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a b s t r a c t

To uncover the physical origin of shear-banding instability in metallic glass (MG),

a theoretical description of thermo-mechanical deformation of MG undergoing one-

dimensional simple shearing is presented. The coupled thermo-mechanical model takes

into account the momentum balance, the energy balance and the dynamics of free

volume. The interplay between free-volume production and temperature increase being

two potential causes for shear-banding instability is examined on the basis of the

homogeneous solution. It is found that the free-volume production facilitates the

sudden increase in the temperature before instability and vice versa. A rigorous linear

perturbation analysis is used to examine the inhomogeneous deformation, during which

the onset criteria and the internal length and time scales for three types of instabilities,

namely free-volume softening, thermal softening and coupling softening, are clearly

revealed. The shear-banding instability originating from sole free-volume softening

takes place easier and faster than that due to sole thermal softening, and dominates in

the coupling softening. Furthermore, the coupled thermo-mechanical shear-band

analysis does show that an initial slight distribution of local free volume can incur

significant strain localization, producing a shear band. During such a localization

process, the local free-volume creation occurs indeed prior to the increase in local

temperature, indicating that the former is the cause of shear localization, whereas the

latter is its consequence. Finally, extension of the above model to include the shear-

induced dilatation shows that such dilatation facilitates the shear instability in metallic

glasses.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Earlier, Turnbull and Cech (1950) predicted that glass formation in liquid metals is possible if cooling is sufficiently fast
and crystallization does not occur. Several years later, Klement et al. (1960) confirmed Turnbull’s prediction by producing
the first metallic glass from a liquid alloy of Au–Si. Since then, there have been extensive progresses in exploring metallic
glasses (Chen, 1974; Pampillo, 1975; Drehman et al., 1982) and developing bulk metallic glasses (BMGs) with characteristic
size in excess of 1 mm (Inoue et al., 1989; Peker and Johnson, 1993). The advent of more and larger BMGs arouses a revival
of interests in the basic science of glass transition, glass structure, and their absorbing and potentially valuable properties
(Greer, 1995; Johnson, 1999; Inoue, 2000; Wang et al., 2004; Schuh et al., 2007; Eckert et al., 2007). The long-range disorder
in BMGs dictates their impressive array of mechanical properties, including extraordinary strengths (�1–5 GPa), high
hardness (�2–12 GPa), large elastic deflections (�2% elastic strain) and relatively high fracture toughness (Lewandowski
et al., 2005; Johnson and Samwer, 2005; Wang, 2006; Ashby and Greer, 2006), making them attractive candidates for many
potential applications (Conner et al., 2000; Grimberg et al., 2006; Kumar et al., 2009). However, the major mechanical
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shortcoming of BMGs is their limited room-temperature ductility, resulting from initiation and rapid propagation of a single

shear band with characteristic thickness of �10 nm (Donovan and Stobbs, 1981; Hufnagel et al., 2000; Li et al., 2002; Zhang
and Greer, 2006a; Liu et al., 2005a, 2006; Jiang et al., 2009a). Brittleness is regarded as an intrinsic defect of metallic
glasses. On the other hand, the formation of multiple shear bands throughout a sample, by controlled introduction of
residual stress (Zhang et al., 2006b), modification of material composites (Schroers and Johnson, 2004; Das et al., 2005; Liu
et al., 2007; Chen et al., 2008) and internal reinforcements by nano- or micro-particles and/or phases (Hays et al., 2000;
Hofmann et al., 2008), is needed for enhancing its ductility. Therefore, clarifying the initiation or origin of shear-banding
instability, as the crucial step to understand the whole shear-band process, in BMGs is of practical significance.

In polycrystalline alloys, the initiation of shear bands is attributed to local thermal softening (Zener and Hollomon,
1944; Bai and Dodd, 1992; Meyers, 1994; Wright, 2002; Zhang and Clifton, 2003; Chichili et al., 2004; Dai et al., 2004; Zhou
et al., 2006). The critical conditions for the onset of such adiabatic shear bands (ASBs) have been studied extensively and
well understood (Bai, 1982; Clifton et al., 1984; Molinari, 1997). As for metallic glasses, there have been two potential
causes for the onset of shear-band instability, namely, mechanical initiation and thermal initiation. The first suggests that
shear-induced dilatation causes the production of free volume, leading to a precipitous drop in viscosity within the shear
band. This idea originates in the work of Spaepen (1977), who developed a steady-state inhomogeneous flow model based
on a competition between stress-driven creation and diffusion annihilation of free volume. Subsequent works from Argon
(1979), Steif et al. (1982), Vaks (1991), Falk and Langer (1998), and Wright et al. (2003) have also shown the importance of
free-volume dynamics to shear instability. Recently, Huang et al. (2002) developed a general theoretical framework to
characterize the inhomogeneous deformation in metallic glasses. In their work, the onset condition for shear instability is
due to the sole effect of free volume. Note that these authors consider the shear-banding formation as an isothermal

process. The second contends that the shear-banding event in BMGs is thermal-initiated, similar to ASBs in crystalline
alloys (Leamy et al., 1972; Liu et al., 1998). A highway to investigate such hypothesis is the determination of temperature
increase within the shear band. But this has long been controversial, with both measurements and predictions suggesting a
wide range of values, from less than 0.1 K to a few thousand kelvins (Pampillo, 1975; Bengus et al., 1993; Liu et al., 1998;
Wright et al., 2001; Hufnagel et al., 2002; Liu et al., 2005a; Lewandowski and Greer, 2006), which depends on different
spatial and temporal resolutions. Despite the indeterminacy, the local heating is believed to remain important to shear-
band instability (Yang et al., 2005; Zhang et al., 2007, 2008) and subsequent fracture process (Yang et al., 2006a), especially
under dynamic loading. Recently, more and more works have indicated that the deformation of metallic glass is a thermo-
mechanical process (Dai et al., 2005; Gao et al., 2007; Yang et al., 2006b; Thamburaja and Ekambaram, 2007; Zhang et al.,
2007, 2008). If the applied stress and rate of deformation are high enough, both creation of free volume driven by stress and
significant increase in temperature due to the dissipation of plastic work can occur and alter each other (Zhang et al., 2008).
It is believed that the two physical processes are naturally coupled during the shear-banding formation in metallic glasses.
In our previous work, the coupled effect of free-volume softening and thermal softening upon shear-banding instability in
metallic glasses was discussed (Dai et al., 2005; Dai and Bai, 2008). Recently, Gao et al. (2007) argued for this coupled
effect. Moreover, some coupled thermo-mechanical finite-deformation constitutive frameworks modeling the homogenous
and/or inhomogenous flow in BMGs were also developed (Yang et al., 2006b; Thamburaja and Ekambaram, 2007). These
coupled models provided some possible explanations for the experimental phenomena. However, for the physical origin of
shear-banding instability, many basic questions have not been answered. In particular, during such a coupled process, is
either of free-volume softening or thermal softening responsible for the onset of shear instability? How do the free volume
and temperature interplay each other and what do they act as respectively? The key question ‘‘Must shear bands be hot?’’ is
still pending and worth investigation (Spaepen, 2006).

To this end, we investigate the thermo-mechanical deformation of a bulk metallic glass undergoing one-dimensional
simple shear. A viscoplastic constitutive law including two internal state variables, namely free-volume concentration and
temperature, is provided. Homogeneous solution is obtained first. For the inhomogeneous mode, we perform a linear
perturbation analysis based on the homogeneous solution; the onset criteria as well as the internal length and time scales
of shear-banding instability are clearly revealed. In addition, a coupled thermo-mechanical shear-banding analysis is
carried out, showing the process of strain localization. The effect of shear-induced dilatation on such shear instability is
also discussed.

The scheme of this paper is as follows. Section 2 specifies the basic model within the context of continuum mechanics.
The governing equations, including the constitutive equation, the momentum equation, the energy equation and the free-
volume evolution equation, as well as the initial and boundary conditions for this problem are presented. In Section 3, we
discuss three types of homogeneous deformations on the basis of the plastic flow rule developed by Spaepen (1977). In
Sections 4 and 5, the linear perturbation analysis and shear-banding analysis are performed, respectively, to understand the
inhomogeneous flow or shear-banding instability. In Section 6 we briefly discuss the effect of shear-induced dilatation on
shear instability. Finally, conclusions and suggestions that deserve further investigations are given in Section 7.

2. The basic model

In this section we consider the thermo-mechanical deformation of a bulk metallic glass undergoing a simple shear. The
problem is modeled as that of a planar layer infinitely extended in the shear direction x and in the out-of-plane direction z,

ARTICLE IN PRESS

M.Q. Jiang, L.H. Dai / J. Mech. Phys. Solids 57 (2009) 1267–12921268



Author's personal copy

with finite height 2h in the y direction, as sketched in Fig. 1. The surfaces at y ¼7h are sheared by applying constant
velocities 7V0, parallel to the x-direction. Then, the deformation can be formulated in a one-dimensional framework; the
variables depend solely on the coordinate y and the time t. Compared to the general form of constitutive law in
conventional adiabatic shear problem, we adopt the following expression for the shear-stress depending on the strain and
strain rate plus two internal state variables, i.e. temperature and free-volume concentration:

t ¼ cðg; _g; y; xÞ, (1)

where g is the shear strain, _g ¼ @g=@t is the strain rate, y the temperature, and x the concentration of free volume following
Steif et al. (1982). Similar to the temperature, x is also a continuum field, being a function of position and time.

We assume that cZ0 for values of its arguments. For later use, let us introduce the notation

Q ¼
@c
@g

40 ðstrain hardeningÞ; (2)

R ¼
@c
@_g40 ðstrain rate hardeningÞ; (3)

P ¼ �
@c
@y

40 ðthermal softeningÞ; (4)

F ¼ �
@c
@x

40 ðfree-volume softeningÞ: (5)

Here, the strain hardening is expected to be valid for a short time immediately after yielding but before instability,
considering that this study focuses on the initiation of shear instability. In accordance with continuum mechanics, the
governing equations can be written in the following form:

r @
_g
@t
¼
@2t
@y2

, (6)

@y
@t
¼ k @

2y
@y2
þ At @g

@t
, (7)

@x
@t
¼ D

@2x
@y2
þ Gðx; y; tÞ, (8)

where (6) is the Cauchy momentum equation, (7) the temperature evolution equation and (8) the free-volume evolution
equation following Huang et al. (2002) and Dai et al. (2005); and k the thermal diffusivity (k ¼ l=rCv, here l, r and Cv

being, respectively, the thermal conductivity, the mass density and the specific heat), A is a constant related to
the Taylor–Quinney coefficient (bTQ), given by A ¼ bTQ=rCv, D is the diffusion coefficient of free-volume concentration, and
G(x, y, t) is the net generation rate of free volume, the explicit expression of which was presented by Spaepen (1977), as
follows:

Gðt;x; yÞ ¼ 1

w
f exp �

1

x

� �
exp �

DGm

kBy

� �
2kBy
xv�S

cosh
tO

2kBy

� �
� 1

� �
�

1

nD

� �
, (9)

where w is a geometrical factor, v* the critical volume or the effective hard-sphere size of atom, f the frequency of atomic
vibration (�Debye frequency), DGm the activation energy, kB is the Boltzmann constant, S the effective shear modulus
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Fig. 1. Geometry of simple shearing of a planar bulk metallic glass body.
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(S ¼ 2ð1þ nÞm=3ð1� nÞ with m being the shear modulus and n being Poisson’s ratio), O the atomic volume and nD the
number of diffusive jumps necessary to annihilate a free volume equal to v*. Eq. (8) states that there are three different
physical processes that can alter the local free-volume concentration: diffusion, annihilation and generation. The free
volume can be redistributed by diffusion until it is spatially uniform. The metastable state of metallic glass allows free
volume to annihilate at any position simply by the atomic rearrangement. In addition, the generation of free volume is
induced by stresses. Since G is a function of t, y, and x, we can also define the following parameters:

Gx
¼
@G

@x
, (10)

Gy
¼
@G

@y
, (11)

Gt
¼
@G

@t , (12)

for later analysis. Eqs. (10)–(12) characterize the net creation rate of free volume due to itself, temperature and shear stress,
respectively.

The compatibility equation is

@g
@t
¼
@V

@y
, (13)

where V is the particle velocity in the x-direction.
The initial condition (IC) and the boundary condition (BC) governing the one-dimensional simple shearing are given by

IC
gðy;0Þ ¼ 0; _gðy;0Þ ¼ V0

h
;

yðy;0Þ ¼ yi; xðy;0Þ ¼ xi;

8<
: (14)

where the initial temperature yi is taken as 300 K, and the initial free-volume concentration xi ¼ 0.05 following Huang et al.
(2002) and Gao et al. (2007) and

BC

gð�h; tÞ ¼
V0

h
t;

_gð�h; tÞ ¼
V0

h
;

@yð�h; tÞ

@y
¼ 0;

@xð�h; tÞ

@y
¼ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(15)

Here, in order to highlight the essential physics, the adiabatic boundary conditions are assumed for all strain rates for
simplicity, even under low strain rate following Gao et al. (2007). If the specific form of constitutive relation (1) is
determined, we can solve simultaneously the coupled governing Eqs. (1), (6)–(9) and (13)–(15) for the fields of shear stress,
shear strain, temperature and free-volume concentration at any time.

3. Homogeneous deformation

Shear-banding formation is a result of the instability of homogeneous deformation. In addition, the deformation within
a shear band can be approximately regarded as a highly localized homogeneous deformation (Argon, 1979; Steif et al.,
1982). Therefore, it is important to seek homogeneous solutions by assuming that

@t
@y
¼
@y
@y
¼
@x
@y
¼ 0. (16)

This means that the shear strain, the shear stress, the free-volume concentration and the temperature are uniformly
distributed within the material. Then, the governing equations become

th ¼ cðgh; _gh; yh; xhÞ, (17)

d_ghðtÞ

dt
¼ 0, (18)

dyhðtÞ

dt
¼ Ath _gh, (19)
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dxhðtÞ

dt
¼ Gðth; yh; xhÞ. (20)

The Cauchy strain g can be decomposed into elastic and plastic parts, which are assumed to be decouple for simplicity,
so that

g ¼ ge þ gp, (21)

where the elastic strain ge obeys Hooke’s law

ge ¼
t
m . (22)

The microscopic mechanism that governs homogeneous plastic flow in metallic glasses has been discussed by Spaepen
(1977). Macroscopic flow is modeled as occurring as a result of a number of individual atom jumps each contributing to a
small local shear strain. The flow rule or the plastic strain rate _gp is given as follows:

_gp
¼ ðstrain produced at each siteÞ

� ðfraction of potential jump sitesÞ

� ðnet number of forward jumps at each site per secondÞ. (23)

Within the free-volume formalism, Eq. (23) can be written as

_gp
¼ 2f exp �

DGm

kBy

� �
sinh

tO
2kBy

� �
exp �

1

x

� �
. (24)

The constitutive relation (17) modeling a metallic glass undergoing homogeneous shearing is then of the following form:

_t ¼ m _g� 2f exp �
DGm

kBy

� �
sinh

tO
2kBy

� �
exp �

1

x

� �� �
. (25)

In order to examine the respective effect of temperature and free volume, we purposely discuss three types of
homogeneous deformations: (I) Isoconfigurational deformation, during which temperature evolves with time, but free
volume keeps constant (i.e. only Eqs. (17)–(19) are considered); (II) Isothermal deformation, during which free volume
changes, but temperature is constant (i.e. only Eqs. (17), (18) and (20) are included); and (III) Coupling deformation,
considering the interplay between temperature and free volume. The three homogeneous deformations therefore lead to
three types of shear-banding instability: thermal softening, free-volume softening and coupling softening, respectively, which
we will clarify in Section 4.

In addition, we focus on the four governing parameters that are very important to intuitively understand shear-banding
instability from the homogeneous solution. They are defined as follows:

(a) Viscosity, defined as

Z ¼ th

_gp
h

. (26)

(b) Deborah number. In the field of rheology, the so-called Deborah number plays an important role, since it describes the
influence of time on the observed flow properties (Moura-Ramos and Correia, 2001). In some sense, glass is ‘‘frozen’’
liquid that has lost its ability of flow or mobility. During deformation, metallic glasses can behave as liquid or solid. This
flow and deformation behavior can be characterized by a dimensionless Deborah number (Reiner, 1964), defined as

De ¼
tr

te
, (27)

where tr ¼ Z/m is the Maxwell time or internal structural relaxation time under loading and te ¼ g=_g is the
macroscopic imposed time of external loading. The magnitude of the Deborah number, De, provides interesting
indications. If te is very large compared with the relaxation time tr, we see metallic glasses behaving as an ordinary
viscous fluid. However, in the opposite case, they behave as a glassy solid. Thus, the smaller the De is, the more liquid-
like the metallic glass behaves.

(c) The thermal instability index. As carried out by Gao et al. (2007), we introduce an instability index due to local
temperature increase, defined as

INy ¼
@f h

@yh
, (28)

where f h ¼ Ath _gp is the temperature rising rate due to the plastic work converting to heat. Thus, INy measures how
fast the temperature increases.
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(d) The free-volume instability index. In parallel, an instability index due to free-volume creation can be defined as

INx ¼
@Gh

@xh
. (29)

This index characterizes the speed of the free-volume creation. Compared to Eq. (10), INx is indeed equal to Gh
x.

We now select suitable material parameters for calculation. For the sake of comparison with relevant results (e.g., Steif
et al., 1982; Huang et al., 2002; Gao et al., 2007; Yang et al., 2006a), we take a typical Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) BMG
as a model material. The physical properties for Vit 1 used in our paper are mostly derived from these literatures and listed
in Table 1. To better understand numerical results, guided by Steif et al. (1982) and Gao et al. (2007), we introduce the
reference physical quantities as follows:

temperature y0 ¼ 300 K; (30)

stress t0 ¼
2kBy0

O
�414 MPa; (31)

time t0 ¼ f�1 exp
DGm

kBy0

� �
�10�5 s (32)

to normalize the governing equations. Then, we obtain some dimensionless variables as follows: temperature ~y ¼ y=y0;
shear stress ~t ¼ t=t0 or shear modulus ~m ¼ m=t0; shear strain rate ~_g ¼ _gt0 or time ~t ¼ t=t0. Throughout this paper, when
dimensional and non-dimensional quantities are to be distinguished, any variable with an over tilde (�) will be
dimensionless. In the case of homogeneous deformation, the total strain rate _g is regarded as a prescribed constant with a
typical value of 10�2 s�1, corresponding to ~_g ¼ 10�7, over the deformation history. In what follows, if no specific state, all
calculations are under this strain rate. According to Eq. (18), the shear strain increases gh linearly with time at the constant
strain rate. th, yh and xh can be obtained by numerically integrating Eqs. (19), (20) and (25). Based on the obtained
homogeneous solution, the material parameters defined in Section 1, that is Qh, Rh, Ph, Fh, Gh

x, Gh
t and Gh

y, as well as the four
governing variables (Z, De, INy and INx) can be also calculated.

Fig. 2 shows the homogeneous solution at _g ¼ 10�2 s�1 for the three typical cases. The normalized shear stress, the free-
volume concentration and the normalized temperature versus shear strain are, respectively, illustrated in Fig. 2a–c. For
isoconfigurational deformation, an initial elastic response is followed by a gradual drop in stress, during which the
temperature increases by inches with plasticity developing (see Fig. 2c). After the peak stress corresponding to gE0.07,
there is a continuing strain softening, resulting in final failure. As for the isothermal and the coupling deformations, the
plastic parts exhibit some different features. First, the plastic yielding occurs earlier, followed by a precipitous drop in
stress. Second, the peak stress is lower than the isoconfigurational one, implying the isoconfigurational activation energy
softening the material be greater than that in the isothermal or coupling case. The result agrees well with the experimental
measures (Taub and Spaepen, 1980). Combining Fig. 2a with Fig. 2b, we find that in the early stage of deformation (shear
strain of 0–0.05), the shear stress is relatively low and cannot drive the generation of free volume. However, the
annihilation of free volume still occurs due to the presence of an initial temperature of 300 K (or normalized temperature of
1.0). This results in a slight decrease in the free-volume concentration at the beginning. With the applied load increasing
further, the creation rate exceeds the annihilation rate, leading to a drastic rise in the free-volume concentration. At the
same time, the net increase of free volume, in turn, results in a catastrophic drop in shear stress. In the isothermal case,
the annihilation rate, eventually, balances the creation rate, and a steady-state free volume has been achieved at which the
shear stress stays constant. However, in the coupling case, the presence of temperature, on the one hand, facilitates
the faster creation of free volume (see inset to Fig. 2b) before yielding. On the other hand, the temperature rise, in favor of
the annihilation of free volume, decreases the total amount of free volume, after yielding occurs. The significant decrease of
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Table 1
Mechanical properties and parameters for Vit 1.

Properties and parameters Notation Value

Shear modulus m 35.3 GPa

Poisson ratio n 0.36

Density r 6125 kg m�3

Specific heat at constant volume Cv 400 J kg�1 K�1 or Cv(y)

Tayor–Quinney coefficient bTQ 0.9 or bTQ ð_gÞ
Thermal conductivity l 20 W m�1 K�1

Free-volume diffusivity D �10�16 m2 s�1

Average atomic volume O 20A3

Activation energy DGm 0.2–0.5 eV

Debye temperature yD 327 K

Frequency of atomic vibration f �1013 s�1

M.Q. Jiang, L.H. Dai / J. Mech. Phys. Solids 57 (2009) 1267–12921272
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free-volume concentration at the late stage of deformation (above 0.1 shear strain) can result in considerable increase in
shear stress or strain hardening, compensating for the significant strain softening due to the temperature increase. Finally,
only a slight strain hardening occurs compared to the isothermal deformation case. In addition, it is easily noted from
Fig. 2c that the drastic increase in free volume causes more remarkable instantaneous temperature rise at yielding point.

ARTICLE IN PRESS

Fig. 2. The solution of homogeneous deformation at strain rate _g ¼ 10�2 s�1: (a) normalized shear stress t/t0, (b) free-volume concentration x, and

(c) normalized temperature y/y0 versus shear strain g.
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The viscosity defined in Eq. (26) as a function of shear strain is shown in Fig. 3a. It is clearly seen that both temperature
and free volume can decrease the viscosity and hence soften materials. But before plastic yielding occurs, the decrease in
viscosity due to free-volume increase is much faster than that due to temperature increase. In addition, a lower value of
viscosity is achieved in the cases taking free volume into account. Fig. 3b gives the viscosity–temperature relations during
homogeneous deformation. In the isoconfigurational state, the viscosity decreases monotonously and slowly with increase
in temperature. In the temperature–free-volume coupling case, an initial precipitous decrease in viscosity is followed by a
drastic rebound prior to a steady state. Obviously, this behavior is mainly determined by free volume instead of
temperature. The free volume decreases the viscosity much faster than the temperature during the early stage of
deformation, which gives states that are less viscous than the isoconfigurational state at the same temperature. So, it seems
that the free-volume creation provides an easier way to initiate instability than temperature increase. It should be pointed
out that the slight increase in viscosity at the late stage of deformation in the coupling case is also a compound result
of both free-volume decrease and temperature increase. The variation of Deborah number with shear strain, as shown in
Fig. 4, gives the results consistent with Fig. 3. The free-volume creation prior to a steady state will lead to a relatively
smaller Deborah number, which is indicative of more liquid-like states.

Fig. 5a gives the variations of the thermal instability index INy, defined as Eq. (28), with shear strain under the strain rate
of 10�2 s�1. According to its physical meaning, the curve peak corresponds to a potential instability point due to the
temperature increase. In the isoconfigurational case, the INy curve shows a broad crest with a maximum of �0.02. In
contrast, the coupling case, with the participation of free volume, exhibits two distinct features: (i) the maximum value of
INy is almost double, which indicates that the creation of free volume promotes the increase in temperature; (ii) the peak is
much more precipitous and narrower, implying a much higher localized instability. For these two cases, the peak value
max[INy] increases with increasing strain rate, as shown in Fig. 5b. In addition, the difference in the maximum becomes
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Fig. 3. The viscosity as a function of (a) the applied shear strain and (b) normalized temperature.
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more remarkable with increase in strain rates. This implies that, in the coupling case, a much faster temperature increase
occurs because of the presence of free-volume creation under higher loading rates. The free-volume instability index INx,
defined as Eq. (29), evolving with shear strain is plotted in Fig. 6a. Overall, the shapes of two curves are similar. However,

ARTICLE IN PRESS

Fig. 4. Variation of Deborah number with shear strain from the homogeneous solution.

Fig. 5. (a) Change of thermal instability index with shear strain and (b) maximum thermal instability index versus applied shear strain rate.
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the presence of temperature causes a slightly higher maximum value and a much smaller minimum. This two-edged effect
of temperature increase on the free-volume concentration is consistent with the results in Fig. 2b. In detail, the increase in
temperature speeds up the free-volume creation before instability, while slowing down its creation after instability. In
analogy with INy, the maximum value max[INx] of free-volume instability index also depends on the prescribed strain rate,
as shown in Fig. 6b. Higher strain rates can induce higher max[INx] in both isothermal and coupling deformation. Besides,
the temperature increase due to dynamic loading makes for the instantaneous free-volume increase, leading to higher
max[INx]. Comparing results in Fig. 5a with Fig. 6a, we find that max[INx] is some one order of magnitude higher than
max[INy] in the coupling case. This indicates that the stress-driven instantaneous free volume creates more rapidly than
the instantaneous temperature increase. The aforementioned homogeneous deformation uncovered clearly some crucial
information during the pre-instability process, as follows:

(1) The creation of free volume is accompanied with a sudden temperature rising. The temperature rise, on the one hand,
speeds up the free-volume creation before yielding, and on the other hand, decreases the total amount of free volume
after yielding.

(2) Material softening due to the free-volume creation is much easier than that due to temperature increasing, since the
free volume increases much faster than the instantaneous temperature rise.

4. Linear perturbation analysis and inherent scales

Shear banding, a physically unstable event, can be regarded as the appearance of mathematical instability in the
differential equations governing the inhomogeneous deformation. Usually, the stability analysis is simplified by seeking an
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Fig. 6. (a) Change of free-volume instability index with shear strain and (b) maximum free-volume instability index versus applied shear strain rate.
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inhomogeneous deformation solution with respect to small perturbations on the homogeneous solution. Examples of this
dealing can be found in Bai (1982), Clifton et al. (1984), Molinari (1997), Huang et al. (2002), Dai et al. (2005) and Gao et al.
(2007). Of great interest is the origin of instability; hence, the linear perturbation analysis is valid.

To linearize problems (1) and (6)–(8) about the homogeneous solution (17)–(20), we impose a perturbation
(dt, dg, dy, dx) on the time-dependent homogeneous solution (th, gh,yh, xh), such that

tðy; tÞ ¼ th þ dtðy; tÞ, (33)

gðy; tÞ ¼ gh þ dgðy; tÞ, (34)

yðy; tÞ ¼ yh þ dyðy; tÞ, (35)

xðy; tÞ ¼ xh þ dxðy; tÞ. (36)

They are the inhomogeneous solutions of (1) and (6)–(8). In order to render the mathematical derivation tractable, here
we apply a perturbation to shear stress in advance. For all practical purposes, (th, gh, yh, xh) are assumed to vary slowly with
time as compared to (dt, dg, dy,dx) so that (th, gh,yh, xh) can be considered as constant during the inhomogeneous
deformation. Hence, the calculated parameters based on the homogeneous solution also keep constant.

The perturbation has the following form:

dt ¼ t� expðat þ ikyÞ, (37)

dg ¼ g� expðat þ ikyÞ, (38)

dy ¼ y� expðat þ ikyÞ, (39)

dx ¼ x� expðat þ ikyÞ, (40)

where (t*, g*, y*, x*) are small constants that characterize the initial magnitude of the perturbation, k is the wave number
and a related to the initial rate of growth. The stability of the deformation is now determined by the sign of the real part of
a: if Re(a)o0, the shear deformation is stable; if Re(a)40, it is unstable.

Introducing Eqs. (33)–(40) into Eqs. (1) and (6)–(8) and only considering terms that are of first order in (dt,dg,dy,dx) yields

C � S ¼ 0, (41)

where

C ¼

ra2 þ k2
ðQh þ aRhÞ �k2Ph �k2Fh

A½ath þ _ghðQh þ aRhÞ� �ðA_ghPh þ aþ kk2
Þ �A_ghFh

Gt
hðQh þ aRhÞ Gy

h � PhGt
h Gx

h � a� Dk2
� FhGt

h

2
664

3
775 (42)

and

S ¼

g�
y�
x�

2
64

3
75. (43)

To have a non-trivial solution, the determinant of matrix C must be equal to zero, that is

Cj j ¼ 0. (44)

This leads to the spectral equation for the initial growth rate a of the perturbation:

a4a4 þ a3a3 þ a2a2 þ a1a1 þ a0 ¼ 0. (45)

The coefficients of this polynomial are defined by

a4 ¼ 1, (46)

a3 ¼ G1 þ G2 þ Gt
hFh, (47)

a2 ¼
k2

r
G3 þG1G2 þ kGt

hFhk2
þ A_ghGy

hFh, (48)

a1 ¼
k2

r
ðG2G3 þ kQhk2

� AthGy
hFhÞ, (49)

a0 ¼
k4

r
kQhG2, (50)
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where

G1 ¼ ðkþ vÞk2
þ A_ghPh, (51)

G2 ¼ Dk2
� Gx, (52)

G3 ¼ kRhk2
þ Qh � AthPh (53)

with v ¼ Rh/r, which can be considered as the momentum or viscosity diffusion coefficient. Usually, vZ102 m2 s�1 in metallic
glasses. So, we have vbkbD.

Thus, the question of stability of the linearized problem becomes basically algebraic in nature and investigates the signs
of the real part of the roots of spectral Eq. (45). According to the well-known Routh–Hurwitz criterion (Sanchez, 1968), if

a340;

a3a2 � a140;

a3a2 � a1ð Þa1 � a2
3a040;

a040

8>>><
>>>:

(54)

then all roots of (45) have negative real parts, indicating stable deformation. If the reverse of (54) is true, the system will be
unstable. We now use this criterion to analyze the three types of instability: (I) thermal softening, (II) free-volume
softening and (III) coupling softening, which were defined in Section 3.

(I) Thermal softening. If we consider only thermal softening by eliminating the third row and column in matrix C, then the
coefficients of spectral Eq. (45) become

a4 ¼ 0, (55)

a3 ¼ 1, (56)

a2 ¼ k2
ðkþ vÞ þ A_ghPh, (57)

a1 ¼ k4kvþ
k2

r ðQh � AthPhÞ, (58)

a0 ¼
k4

r kQh. (59)

In fact, the spectral Eq. (45) degenerates into a cubic equation in this case. We find from (54) that a root of (45) can
have a real part greater than zero, when ka0, if and only if

AthPh

Qh
41þ

Rh

Qh
kk2 (60)

or

AthPh4Qh þ Rhkk2. (61)

Note that vbk is used in deriving this inequality that is the general criterion for instability due to thermal softening.
This criterion expresses a basic competition between the stabilizing effects of strain hardening Qh, strain-rate-
hardening Rh, thermal diffusion k and the destabilizing effect of thermal-softening Ph. If the deformation is adiabatic,
i.e. k-0, the instability criterion (60) then simplifies to

AthPh

Qh
41. (62)

Actually, AthPh=Qh is the dimensionless variable B, defined by Bai (1982). Inequality (62) is totally identical to that of
the classical adiabatic shear instability for crystalline materials where thermal softening is the sole factor resulting in
instability (Bai, 1982). Regarding the role of wave number or the perturbation per se on instability, there are two
extreme situations
(a) For small-wavelength limit (k-N), the spectral Eq. (45) becomes

Rh

Qh
aþ 1 ¼ 0, (63)
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where only terms that are of the highest order in k are considered. The only solution of (63) is

a ¼ �Qh

Rh
o0. (64)

Then it is deduced that shear deformation is always stable. In this case, the enhanced thermal diffusion,kk2-N,
restrains the growth of perturbation (Molinari, 1997; Grady, 1992).

(b) For long-wavelength limit (k-0), the spectral Eq. (45) simplifies to

aðaþ A_ghPhÞ ¼ 0. (65)

Its solutions are

a ¼ 0 or a ¼ �A_ghPho0. (66)

Shear deformation is again always stable, which contributes to the accelerated diffusion of momentum (inertia),
Rh-N, under k-0 (Molinari, 1997; Grady, 1992). The results imply that there is an optimal wave number or
length scale related to shear-band thickness or spacing in adiabatic shear instability, which properly balances
thermal and momentum diffusion.
According to inequality (60), we can define a critical wavelength ‘y, which is the internal thermal length scale, of
thermal softening instability, as follows:

‘y ¼ 2p Rhk
AthPh � Qh

� �1=2

. (67)

Perturbations with a wavelength smaller than ‘y will die out, and the ones with a wavelength larger than ‘y will
grow exponentially. However, the instability must occur at a special set of wavelength or wave number, which is
the dominant mode instability. This wavelength km corresponds to the maximum growth rate am of perturbations.
In addition to the spectral Eqs. (45) and (55)–(59), km and am have to satisfy the extremum condition

dam

dkm
¼ 0, (68)

that is,

k2
m ¼

AthPh=Qh � 1
� 	

ðam=kÞ � ð1=vþ 1=kÞðRh=QhÞa2
m

2 1þ ðRh=QhÞam

� 	 . (69)

This is the dispersion equation in the dominant modes due to thermal softening. Due to km
2
Z0, we arrive at the

upper-bound estimate of am

am�
AthPh � Qh

Rh þ rk
. (70)

Thus, we obtain the characteristic time of instability as follows:

ty�
1

am
¼

Rh þ rk
AthPh � Qh

. (71)

This time scale measures how fast perturbations will grow. So, it is reasonable to regard ty as the internal
thermal time scale. In the adiabatic condition (k-0), Eq. (71) degenerates into the result obtained by Bai (1982).
Bear in mind that our main purpose is the initiation of instability. Therefore, we can use the internal length and
time scales of instability to characterize whether the instability occurs easily or with difficulty.

(II) Free-volume softening. By this means eliminating the second row and column in matrix C, we can examine the sole
effect of free volume on instability. In such a case, the coefficients of spectral Eq. (45) have the following form:

a4 ¼ 0, (72)

a3 ¼ 1, (73)

a2 ¼ �Gx
h þ FhGt

h þ ðvþ DÞk2, (74)

a1 ¼ k2 vð�Gx
h þ Dk2

Þ þ
Qh

r

� �
, (75)

a0 ¼
Qh

r k2
ð�Gx

h þ Dk2
Þ. (76)
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By the Routh–Hurwitz criterion (54), the necessary and sufficient condition (ka0) for instability is

Gx
h4Dk2. (77)

Note also that this instability criterion is totally identical to that derived by Huang et al. (2002). The underlying
physics is that, if and only if the net creation of free volume is faster than its diffusion, perturbation will grow and
deformation becomes unstable. The stability in system is only dominated by the competition between these two
microscopic rate-dependent processes. The factors such as strain-hardening Qh, strain-rate-hardening Rh and
momentum diffusion v are not related to the initiation of instability.
The two extreme situations about the wave number k can also be discussed
(a) For small-wavelength limit (k-N), the spectral equation and its only solution are (63) and (64), respectively.

Then, the deformation is again always stable, due to the stabilizing effect of free-volume diffusion, i.e. Dk2-N.
(b) For long-wavelength limit (k-0), the spectral Eq. (45) becomes

a2 þ ðFhGt
h � Gx

hÞa ¼ 0. (78)

The solutions are

a ¼ 0 or a ¼ Gx
h � FhGt

h. (79)

Thus, perturbation will grow if and only if Gx
h4FhGt

h, implying that the system is not always stable when k-0.
From a physical point of view, the shear band in BMGs initiates on a �10 nm scale compared to the length scale of
the underlying local ‘‘flow event’’ at which the continuum momentum diffusion maybe is no longer valid.
However, the ASB in crystalline alloys develops on a �100mm scale at which momentum diffusion is still valid. The
result indicates totally different instability mechanisms between thermal softening and free-volume softening.
According to (77), the balance of free-volume creation with diffusion will determine a critical wavelength ‘x, as
follows:

‘x ¼ 2p D

Gx
h

 !1=2

. (80)

This is the internal free-volume length scale, determining whether instability occurs or not. Moreover, we still
investigate the dominant instability mode to look for the internal time scale. Combining spectral Eqs. (45),
(72)–(76) and the extremum condition (68) leads to the dispersion equation:

k2
m ¼

1

2v
Gx

h � am �
DRha2

m

v Qh þ Rhamð Þ

� �
. (81)

Considering km
2
Z0 and vbD, the upper-bound estimate of am is Gh

x; hence, the characteristic time of instability,
which can be considered as the internal free-volume time scale tx:

tx�
1

Gx
h

. (82)

Similar to ty, this internal time measures how fast the instability occurs in the free-volume softening case. It is
noted from (82) that only the characteristic time for the free-volume creation is incorporated into the total time
scale. The reason for this is that the free-volume diffuses much more slowly than its coalescence. However, the
situation is just opposite in the case of thermal softening, where the thermal diffusion is much faster than thermal
excitation. Therefore, high strain rates and low thermal conductivity are necessary to induce significant transient
temperature rise.

(III) Coupling softening. The spectral equation and its coefficients are (45) and (46)–(50), respectively. According to the
Routh–Hurwitz criterion (54), we obtain the onset condition for such instability:

Gx
h þ

AthGy
hFh � kQhk2

kRhk2
þ Qh � AthPh

4Dk2; ka0. (83)

It is noted that this condition is not only sufficient but also necessary for instability, whereas in our previous works
(Dai et al., 2005; Dai and Bai, 2008), the instability criterion (Gx

h4Dk2) is only one of the sufficient conditions. It
can be readily seen from (83) that the instability in coupling case depends not only on the creation Gx

h and diffusion
Dk2 of free volume but also on the strain hardening Qh, strain rate hardening Rh, thermal diffusion kk2, thermal
softening Ph, free-volume softening Fh and free-volume creation Gh

y due to temperature. Among them, Dk2, kk2, Qh

and Rh retard the perturbation growth, whereas Gh
x, Gh

y, Ph and Fh accelerate the instability. This is quite different from
either the thermal softening or free-volume softening alone. As is expected, at short-wavelength limit, the system is again
always stable due to the only negative root of spectral equation. For long wavelengths (k-0), the spectral equation
becomes

a2 þ a03aþ a02 ¼ 0, (84)
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where

a03 ¼ A_ghPh � Gx
h þ Gt

hFh, (85)

a02 ¼ �AGx
h
_ghPh þ AGy

h
_ghFh. (86)

Using the Routh–Hurwitz criterion again, the necessary and sufficient condition for instability is

a03o0 or a02o0, (87)

that is,

Gx
h4A_ghPh þ Gt

hFh or Gx
h4Gy

hFh=Ph. (88)

It is found that in the coupling softening, shear deformation is not always stable at k-0. This is consistent with that in
the free-volume softening case, which implies that the instability resulting from coupled free-volume creation and thermal
softening is dominated by free volume instead of temperature. If the thermal softening is dominant, then shear
deformation must be always stable at k-0 due to the enhanced diffusion of momentum (inertia).

Also, according to the instability condition (83), the dynamic balance between the stabilizing and destabilizing effects
determines a critical wavelength

lc ¼ 2p 2DkRhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

1 þ 4DkRhF2

q
�F1

0
B@

1
CA

1=2

(89)

with

F1 ¼ ðDþ kÞQh � ADthPh � kRhGx
h, (90)

F2 ¼ QhGx
h þ AthFhGy

h � AthPhGx
h. (91)

This is the coupling internal length scale, determining the growth or annihilation of perturbation. In the following, we
still seek the internal time scale by examining the dominant instability mode in the coupling softening. By using the
extremum condition (68) as well as the spectral Eq. (45), we obtain the dispersion equation (introducing Y ¼ km

2):

NY2
þPYþ O ¼ 0, (92)

where

N ¼ 3Dk Qh=rþ vam

� 	
, (93)

P ¼ 2 vkþ Dðvþ kÞ½ �a2
m

þ 2
kþ Dð ÞQh � kRhGx

h � ADthPh

r
am � 2

kQhGx
h

r
, (94)

O ¼ ðvþ kþ DÞa3
m þ �ðvþ kÞG

x
h þ kFhGt

h þ AD_ghPh þ
Qh

r
�

AthPh

r

� �
a2

m

þ
AthPhGx

h � QhGx
h � AthFhGy

h

r am. (95)

Due to Y ¼ km
240, Eq. (92) has at least one root that is larger than zero. According to the Routh–Hurwitz criterion and

further considering the most dangerous status, i.e. k-0 and D-0, we obtain that

0oam 	
AthPh � Qh þ Gx

hRh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAthPh � Qh � Gx

hRhÞ
2
þ 4AthGy

hFhRh

q
2Rh

. (96)

Thus, the internal time scale in the coupling softening instability is

tc�
2Rh

AthPh � Qh þ Gx
hRh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAthPh � Qh � Gx

hRhÞ
2
þ 4AthGy

hFhRh

q . (97)

According to the relative importance of the free-volume softening and thermal softening, the internal time scale given by
(97) can be converted into the internal free volume or thermal time, respectively (Dai et al., 2005).

The internal length scale measures whether the instability occurs easily or with difficulty, while the internal time scale
characterizes how fast does the instability initiate. More specifically, a decrease in the value of internal length and time
scales indicates the hastening of initiation of the instability. Consequently we can calculate these scales in thermal
softening, free-volume softening, and coupling softening, to determine who dominates the shear-banding instability in
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BMGs; a typical range of strain rates from 10�3 to 103 s�1 is considered here. The internal length and time scales are plotted
against the applied strain rate in Fig. 7. It can be easily found from the figure that the internal scales of instability for the
three cases decrease with increasing strain rate. This might be the main reason as to why the shear instability due to either
thermal softening or free-volume creation is more probable at higher strain rates. This numerical result agrees well with
the available experimental observations (Liu et al. 2005a, 2006). However, the situations in stability due to thermal
softening and free-volume creation are quite different. The internal free-volume length and time scales are remarkably
smaller than those in thermal softening, indicating that shear instability resulting from free-volume creation occurs easier
and faster than thermal instability. At low strain rates, the thermal internal length and time scales are very large. This
implies that thermal softening occurs with much difficulty at low strain rates. In particular, once the strain rate decreases to
10�3 s�1, the thermal softening becomes too weak to make shear instability any longer, because its instability criterion (60)
is not satisfied. However, at this strain rate, the free-volume softening still appears. It is well known that shear-banding
instability in BMGs occurs not only at high strain rate but also at quasi-static loading. So, it is very possible that shear
banding or strain localization is set up by free-volume softening. This weak influence of thermal softening on shear
instability at low strain rates results in the fact that the coupling shear instability behaviors are more like that due to free-
volume creation. In such case, shear instability in BMGs is almost an isothermal process, during which the internal length
scale is approximately tens of nanometers, and the internal time scale is roughly the inverse of strain rates. As the strain
rate increases to dynamic range, such as 103 s�1, the internal length scales due to both free-volume softening and coupling
softening decrease to nanometers or sub-nanometers, while the thermal length scale is on a 10–100-mm scale. Also, the
coupling softening with the internal time scale �ms occurs much faster than the sole thermal softening with time scale
�ms. Therefore, under dynamic strain rate, the thermal softening is in favor of the shear instability originated from free-
volume softening, leading to lower values of internal length and time scales in the coupling softening case.
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Fig. 7. Stability analysis of the homogeneous deformation: the dependence of shear strain rate on (a) internal length scale and (b) internal time scale.
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Our theoretical analysis and numerical calculation of what is happening from homogeneous to inhomogeneous
deformation in BMG systems obviously reveal that, event under coupled thermo-mechanical deformation, the shear-banding

instability in BMGs is free-volume-initiated, because the free-volume softening occurs much easier and faster than the thermal

softening. At high strain rate, the thermal softening facilitates this shear-banding instability originated from free-volume creation.

5. Coupled thermo-mechanical shear-band analysis

A reasoned description how free-volume motion results in macroscopic plastic shear flow was given by Spaepen (1977,
2006), Argon (1979), Falk and Langer (1998) and Johnson et al. (2002), where the dominant contributor to localization is
generally believed to be a local change in the state of the glass, i.e. a local increase in free volume or evolution of structural
order. Our results presented in previous sections discover this mechanism for shear-banding instability, allowing for the
interaction of temperature and free volume. In this section we will examine such a physical picture in more quantitative
detail.

A one-dimensional analysis of shear-band formation is now carried out by considering the planar layer again, as
depicted in Fig. 1. Since shear bands are narrow zones of weaker (accidental internal clustering of free volume) material
lying parallel to the shear direction x, we can envision the separation of deformation in this planar layer into a shear-band
zone of volume fraction W and remaining matrix zone covering a fraction (1�W). The essential difference in these two zones
is that the shear-band zone is of higher value of initiate free-volume concentration than that of the matrix. Without losing
the generality, W has a typical value of 10�6. This means that the volume occupied by the shear band is much smaller than
that of the matrix. We suppose further that the deformation in the band and matrix is approximately homogeneous. The
subscripts b and m denote the zone inside the shear band and the remaining matrix. For the sake of compactness, we
introduce i ¼ b or m. This geometric configuration was also considered by Argon (1979) and Steif et al. (1982) in their study
of localization.

In the dimensionless variables defined previously, the governing equations, satisfied inside and outside the band, are
written as

@~t
@~t

1
~m
¼
@gi
@~t
� 2 exp EA 1�

1
~yi

 !" #
exp �

1

xi

� �
sinh

~t
~yi

 !
, (98)

@xi
@~t
¼

1

w exp EA 1�
1
~yi

 !" #
exp �

1

xi

� � ~yi
xi ~mf

cosh
~t
~yi

 !
� 1

" #
�

1

nD

( )
, (99)

rCvi
@ ~yi
@~t
¼ bTQ

t0

y0

~t @g
p
i

@~t
, (100)

where EA ¼ DGm=kBy0. Note, in particular, that the introduction of Eq. (100) or temperature into the shear-band analysis is
very different from the previous studies (Argon, 1979; Steif et al., 1982). In their works, the inhomogeneous deformation is
isothermal, while here we treat it as a coupled thermo-mechanical process. It is of great interest to investigate whether a
highly localized disturbance in free volume can lead to the shear-banding instability with inclusion of temperature. There is
general consensus that a significant increase in strain rates and temperatures will emerge with the attendant shear
instability; hence, the specific heat and the Taylor–Quinney coefficient in (100) are no longer constants. Here, the specific
heat is defined by the Debye model as follows (Blakemore, 1973):

Cvð
~yiy0Þ ¼ 9NkB

~yiy0

yD

 !3 Z yD= ~yiy0

0

x4 expðxÞ

expðxÞ � 1ð Þ
2

dx, (101)

where N is the Avogadro number and yD the Debye temperature. The Taylor–Quinney coefficient is considered to be a
function of irreversible part of the strain rate (Wang, 1992):

bTQ

@gp
i

t0@~t

� �
¼

1

p arctg
1

3
tg

2p
5

lg
@gp

i

t0@~t

� �� �
þ

1

2
. (102)

Note that lim_g!0 bTQ ¼ 0 and lim_g!0 bTQ ¼ 1 are satisfied.
The total strain rate _g, as a prescribed constant, is equal to the volume-weighted average of the strain rate inside and

outside the shear band; hence

_g ¼ ð1� WÞ_gm þ W_gb ¼ const. (103)

The initial conditions are as follows:yi0 ¼ 300 K, xm0 ¼ 0.05, xb ¼ xb0 and ti ¼ 0. The initial free volume xb0 in the band
zone is slightly higher than that in the matrix. This slight increase provides an initiate free-volume fluctuation, i.e.
Dx ¼ xb�xm, to weaken the material in the local zone, from which the shear band should be found to initiate. The governing
equations (98)–(103) are simultaneously integrated numerically to determine the stress, free-volume, temperature in and
outside the band zone as a function of applied macroscopic strain.
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For a typical set of physical parameters listed in Table 1 as well as _g ¼ 10�2 s�1 and xb0 ¼ 0.0505, the inhomogeneous
solution including shear stress, free volume, and temperature as a function of applied strain is shown in Fig. 8. As seen in
Fig. 8a, the inhomogeneous stress–strain curve exhibits an initial elastic deformation and immediate fracture without any
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Fig. 8. The solution of inhomogeneous deformation at strain rate _g ¼ 10�2 s�1: (a) normalized shear stress, (b) free-volume concentration, and

(c) normalized temperature versus average shear strain. The shear stress inhomogeneous deformation with xm0 ¼ xb0 ¼ 0.05, for comparison, is also

shown in (a).
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macroscopic plastic flow. This behavior is consistent with experimental observations under shear deformation (Liu et al.,
2005a). However, if xm0 ¼ xb0 ¼ 0.05, the coupling homogeneous deformation, as shown in Fig. 2a, is recovered. In such
case, a steady flow after an overshoot of stress is achieved, allowing for a significant plastic deformation (Lu et al., 2003).
Fig. 8b shows the evolution of free volume, illustrating the significant increase of free-volume concentration in the shear
band as the external shear strain increases, and the concomitant slight increase of free volume in the surrounding matrix.
The evolution of temperature (Fig. 8c) also shows this trend. The result clearly reveals that the temperature increase can
reach the glass transition temperature in the shear band even at a quasi-static strain rate (Yang et al., 2006a; Zhang et al.,
2007), whereas the material outside almost keeps the initiate temperature at that moment. Since the initiate temperature
throughout the sample is uniform, this local heating must result from the local creation of free volume in the band zone
and is a second effect. We will clarify this point shortly.

The catastrophic character of strain localization or shear banding in metallic glasses, as shown in Fig. 9, is evident.
Fig. 9a illustrates the remarkable acceleration of strain development in the shear band once a peak stress (Fig. 8a) has been
reached, and the corresponding drop of strain rate in the matrix. The instantaneous temperature increase in the band
should be ascribed to the occurrence of dynamic strain rate. In addition, the great increase of strain rate in the band results
in the rapid increase of inner shear strain (Fig. 8b), giving rise to shear banding. During such a process, the viscosity
(Fig. 10), defined in Eq. (26), in the band drastically decreases to a value of �10�5 poise, much smaller than that (�1011

poise) outside the band. It is well known that the initiation of shear-banding hinges strongly on the catastrophic drop in
local viscosity. To ferret out the main reason for this material weakening, we calculated both the thermal instability index
INy and the free-volume instability index INx in the band during the deformation. A plot of the two instability indexes in the
band as a function of the applied shear strain is shown in Fig. 11. The inset shows high magnification curve of the circled
zone. Interestingly, we find that the sharp bend up in the curve of free-volume instability index is prior to that in the
thermal instability. Moreover, the maximum of free-volume instability index is almost two times that of the thermal

ARTICLE IN PRESS

Fig. 9. The process of strain localization (or shear banding). A history of (a) strain rate and (b) strain is shown for both the forming shear banding and the

surrounding matrix.
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instability index. These results provide much clearer evidence that the local material softening or instability due to free-
volume creation is earlier and faster than that due to temperature rise. This is well consistent with that given by the linear
perturbation analysis. In addition, the temperature rise is the consequence of free-volume-induced shear localization, not
its cause; this agrees well with MD simulations showing that heating occurs after the onset of localized shear (Bailey et al.,
2006). Our results provide a powerful theoretical expatiation on the puzzle about temperature rise at shear bands and
thickness of shear bands in metallic glasses (Lewandowski and Greer, 2006; Zhang and Greer, 2006a). The local free-
volume creation, as the origin of shear localization, controls shear-band thickness (Jiang et al., 2009a), while local
temperature rise, as a secondary effect, strongly depends on the development of this shear localization (Zhang et al., 2007,
2008).

Furthermore, the influence of free-volume fluctuation on shear-banding instability is examined. The result that the
shear strain in the shear band is plotted against the total shear strain under different fluctuation of free volume is shown in
Fig. 12. From this graph, it is obviously seen that the critical strain at which the strain localization occurs decreases with
increase in free-volume fluctuation. The trend shows that the more heterogeneous a material is, the more easily or earlier

the shear localization occurs. For comparison, we calculate the case without free-volume fluctuation, i.e. Dx ¼ 0,
corresponding to the straight line: gb ¼ g. In such case, the shear instability does not initiate, whereas homogeneous
deformation occurs. Our result is consistent with the fundamental concept underlying enhancement of ductility and
toughening proposed by Liu et al. (2007) and Hofmann et al. (2008). That is introducing of ‘soft’ elastic/plastic
inhomogeneities in a metallic glass matrix to initiate local shear banding around or in the inhomogeneity. Compared to the
matrix, these inhomogeneous phases are softer zones where or around where there are much more thermally unstable
atomic-scale open volumes, i.e. free volume, serving as the nucleation sites for the shear bands. Consequently, numerous
shear-banding nuclei are formed concurrently in these locally free-volume-perturbed regions and evolve into multiple
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Fig. 10. Viscosity in and outside the band as function of the average shear strain.

Fig. 11. The evolution of instability index in the shear band as the applied shear strain increases.
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shear bands upon loading. These shear bands can be interrupted by each other at their intersection sites or by a relatively
hard matrix; thus, their propagation is blocked. This blocking behavior prevents the BMG from fracturing quickly along a
single shear band (Liu et al., 2005b). In other words, the formation of intersecting shear bands can compensate the
softening induced by their formation and then enhance the plasticity of BMGs. For example, based on the Poisson’s ratio
criterion (Lewandowski et al., 2005), Liu et al. (2007) created the super plastic bulk metallic glasses composed of hard
regions surrounded by softer regions. This unique microstructure enables the glasses to undergo true strain of more than
160%. Very recently, Hofmann et al. (2008), through designed compositional changes, obtained the composite of the ‘soft’
body-centred cubic (b.c.c.) dendritic phase and glass matrix with room-temperature tensile ductility exceeding 10% and KIC

up to �170 MPa m1/2. These ‘soft’ regions or crystalline inclusions lead to much acute fluctuation in local free volume,
facilitating the concurrence of shear-banding instability.

Finally, the present model can also predict the transition from inhomogeneous (shear-band localization) to
homogeneous deformation at elevated temperature or decreased strain rate. Fig. 13 shows the shear stress–strain
behaviors at a strain rate of 10�2 s�1 for normalized temperature in the range of 1.0–1.3. The stress–strain curves at lower
temperature have a linear slope until failure and no plastic post-yielding was evident. After reaching the peak stress, the
stress drops to its zero value immediately, typical of ‘shear-band localization’ failure. However, increasing temperature to
1.30 leads to a transition from inhomogeneous deformation to homogeneous flow. Fig. 14 illustrates the shear stress–stain
curves at a normalized room temperature of 1.0 for strain rate ranging from 10�4 to 101 s�1. It is found that shear-localized
failure characterizes the deformation mode at higher strain rates in the range of 10�2–101 s�1. When the strain rate
decreases to the 10�3–10�4 s�1 range, the shear–strain curves display obvious homogeneous flow after yielding. It is also
clear that increase in strain rate leads to a transition from homogenous flow to inhomogeneous deformation. Therefore, the
effect on the deformation mode due to a decrease in strain rate is similar to that due to increase in ambient temperature.
Our theoretical results are in agreement with the experimental observations by Lu et al. (2003).
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Fig. 12. The effect of free-volume perturbation on strain localization.

Fig. 13. Effect of temperature on the shear stress–strain behavior at a strain rate of 10�2 s�1.
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6. Effect of shear-induced dilatation on shear stability

It has long been known that disordered materials experience dilatation due to plastic deformation (Reynolds, 1885;
Taylor, 1948). So for metallic glasses, it has been widely expected that the hydrostatic stress or the normal stress acting on
the shear plane will play a role on (localized) plastic flow (Flores and Dauskardt, 2001; Schuh and Lund, 2003; Zhang et al.,
2003; Zhao and Li, 2008; Jiang et al., 2008, 2009b). In what follows, we will briefly discuss the effect of the shear-induced
dilatation on shear-banding instability in BMGs by extension of the perturbation analysis. For simplicity, we still consider
the planar layer, as shown in Fig. 1, but taking into account the dilatation of sample. The upper and lower surfaces are
loaded with a constant average shear strain rate _g. As the shear stress creates more free volume, the sample dilates. When
the dilatation is non-uniform across the layer, geometric constraint will induce normal stress in the x and z directions. The
normal stresses are assumed equal in both directions, i.e., sxx ¼ szz ¼ sðy; tÞ. Compared to the x and z directions, the
material dilates with very slight constrain along the y direction. Therefore, we can reasonably assume that sxx ¼ szzbsyy.
Simulation on shear deformation of metallic glass also shows this trend (Ogata et al., 2006). Note that even there is a
geometric constrain in the y direction, the normal stress sy can be assumed to be zero so long as (t/m)51 is satisfied
(Shawki and Clifton, 1989). For simplicity, we therefore take sy-0 under the small deformation conditions. In fact, the
identical treatment of setting sy-0 was adopted in the work of Huang et al. (2002). Under such a stress state, we can
define an effective stress se as

se ¼ mI1 þ
ffiffiffiffi
J2

p
, (104)

where m is the pressure sensitivity index, similar to the friction coefficient and measuring the ratio of deviatotic to
hydrostatic stress, I1 is the fist invariant of the stress tensor and J2 ¼ ss/2 with s as the deviatoric stress tensor. Relation
(104) is from the Drucker–Prager yield criterion in which the hydrostatic pressure is considered contributing a part to the
plastic flow. In this case, the momentum balance still satisfies Eq. (6) in Section 2. The total shear strain becomes

_g ¼ 1

m
dt
dt
þ f lðx; y;seÞ

tffiffiffiffi
J2

p , (105)

where fl is the flow rate depending on the concentration of free volume x, the temperature y and the effective stress se,
which can be generalized from Spaepen (1977) by t ¼ se, with the following form:

f lðx; y;seÞ ¼ 2f exp �
DGm

kBy

� �
exp �

1

x

� �
sinh

seO
2kBy

� �
. (106)

Further assume that, by the geometric constraint, the normal strains are equal in the x and z directions, i.e.,
�xx ¼ �zz ¼ �ðy; tÞ. Also, the normal strain consists of the elastic strain and the plastic strain, as follows:

_� ¼
1� 2n

2m
ds
dt
þ f lðx;y;seÞ

s
6

ffiffiffiffi
J2

p . (107)

In addition, we introduce a dilatancy factor following Rudnicki and Rice (1975) as follows:

‘ ¼
d�
dg40. (108)
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Fig. 14. Effect of strain rate on the shear stress–strain behavior at a normalized ambient temperature of 1.0.
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This parameter indicates the ratio of the normal to shear strain, which is taken to be fixed during deformation for
simplicity.

Assuming that the temperature and the concentration of free volume are uniform along the x and z directions but vary
along the y direction, their evolution equations are, respectively,

@y
@t
¼ k @

2y
@y2
þ Ase

@�e

@t
(109)

and

@x
@t
¼ D

@2x
@y2
þ G x; y;seð Þ. (110)

The two equations state that, not only the shear stress but also the hydrostatic stress originated from volume dilatation
can drive the production of free volume as well as temperature.

Again, we perform a linear stability analysis by imposing a small perturbation ðdt;dg; dy;dx; ds; d�Þ ¼ ðt�; g�; y�; x�;
s�; ��Þexpðat þ ikyÞ on the smoothly developing homogeneous state ðth; gh; yh; xh;sh; �hÞ. As handled in Section 4, we can
obtain the instability criterion for the current case,

Gx
hðx; y;sehÞ þ

AsehFhGy � kð1� ‘ÞQhk2

kRhk2
þ ð1� ‘ÞQh � AsehPh

4Dk2. (111)

It is found that this criterion is similar to that (83) in the coupling softening, except that th and Qh are replaced by seh and
(1�‘)Qh, respectively. Obviously, increasing dilatancy factor ‘ reduces the strain hardening from Qh to (1�‘)Qh, facilitating
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Fig. 15. Internal (a) length scale and (b) time scale vs. dilatancy factor with various pressure insensitivity indexes.
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the shear instability. However, whether se accelerates the instability or not depends on the dilatability or ‘ (vide post).
Similar to foregoing analysis, the internal length and time scales are also obtained only by making the identifications
th ¼ seh and Qh ¼ (1�‘)Qh in Eqs. (89) and (97).

As pointed out previously, the internal length scale measures whether the instability occurs easily or with difficulty,
while the internal time scale characterizes how fast does the instability initiate. Thus, we can calculate these internal scales
to examine the effects of the pressure sensitivity index m and dilatancy factor ‘ on shear instability. For the Zr-based BMGs,
the pressure sensitivity index mmc in the Mohr-Coulomb criterion is about 0.2–0.4 range (Lund and Schun, 2003). The
pressure sensitivity index m in the Drucker–Prager criterion is related to mmc by Chen and Han (1988)
m ¼

ffiffiffi
3
p

sinðarctan mmcÞ. Therefore, m is estimated to be 0.3–0.6. A representative range of ‘ is inferred as 0.2–0.4 for
pressure-sensitive dilatant materials by Rudnicki and Rice (1975). Here, we arbitrarily choose ‘ ¼ 0.05�0.5 for metallic
glasses. Fig. 15 shows the internal length and time scales vs. the dilatancy factor with various pressure sensitivity indices. It
can be found that the internal scales for shear instability decrease with increase in dilatancy factor for any fixed m. This
means that the shear-induced dilatation strain makes the shear-banding instability easier and faster. However, the effect of
hydrostatic pressure on shear instability is more complex. It is noted from this picture that these curves have a point of
crossing at ‘cE0.3. When ‘olc, these scales decrease with increase in m, indicating that the tensile hydrostatic pressure
further accelerates shear instability. The reason is that, in this case, se is always greater than t and monotonically increases
with increasing m. However, in the opposite case, i.e., when the dilatation is greater than the critical point, the dilatation-
induced hydrostatic stress can retard slightly the shear instability, because the effective stress is always smaller than the
shear stress. Thus we can conclude that the tensile hydrostatic stress can play a positive or negative role on shear
instability, which depends on the intrinsic dilatability of various BMGs. Our previous analysis indicates that, in a real flow
event, the shear-induced dilatation strain is about 0.1 of shear yield strain for a number of metallic glasses (Jiang and Dai,
2007). Thus, for such dilatability (‘ ¼ 0.1), the tensile hydrostatic stress further helps in shear instability according to the
present results (Fig. 15), which is consistent with the experimental observations by Flores and Dauskardt (2001). Our later
work will focus on the relationship between the pressure sensitivity index and the dilatancy factor, which is important to
understand the pressure-dependent deformation and fracture behaviors of metallic glasses.

7. Conclusion

This paper presents a theoretical description for a bulk metallic glass undergoing a one-dimensional simple shear to
understand whether the shear-banding instability of BMGs is essentially free-volume-dominant or adiabatic shear-
induced. The homogeneous deformation before instability and subsequent linear perturbation analysis clearly reveal the
totally different mechanism for shear-banding instability due to free-volume softening and classical thermal softening.
Furthermore, a coupled thermo-mechanical shear-band analysis is performed to capture the free-volume-initiated shear-
banding instability phenomenon. Our results suggest a clear physical picture of shear-banding instability upon loading a
bulk metal glass. Strains first respond elastically to the applied stress, until the stress level reaches the yielding point,
where it can activate inelastic/plastic flow in a locally free-volume perturbed region. Owing to the perturbation growth,
there is a mismatch in strain rate between the perturbed (shear band) and unperturbed (matrix) zone. The strain rate in the
shear band significantly grows as the applied macroscopic strain increases, and the concomitant decrease in shear strain
rate in the surrounding matrix. The increased strain rate accumulation in the perturbed region is accompanied by strain
softening, which further exacerbates the rate mismatch at lightning speed. The strain in the band therefore becomes very
large and strain localization or shear band appears. During the process of strain localization, an instantaneous local
temperature increase occurs due to the achievement of dynamic plastic strain rate in the shear-band region. This
temperature increase in turn speeds up the net creation of free volume and facilitates shear-banding instability originated
from local free-volume perturbation. The shear-induced dilatation facilitates such shear-banding instability in BMGs.

The present work has analyzed the shear-banding instability of BMGs, clearly revealing that it is free volume by origin.
This is an important step in understanding the shear-band behavior in BMGs. The coupled thermo-mechanical post-
instability process deserves to be studied in our later work. Our study also provides useful theoretical guidance to
improving the ductility and reliability of BMGs.
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