x2
1

)
x+re1

u1(x, t)

⟩

= −
⟨(

∂2u1

∂x2
1

)
u1

⟩
= −

⟨
∂

∂x1

(
u1

∂u1

∂x1

)
−

(
∂u1

∂x1

)2
⟩

=

⟨(
∂u1

∂x1

)2
⟩

=
⟨ε⟩
15ν

. (30)

According to Eqs. (30) and (29) and the terms of K in Eq. (27) vanishes at
r = 0, we finally have

d

dt
u(t)2 = −2

3
⟨ε⟩. (31)

By Eq. (21), we can see that the 2-order longitudinal structure function and
f are related by

u(t)2f(r, t) = u(t)2 − 1

2
DL2(r, t). (32)

The 3-order longitudinal structure function can also be related to K by

DL3 = ⟨[u1(x + re1) − u1(x, t)]3⟩
= ⟨u′

1
3⟩ + ⟨u3

1⟩ − 3⟨u′
1
2
u1⟩ + 3⟨u2

1u
′
1⟩

= −3K(−r) + 3K(r) = 6K(r). (33)

Substituting Eqs. (32) and (33) into Eq. (31) into Eq. (27), we have the
Karman-Howarth equation expressed in terms of structure function

∂

∂t
DL2 +

1

3r4

∂

∂r
(r4DL3) =

2ν

r4

∂

∂r

(
r4∂DL2

∂r

)
− 4

3
⟨ε⟩.

14
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Integrate this equation to obtain

3

r4

∫ r

0

s4 ∂

∂t
DL2(s, t)ds = 6ν

∂DL2

∂r
− DL3 − 4

5
⟨ε⟩r. (34)

For isotropic turbulence in inertial subrange, we readily have the 4/5
law by Eq. (34)

DL3 = −4

5
⟨ε⟩r.

We must note here that the derivation of the 4/5 law does not use the hy-
potheses of similarity, and hence, it shows the consistency between the Kol-
mogorov hypotheses and the Navier-Stokes equations. That is also probably
why Frisch (1995) recognized that the 4/5 law ‘constitutes a kind of ‘bound-
ary condition’ on theories of turbulence: such theories, to be acceptable,
must either satisfy the four-fifths law, or explicitly violate the assumptions
made in deriving it’. According to dimensional analysis and the hypotheses
of similarity, then the structure function skewness is

S ≡ DL3

D
2/3

L2

= universal constant.

Thus, we have

C2 =

(
−4

5S

)2/3

.

At last, we introduce a well-defined quantity, Taylor-scale Reynolds num-
ber, Rλ, that is often used,

Rλ ≡ uλ

ν
,

where λ is Taylor’s microscale,

λ ≡
[
−1

2
g′′(0, t)

]−1/2

.

According to Eq. (25), we have

g′′(r, t) = 2f ′′(r, t) +
1

2
rf ′′′(r, t),

15
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From above equation, the Taylor scale can be related to dissipation rate by

λ =
1√
2

[
−1

2
f ′′(0, t)

]−1/2

= u

(
15ν

⟨ε⟩

)1/2

.

Hence, for isotropic turbulence the Taylor-scale Reynolds number can be
computed by

Reλ =
u2

ν

√(
∂u1

∂x1

)2

4 Conclusion

For any turbulence, we have following results:

• According to the hypothesis of isotropy, the transverse structure func-
tion Din(r) = ⟨[ui(x + re1) − ui(x)]n⟩, (i = 2, 3; n = 1, 2, 3, · · ·) is

D2n(r) = D3n(r)

in the universal equilibrium range. If n is a odd number, we have

D2n(r) = D3n(r) = 0.

• According to the dimensional analysis and the hypothesis of isotropy
and similarity, the longitudinal structure function D1n(n = 1, 2, 3, · · ·)
is

D1n = Cn(⟨ε⟩r)n/3.

• According to the Navier-Stokes equation and the hypothesis of isotropy,
the 3-order longitudinal structure function is

D111 = −4

5
⟨ε⟩r,

that is, the 4/5 law. Note that the hypothesis of similarity is not used
in the derivation of 4/5 law. However, this law is compatible with the
hypothesis of similarity.

16



ht
tp

://
w

w
w

.sc
ie

nc
en

et
.cn

/u
/sa

ns
hi

ph
y/

• According to the 4/5 law and the dimensional analysis, we have

C2 =

(
−4

5S

)2/3

,

where S = DL3/D
2/3

L2 .

• According to the hypothesis of isotropy, the energy dissipation rate is

⟨ε⟩ = 15ν

⟨(
∂u1

∂x1

)2
⟩

=
15ν

2

⟨(
∂u2

∂x1

)2
⟩

,

if we assume the finiteness of energy dissipation.
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