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Preface

This book has grown out of several courses that we have given over the years at
Purdue University, Michigan State University and the Indian Statistical Institute on
Bayesian nonparametrics and Bayesian asymptotics. These topics seemed sufficiently
rich and useful that a book length treatment seemed desirable.

Through the writing of this book we have received support from many people
and we would like to gratefully acknowledge these. Our early interest in the topic
came from discussions with Jim Berger, Persi Diaconis and Larry Wasserman. We
have received encouragement in our effort from Mike Lavine, Steve McEachern, Susie
Bayarri, Mary Ellen Bock, J. Sethuraman and Shanti Gupta, who alas is no longer
with us.

We have enjoyed many years of collaboration with Subashis Goshal and much of
our joint work finds a place in this book. Besides, he looked over an earlier version
of the manuscript and gave very useful comments. The book also includes joint work
with Jyotirmoy Dey, Roy Erickson, Liliana Dragichi, Charles Messan, Tapas Samanta
and K.R.Srikanth. They have helped us with the proof, as have others. In particular,
Tapas Samanta played an invaluable role in helping us communicate electronically
and Charles Messan with computations.

Brendan Murphy, then a graduate student at Yale, gave us very useful feed back
on an earlier version of Chapter 1. We also benefited from many suggestions and
criticisms from Jim Hannan on the same chapter. We like to thank Nils Hjort both
for his interest in the book and comments.

Dipak Dey made Sethuraman’s unpublished notes available to us and these notes
helped us considerably with Chapter 3.

When we first thought of writing a book, it seemed that we would be able to cover
most, if not all, of what was known in Bayesian nonparametrics. However the last few
years have seen an explosion of new work and our goals have turned more modest.
We view this book as an introduction to the theoretical aspects of the topic at the
graduate level. There is no coverage of the important aspect of computations but
given the interest in this area we expect that a book on computations will emerge
before long.

Our appreciation to Vince Melfi for his advice in matters related to Latex. Despite
it, our limitations with Latex and typing skills would be apparent and we seek the
readers’ indulgence.
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Introduction: Why Bayesian Nonparametrics—An
Overview and Summary

Bayesians believe that all inference and more is Bayesian territory. So it is natural that
a Bayesian should explore nonparametrics and other infinite-dimensional problems.
However, putting a prior, which is always a delicate and difficult exercise in Bayesian
analysis, poses special conceptual, mathematical, and practical difficulties in infinite-
dimensional problems. Can one really have a subjective prior based on knowledge and
belief, in an infinite-dimensional space? Even if one settles for a largely non-subjective
prior, it is mathematically difficult to construct prior distributions on such sets as the
space of all distribution functions or the space of all probability density functions
and ensure that they have large support, which is a minimum requirement because
a largely nonsubjective prior should not put too much mass on a small set. Finally,
there are formidable practical difficulties in the calculation of the posterior, which is
the single most important object in the output of any Bayesian analysis.

Nonetheless, a major breakthrough came with Ferguson’s [61] paper on Dirichlet
process priors. The hyperparameters α(R) and α(·) of these priors are easy to elicit, it
is easy to ensure a large support, and the posterior is analytically tractable. More flex-
ibility was added by forming mixtures of Dirichlet processes, introduced by Antoniak
[4].

Mixtures of Dirichlet have been very popular in Bayesian nonparametrics, espe-
cially in analyzing right censored survival data. In these problems one can combine
analytical work with Markov Chain Monte Carlo (MCMC) to calculate and display
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various posterior quantities in real time. By choosing α(·) equal to the exponential
distribution and by tuning the parameter α(R), one can make the analysis close to
classical analysis based on a parametric exponential or close to classical nonparamet-
rics. However, the whole range of α(R) offers a whole continuum of options that are
not available in classical statistics, where typically one either does a model based
parametric analysis or use, fully nonparametric methods. An interesting example in
survival analysis is presented by Doss [53, 54]. Huber’s pioneering work in classical
statistics on a robust via media between these two extremes has been too technically
demanding to yield a flexible set of methods that pass continuously from one extreme
to the other. These ideas are discussed further in Chapter 3 on Dirichlet priors.

Similarly one can analyze generalized linear models with a nonparametric Bayesian
choice of link functions. Bayesian nonparametrics is known to be a powerful, robust
alternative to regression analysis based on probit or logit models. References are
available in Chapter 7. There is some evidence of gaining an advantage in using
Bayesian nonparametrics to model random effects in linear models for longitudinal
data.

Sometimes things can go wrong if one uses a Dirichlet process prior inappropriately.
Such a prior cannot be used for density estimation without some smoothing, but
smoothing leads to formidable difficulties in calculating the posterior or the Bayes
estimate of the density function. Solution of this computational problem by MCMC
is fairly recent; see Chapter 5 for references and discussion. A major advantage of the
Bayesian method is that choice of the smoothing parameter h, which is still a hard
problem in classical density estimation, is relatively automatic. The Bayesian version
of varying the smoothing parameter over different parts of the data is also relatively
easy to implement. These are some of the major advances in Bayesian nonparametrics
in recent years.

A major theoretical advance has occurred recently in Bayesian semiparametrics.
One has the same advantages of flexibility here as discussed earlier, but unfortu-
nately this is also an area where the Dirichlet process is inappropriate without some
smoothing. Instead one can use Polya tree priors that sit on densities and satisfy some
extra conditions. For details and references see Chapter 6.

A difficulty in Bayesian nonparametrics is that not much was known until recently
about the asymptotic behavior of the posterior and various forms of frequentist vali-
dation. One method of frequentist validation of Bayesian analysis is to see if one can
learn about the unknown true P0 with vanishingly small error by examining where the
posterior puts most of its mass. This idea and the first result of this sort are due to
Laplace. A precise statement of this property leads to the notion of consistency of the
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posterior at P0, due to Freedman [69]. In the case of finite-dimensional parameters,
the posterior is usually consistent, and the data wash away the prior. For an infinite-
dimensional parameter, this is an exception rather than the rule; see, for instance,
examples of Freedman [69] and his theorem: For a multinomial with infinitely many
classes, the set of (P0, Π) for which posterior for the prior Π is consistent at P0, is
topologically small, i.e., of the first category. Freedman had also introduced the notion
of tail free priors for which there is posterior consistency at P0. A striking example of
inconsistency was shown by Diaconis and Freedman [46] when a Dirichlet process is
used for estimating a location parameter. In his discussion of [46], Barron points out
that the use of a Dirichlet process prior in a location problem leads to a pathological
behavior of the posterior for the location parameter. It is clear that inconsistency is a
consequence of this pathology. Diaconis and Freedman [46] also suggested that such
examples would occur even if one uses a prior on densities, e.g., a Polya tree prior
sitting on densities.

Chapter 4 is devoted to general questions of consistency of the posterior and positive
results. Applications appear in many other chapters and in fact run through the whole
book. These results, as well as somewhat stronger results, like rates of convergence,
are fairly recent and due to many authors, including ourselves.

To sum up, Bayesian nonparametrics is sufficiently well developed to take care
of many problems. Computation of the posterior is numerically feasible for several
classes of priors. We now know a fair amount of asymptotic behavior of posteriors
for different priors to ensure consistency at plausible P0s. Most important, Bayesian
nonparametrics provides more flexibility than classical nonparametrics and a more
robust analysis than both classical and Bayesian parametric inference. It deserves to
be an important part of the Bayesian paradigm.

This monograph provides a systematic, theoretical development of the subject. A
chapterwise summary follows:

1. After introducing some preliminaries, Chapter 1 discusses some fundamental
aspects of Bayesian analysis in the relatively simple context of finite dimensional
parameter space with dimension fixed for all sample sizes. Because this subject is
treated well in many standard textbooks, the focus is on aspects such as nonsubjective
priors, also called objective priors, posterior consistency and exchangeability. These
are topics that usually do not receive much coverage in textbooks but are important
for our monograph,

Because elicitation of subjective priors or quantification of expert knowledge is still
not easy, most priors used in practice, especially in nonparametrics, are nonsubjective.
We discuss the standard ways of generating such priors and how to modify them
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when some subjective or expert judgment is available (Section 1.61.7). We also briefly
discuss common criticisms of nonsubjective Bayesian analysis and answers 1.6.2

Posterior consistency is introduced, and the classical theorem of Doob is proved
with all details. Then, in the spirit of classical maximum likelihood theory, posterior
consistency is established under regularity conditions using the uniform strong law
of large numbers. Posterior consistency provides a frequentist validation that is es-
pecially important for inference on infinite-or high dimensional parameters because
even with a massive amount of data, any inadequacy in the prior can still influence
the posterior a lot. Posterior normality (Section 1.4) is a sharpening of posterior
consistency that is related to Laplace approximation and plays an important role in
the construction of reference and probability matching priors. Convergence of poste-
rior distributions is usually studied under regularity conditions. A general approach
that also works for nonregular problems is presented in Section 1.5. Exchangeability
appears in the last sections Chapter 1.

In Chapter 2 we examine basic measure-theoretic questions that arise when we try
to check measurability of a set or function or put a prior on such a large space as
the set P of all probability measures on R. The Kolmogorov construction based on
consistent finite-dimensional distributions does not meet this requirement because the
Kolmogorov sigma-field is too small to ensure measurability of important subsets like
the set of all discrete distributions on R or the set of all P with a density with respect
to the Lebesgue measure. Questions of measurability and convergence are discussed
in Section 2.2.

An interesting fact is a proof that the set of discrete measures and the set of ab-
solutely continuous probability measures are measurable. The main results in the
chapter are the basic construction theorems 2.3.2 through 2.3.4. Tail free priors, in-
cluding the Dirichlet process prior, may be constructed this way. The most important
type of convergence, namely, weak convergence is discussed is detail in Section 2.5.
The main result is a characterization of tightness in the spirit of Sethuraman and
Tiwari (1982). Section 2.4 contains 0-1 laws for tail free priors as well as a theorem
due to Kraft that can be used to construct a tail free prior for densities.

De Finetti’s theorem appears in the last section.
The reader not interested in measure-theoretic issues may read this chapter quickly

to understand the main results and get a flavor of some of the proofs. A reader with
more measure-theoretic interest will gain a solid theoretical framework for handling
priors for nonparametric problems and will also be rewarded with several measure-
theoretic subtleties that are interesting.
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The most important prior in Bayesian nonparametrics is the Dirichlet process prior,
which plays a central role here as the normal in finite-dimensional problems. Most of
Chapter 3 is devoted to this prior. The last section is on Polya tree priors.

We introduce a Dirichlet prior (3.1) first in the case of a finite sample space X and
then for X = R to help develop intuition for the main results regarding the latter. The
Dirichlet prior D for X = R is usually called the Dirichlet process prior. Section 3.2
contains calculation and justification of a formula for posterior and special properties.
It also contains Sethuraman’s clever and elegant construction, which applies to all X
and suggests how one can simulate from this prior. Other results of interest include a
characterization of support and convergence properties (Section 3.2) and the question
of singularity of two Dirichlet process priors with respect to each other. Part of the
reason why Dirichlet process priors have been so popular is the multitude of interesting
properties mentioned earlier, of which the most important are the ease in calculation
of posterior and the fact that the support is as rich as it should be for a prior for
nonparametric problems.

A second and equally important reason for popularity is the flexibility, at least for
mixtures of Dirichlet, and the relative case with which one can elicit the hyperparam-
eters. These issues are discussed in 3.2.7

The last section extends most of this discussion to Polya tree priors which form
a much richer class. Though not as mathematically tractable as D, they are still
relatively easy to handle and one can use convenient, partly elicited hyperparameters.

As we have argued before, posterior consistency is a useful validation for a par-
ticular prior, especially in nonparametric problems. Chapter 4 deals with essentially
three approaches to posterior consistency for three kinds of problems, namely, purely
nonparametric problems of estimating a distribution function or its weakly contin-
uous functionals, semiparametrics, and density estimation. The Dirichlet and, more
generally, tail free priors have good consistency properties for the first class of prob-
lems. Posterior consistency for tail free priors is discussed in the first few pages of the
chapter.

In Bayesian semiparametrics, for example estimation of a location parameter (Chap-
ter 6) or the regression coefficient (Chapter 7), addition of Euclidean parameters de-
stroys the tail free property of common priors like Dirichlet process and Polya tree.
Indeed, the use of Dirichlet leads to a pathological posterior. Posterior consistency in
this case is based on a theorem of Schwartz for a prior on densities. The two crucial
conditions are that the true probability measure lie in the Kullback-Leibler support of
the prior and there has to be uniformly exponentially consistent tests for H0 : f = f0
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VS H1 : f ∈ V c, where V is a neighborhood whose posterior probability is being
claimed to converge to one. This is presented in Section 4.2.

The Schwartz theorem is well suited for semiparametrics but not for density es-
timation because the second condition in the theorem does not hold for a V equal
to an L1-neighborhood of f0. Barron (unpublished) has suggested a weakening of
one of these conditions, suitably compensated by a condition on the prior. His con-
ditions are necessary and sufficient for a certain form of exponential convergence of
the posterior probability of V to one. Ghosal, Ghosh and Ramamoorthi (1999) make
use of this theorem and some ideas of Barron, Schervish and Wasserman (1999) to
modify Schwartz’s result to make it suitable for showing posterior consistency with
L1-neighborhoods for a prior sitting on densities. All these results appear in Section
4.2.

Finally, Section 4.3 is devoted to another approach based on an inequality of
LeCam, which bypasses the verification of the first condition of Schwartz.

Applications of these results are made in Chapters 5 through 8. Somewhat different
but direct calculations leading to posterior consistency appear in Chapters 9 and 10.

Chapter 5 focuses on three kinds of priors for density estimation: Dirichlet mix-
tures of uniform, Dirichlet mixtures of normal, and Gaussian process priors. Dirichlet
mixtures of normal are the most popular and the most studied. The Gaussian pro-
cess priors seem very promising but have not been studied well. Dirichlet mixtures of
uniform are essentially Bayesian histograms and have a relatively simple theory.

The chapter begins with fairly general construction of priors on densities in sections
5.2 and 5.3 and then specializes to Bayesian histograms and their consistency in
Sections 5.40, 5.4.1, and 5.4.2. Dirichlet mixtures of normals are studied in Sections
5.6 and 5.7. The L1-consistency of the posterior applies to the prior of Escobar and
West in [168]. The final section contains an introduction to what is known about
Gaussian process priors.

Interesting issues that emerge from this rather technical chapter is that checking the
Kullback-Leibler support condition is especially hard for densities with R as support,
whereas densities with bounded support are much easier to handle. A second source of
technical difficulty is the need for efficient calculation of packing or covering numbers,
also called Kolmogorov’s metric entropy. These numbers play a basic role in Chapters
4,5 and 8.

Chapter 6 begins with the famous Diaconis-Freedman (1986) example where a
Dirichlet process prior and a euclidean location parameter lead to posterior inconsis-
tency. Barron (1986) has pointed out that there is a pathology in this case which is
even worse than inconsistency. We argue, as suggested in Chapter 4, that the main
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problem leading to posterior inconsistency is that the tail free property does not hold.
It is good to have a density but that does not seem to be enough. However, no counter
example is produced.

The main contribution of the chapter is to suggest in Section 6.3 a strategy for
proving posterior consistency for the location parameter in semiparametric setting
and to provide in Section 6.4 a class of Polya tree priors which satisfy the conditions
of Section 6.3 for a rich class of true densities. A major assumption needed in Section
6.3 holds only for densities with R as support. Later in the section we show how to
extend these results to densities with bounded support. Whereas in density estimation
bounded support helps, the converse seems to be true when one has to estimate a
location parameter.

The discussion of Bayesian semiparametrics is continued in Chapter 7 . We assume
a standard regression model

Y = α + βx + ε

with the error ε having a nonparametric density f . The main object is to estimate
the regression coefficient but one may also wish to estimate the intercept α as well as
the true density of ε. The classical counterpart of this is Bickel [19].

Because Y ’s are no longer i.i.d, the Schwartz theorem of Chapter 6 does not apply.
In Section 7.2 - we prove a generalization that is valid for n independent but not
necessarily identically distributed random variables.

The theorem needs two conditions which are exact analogues of the two conditions
in Schwartz’s theorem and one additional condition on the second moment of a log
likelihood ratio. Verification of these conditions is discussed in Section 7.4.

In Section 7.3 we discuss sufficient conditions for the existence of uniformly consis-
tent tests for β alone or (α, β) or (α, β, f).

Finally in sections 7.6 we verify the remaining two conditions for Polya tree priors
and Dirichlet mixtures of normals. Verification of conditions require methods that are
substantially different from those in Chapter 5.

Chapter 8 deals with three different but related topics, namely, three methods of
construction of nonsubjective priors in infinite dimensional problems involving densi-
ties, consistency proof for such priors using LeCam’s inequality and rates convergence
for such and other priors. They are discussed in sections 8.2,8.5 and 8.6 respectively.
In several examples it is shown that the rates of convergence are the best possible.
However, for most commonly used priors getting rates of convergence is still a very
hard open problem.



8 WHY BAYESIAN NONPARAMETRICS

Chapters 9 and 10 deal with right censored data. Here, the object of interest is the
distribution of a positive random variable X, viewed as survival time. What we have
are observations of is Z = X ∧ Y, ∆ = I(X ≤ Y ), where Y is a censoring random
variable, independent of X.

Chapter 9 begins with a model studied by Susarla and Van Ryzin [155] where the
distribution of X is given a Dirichlet process prior. We give a representation of the
posterior and establish its consistency. Section 2 is a quick review of the notion of
cumulative hazard function and identifiability of the distribution of X from that of
(Z, ∆). This is then used in the next section where we start with a Dirichlet prior
for the distribution of (Z, ∆) and use the identifiability result to transfer it to a prior
for the distribution of X. We expect that this method will be useful in constructing
priors for other kind of censored data. Section 9.4 is a preliminary study of Dirichlet
priors for interval censored data. We show that, unlike the right censored case, letting
α(R) → 0 does not give the nonparametric maximum likelihood estimate.

Chapter 10 deals with neutral to right priors. These priors were introduced by
Doksum in 1974 [48] and after some initial work by Ferguson and Phadia [64] remained
dormant. There has been renewed interest in these priors since the introduction of
Beta processes by Hjort [100]. Neutral to right priors, via the cumulative hazard
function, gives rise to independent increment processes which in turn are described
by their Lévy representations. In Section 10.1 after giving the definition and basic
properties of neutral to right priors we move onto Section 10.2 where we briefly review
the connection to independent increment processes and Lévy representations. Section
10.3 describes some properties of the prior in terms of the Lévy measure and Section
10.4 is devoted to Beta processes. The remaining parts of the chapter is devoted to
posterior consistency and is partly driven by a surprising example of inconsistency
due to Kim and Lee [114].

Chapter 11 contains some exercises. These were not systematically developed. How-
ever we have included in the hope that going through them will give the reader some
additional insight into the material.

Most work on Bayesian nonparametrics concentrates on estimation. This mono-
graph is no exception. However there is interesting new work on Bayes Factors and
their consistency [13], [37]. Even in the context of estimation, in the context of cen-
sored data, not much has been done beyond the independent right censored model.
There certainly is lot more to be done.



1
Preliminaries and the Finite Dimensional Case

1.1 Introduction

The basic Bayesian model consists of a parameter θ and a prior distribution Π for θ
that reflects the investigator’s belief regarding θ. This prior is updated by observing
X1, X2, . . . , Xn, which are modeled as i.i.d. Pθ given θ. The updating mechanism is
Bayes theorem, which results in changing Π to the posterior Π(·|X1, X2, . . . , Xn).
The posterior reflects the investigator’s belief as revised in the light of the data
X1, X2, . . . , Xn. One may also report the predictive distribution of the future ob-
servations or summary measures like the posterior mean or variance. If there is a
decision problem with a specified loss function, one can choose the decision that min-
imizes the expected loss, with the associated loss calculated under the posterior. This
decision is the Bayes solution, or the Bayes rule. Ideally, a prior should be chosen
subjectively to express personal or expert knowledge and belief. Such evaluations and
quantifications are not easy, especially in high- or infinite-dimensional problems. In
practice, mathematically tractable priors, for example, conjugate priors, are often
used as convenient and partly nonsubjective models of knowledge and belief. Certain
aspects of these priors are chosen subjectively.

Finally, there are completely nonsubjective priors, the choice of which also leads to
useful posteriors. For the finite-dimensional case a brief account appears in Section
1.6. For a moderate amount of data, i.e., for a moderate n, the effect of prior on the
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posterior is often negligible. In such cases the posterior arising from a nonsubjective
prior may be considered a good approximation for the posterior that one would have
gotten from a subjective prior.

The posterior, like the prior, is a probability measure on the parameter space Θ,
except that it depends on X1, X2, . . . , Xn and the study of the posterior as n → ∞ is
naturally connected to the theory of convergence of probability measures. In Section
1.2.1, we present a brief survey of weak convergence of probability measures as well
as relations between various metrics and divergence measures.

A recurring theme throughout this monograph is posterior consistency, which helps
validate Bayesian analysis. Section 1.3 contains a formalization and brief discussion of
posterior consistency for separable metric space Θ. In Sections 1.3 and 1.4 we study
in some detail the case when Θ is finite-dimensional and θ �→ Pθ is smooth. This is the
framework of conventional parametric theory. Most of the results and asymptotics are
classical, but some are relatively new. While the main emphasis of this monograph is
in the nonparametric, and hence infinite-dimensional situation, we hope that Sections
1.3 and 1.4 will serve to clarify the points of contact and points of difference with the
finite-dimensional case.

1.2 Metric Spaces

1.2.1 preliminaries

Let (S, ρ) be a metric space so that ρ satisfies (i) ρ(s1, s2) = ρ(s2, s1), (ii) ρ(s1, s2) ≥
0 and ρ(s1, s2) = 0 iff s1 = s2 and (iii) ρ(s1, s3) ≤ ρ(s1, s2) + ρ(s2, s3).

Some basic properties of metric spaces are summarized here.
A sequence sn in S converges to s iff ρ(sn, s) → 0. The ball with center s0 and

radius δ is the set B(s0, δ) = {s : ρ(s0, s) < δ}. A set U is open if every s in U has a
ball B(s, δ) contained in U . A set V is closed if its complement V c is open. A useful
characterization of a closed set is: V is closed iff sn ∈ V and sn → s implies s ∈ V .
The intersection of closed sets is a closed set. For any set A ⊂ S, the smallest closed
set containing A, which is the intersection of all closed sets containing A, is called
the closure of A and will be denoted by Ā. Similarly Ao, the union of all open sets
contained in A is called the interior of A. The boundary ∂A of the set A is defined as
∂A = Ā ∩ (Ac).

A subset A of S is compact if every open cover of A has a finite subcover, i.e.,
if {Uα : α ∈ Λ} are open sets and A ⊂ ∪α∈ΛUα, then there exists α1, α2, . . . , αn
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such that A ⊂ ∪n
1Uαi

. A set A is compact iff every sequence in A has a convergent
subsequence with limit in A.

The metric space S is separable if it has a countable dense subset, i.e., if there is
a countable set S0 with S̄0 = S. Most of the sets that we consider are separable. In
particular, if S is compact metric it is separable. Let S be separable and let S0 be
a countable dense set. Consider the countable collection {B(si, 1/n) : si ∈ S0; n =
1, 2, . . .}. If U is an open set and if s ∈ U , then for some n > 1, there is a ball
B(s, 1/n) ⊂ U . Let si ∈ S0 with ρ(si, s) < 1/2n. Then s is in B(si, 1/2n) and
B(si, 1/2n) ⊂ B(s, 1/n) ⊂ U . This shows that in a separable space every open set is
a countable union of balls. This fact fails to hold when S is not separable.

The Borel σ-algebra on S is the σ-algebra generated by all open sets and will
be denoted by B(S). The remarks in the last paragraph show that if S is separable
then B(S) is the same as the σ-algebra generated by open balls. In the absence of
separability these two σ-algebras will be different.

It would sometimes be necessary to check that a given class of sets C is the Borel
σ-algebra. A useful device to do this is the π-λ theorem given below. See Pollard
[[140], Section 2.10] for a proof and some discussion.

Theorem 1.2.1. [π-λ theorem] A class D of subsets of S is a π-system if it is
closed under finite intersection, i.e., if A, B are in D then A ∩ B ∈ D. A class C of
subsets of S is a λ-system if

(i) S is in C;

(ii) An ∈ C and An ↑ A, then A ∈ C;

(iii) A, B ∈ C and A ⊂ B, then B − A ∈ C.

If C is a λ-system that contains a π-system D, then C contains the σ-algebra generated
by D.

Remark 1.2.1. An easy application of the π-λ theorem shows that if two probability
measures on S agree on all closed sets then they agree on B(S).

Remark 1.2.2. If two probability measures on RK agree on all sets of the form
(a1, b1] × (a2, b2], . . . × (ak, bk] then they agree on all Borel sets in Rk.

Definition 1.2.1. Let P be a probability measure on (S,B(S)).The smallest closed
set of P -measure 1 is called the support, or more precisely the topological support, of
P .
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When S is separable the support of P always exists. To see this let U0 = {U :
U open, P (U) = 0}, then U0 = ∪U∈U0U is open. Because U0 is a countable union of
balls in U0, P (U0) = 0. It follows easily that F = U c

0 is the support of P . The support
can be equivalently defined as a closed set F with P (F ) = 1 and such that if s ∈ F
then P (U) > 0 for every neighborhood U of s. If S is not separable then the support
of P may not exist.

1.2.2 Weak Convergence

We need elements of the theory of weak convergence of probability measures. The
details of the material discussed below can be found, for instance, in Billingsley [[21],
Chapter 1].

Let S be a metric space and B(S) be the Borel σ-algebra on S. Denote by C(S)
the set of all bounded continuous functions on S. Note that every function in C(S) is
B(S) measurable.

Definition 1.2.2. A sequence {Pn} of probability measures on S is said to converge
weakly to a probability measure P , written as {Pn} → P weakly, if∫

f dPn →
∫

f dP for all f ∈ C(S)

The following “Portmanteau” theorem gives most of what we need.

Theorem 1.2.2. The following are equivalent:

1. {Pn} → P weakly;

2.
∫

f dPn →
∫

f dP for all f bounded and uniformly continuous;

3. lim sup Pn(F ) ≤ P (F ) for all F closed;

4. lim inf Pn(U) ≥ P (U) for all U open;

5. lim Pn(B) = P (B) for all B ∈ B(S)with P (∂B) = 0.

In applications, Pns are often distributions on S induced by random variables Xns
taking values in S. If S is not separable, then Pn is defined on a σ-algebra much smaller
than B(S). In this case, to avoid measurability problems inner and outer probabilities
have to be used. For a version of Theorem 1.2.2 in this more general setting see van
der Vaart and Wellner [[161], 1.3.4]. The other useful result is Prohorov’s theorem.
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Theorem 1.2.3. [Prohorov] If S is a complete separable metric space, then every
subsequence of Pn has a weakly convergent subsequence iff Pn is tight, i.e., for every
ε > 0, there exists a compact set K with Pn(K) > 1 − ε for all n.

When S is a complete separable metric space the space M(S)-the space of probabil-
ity measures on S-is also metrizable, complete, and separable under weak convergence.
In this case if

∫
f dPn →

∫
f dP for f in a countable dense set in C(S), then Pn → P

weakly. We note that sets in M(S) of the form{
Q :

∣∣∣∣
∫

fi dP −
∫

fi dQ

∣∣∣∣ < δ, i = 1, 2, . . . , k; fi ∈ C(S)
}

constitute a base for the neighborhoods at P , i.e., any open set is a union of family
of sets of the form displayed above. The space M(S) and the space of probability
measures on M(S) are of considerable interest to us. We will return to a detailed
analysis of these spaces later; here are a few preliminary facts used later in this
chapter.

The space M(S) has many natural metrics.

Weak convergence. As discussed earlier M(S) is metrizable, i.e., there is a metric ρ
on M(S) such that ρ(Pn, P ) → 0 iff Pn → P weakly [see section 6 in Billingsley
[21]]. The exact form of this metric is not of interest to us.

Total variation of L1. The total variation distance between P and Q is given by
‖P − Q‖1 = 2 supB |P (B) − Q(B)|. If p and q are densities of P and Q with
respect to some measure µ, then ‖P −Q‖1 is the L1-distance

∫
|p−q| dµ between

p and q. Sometimes, when there can be no confusion with other metrics, we will
omit the subscript 1 and denote the L1 distance by just ‖P − Q‖ or in terms of
densities as ‖p − q‖.

Hellinger metric. If p and q are densities of P and Q with respect to some σ-finite
measure µ, the Hellinger distance between P and Q is defined by H(P, Q) =[∫

(
√

p − √
q)2 dµ

]1/2. This distance is convenient in the i.i.d. context because
A(P n, Qn) = An(P, Q), where A(P, Q) =

∫ √
p
√

q dµ, is called the affinity
between P and Q and

H2(P n, Qn) = 2(1 − (A(P, Q))n)

The Hellinger metric is equivalent to the L1-metric. The next proposition shows
this.
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Proposition 1.2.1.

‖P − Q‖2
1 ≤ H2(P, Q) 2(1 + A(P, Q)) ≤ ‖P − Q‖1 2(1 + A(P, Q))

Proof. Let µ dominate P and Q and let p, q, be densities of P and Q with respect to
µ. Then [∫

|p − q| dµ

]2

=
[∫

|√p − √
q||√p +

√
q| dµ

]2

≤
∫

(
√

p − √
q)2 dµ

∫
(
√

p +
√

q)2 dµ

which is the first inequality. Also H2(P, Q) ≤ ‖P − Q‖1 because

(
√

p − √
q)2 ≤ p + q − min(p, q) = |p − q|

As a corollary to the above proposition, we have the following.

Corollary 1.2.1. Replacing A(P, Q) by its upper bound 1 gives

‖P − Q‖2
1 ≤ 4H2(P, Q) ≤ 4‖P − Q‖1

Writing H2(P, Q) = 2(1 − A(P, Q)) in the first inequality, a bit of algebra gives

A(P, Q) ≤
√

1 − ‖P − Q‖2
1

4

Note that none of the three quantities discussed-the L1 metric, the Hellinger metric,
or the affinity A(P, Q)-depends on the dominating measure µ. The same holds for the
Kullback- Leibler divergence(K-L divergence) which is considered next.

Kullback-Leibler divergence. The Kullback-Leibler divergence between two prob-
ability measures, though not a metric, has played a central role in the classical
theory of testing and estimation and will play an important role in the later
chapters of this text. Let P and Q be two probability measures and let p, q be
their densities with respect to some measure µ. Then

K(P, Q) =
∫

p log
p

q
dµ ≥

∫
(1 − q

p
)dP ≥ 0

and K(P, Q) = 0 iff P = Q. Here is a useful refinement due to Hannan [92].
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Proposition 1.2.2.

K(P, Q) ≥ ‖P − Q‖2
1

4

Proof. ∫
p log(p/q) dµ =

∫
2(− log

√
q

√
p
)pdµ

≥
∫

2 (1 − (
√

q/
√

p)) pdµ

= 2 (1 − A(P, Q)) = H2(P, Q)

The corollary to the previous proposition yields the conclusion.

Kemperman [112] has shown that K(P, Q) ≥ ‖P − Q‖2
1/2 and that this inequality

is sharp.
Much of our study involves the convergence of sequences of functions of the form

Tn(X1, X2, . . . , Xn) : Ω �→ M(Θ) where Ω = (X∞, A∞) with a measure P∞
0 . The

different metrics on M(Θ) provide ways of formalizing the convergence of Tn to T .
Thus

(i) Tn
weakly→ T almost surely P0 if

P∞
0

{
ω : Tn(ω) weakly→ T (ω)

}
= 1

(ii) Tn
weakly→ T in P0 probability if

P∞
0 {ω : ρ(Tn(ω), T (ω)) > ε} → 0

where ρ is a metric that generates weak convergence.

Tn
L1→ T almost surely P0 or in P0-probability can be defined similarly.

1.3 Posterior Distribution and Consistency

1.3.1 Preliminaries

We begin by formalizing the setup. Let Θ be the parameter space. We assume that
Θ is a complete separable metric space endowed with its Borel σ-algebra B(Θ). For
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each θ ∈ Θ, Pθ is a probability measure on a measurable space (X, A) such that, for
each A ∈ A, θ �→ Pθ(A) is B(Θ) measurable.

X1, X2, . . . is a sequence of X-valued random variables that are, for each θ ∈ Θ,
independent and identically distributed as Pθ . It is convenient to think of X1, X2, . . .
as the coordinate random variables defined on Ω = (X∞, A∞) and P∞

θ as the i.i.d.
product measure defined on Ω. We will denote by Ωn the space (Xn, An) and by P n

θ

the n-fold product of Pθ. When convenient we will also abbreviate X1, X2, . . . , Xn by
Xn.

Suppose that Π is a prior, i.e., a probability measure on (Θ, B(Θ)). For each n, Π
and the Pθs together define a joint distribution of θ and Xn namely, the probability
measure λn,Π on Ωn by

λn,Π (B × A) =
∫

B

P n
θ (A) dΠ(θ)

The marginal distribution λn of X1, X2, . . . , Xn is

λn(A) = λn,Π (Θ × A)

These notions also extend to the infinite sequence X1, X2, . . . . We denote by λΠ

the joint distribution of θ,X1, X2, . . . and by λ the marginal distribution on Ω.
Any version of the conditional distribution of θ given X1, X2, . . . , Xn is called a

posterior distribution given X1, X2, . . . , Xn. Formally, a function Π(· |· ) : B(Θ)×Ωn �→
[0, 1] is called a posterior given X1, X2, . . . , Xn if

(a) for each ω ∈ Ωn, Π(· |ω) is a probability measure on B(Θ);

(b) for each B ∈ B(Θ), Π(B|· ) is An measurable; and

(c) for each B ∈ B(Θ) and A ∈ A,

λn,Π (B × A) =
∫

A

Π(B|ω) dλn(ω)

In the case that we consider, namely, when the underlying spaces are complete and
separable, a version of the posterior always exists [Dudley [58], 10.2]. By condition
(b), Π(· |ω) is a function of X1, X2, . . . , Xn and hence we will write the postrior
conveniently as Π(·|X1, X2, . . . , Xn) or as Π(·|Xn).

Typically, a candidate for the posterior can be guessed or computed heuristically
from the context. What is then required is to verify that it satisfies the three conditions
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listed earlier. When the Pθs are all dominated by a σ- finite measure µ, it is easy to
see that, if pθ = dPθ/dµ, then

Π(A|Xn) =

∫
A

∏n
1 pθ(Xi) dΠ(θ)∫

Θ

∏n
1 pθ(Xi) dΠ(θ)

Thus in the dominated case,
∏n

1 pθ(Xi)/
∫ ∏n

1 pθ(Xi)dΠ(θ) is a version of the den-
sity with respect to Π of Π(·|Xn).

In the last expression the posterior given X1, X2, . . . , Xn is the same as that given a
permutation Xπ(1), Xπ(2), . . . , Xπ(n). Said differently, the posterior depends only on the
empirical measure (1/n)

∑n
1 δXi

, where for any x, δx denotes the measure degenerate
at x. This property holds also in the undominated case. A simple sufficiency argument
shows that there is a version of the posterior given X1, X2, . . . , Xn that is a function
of the empirical measure.

Definition 1.3.1. For each n, let Π(·|Xn) be a posterior given X1, X2, . . . , Xn.
The sequence {Π(·|Xn)} is said to be consistent at θ0 if there is a Ω0 ⊂ Ω with
P∞

θ0
(Ω0) = 1 such that if ω is in Ω0, then for every neighborhood U of θ0,

Π(U |Xn(ω)) → 1

Remark 1.3.1. When Θ is a metric space {θ : ρ(θ, θ0) < 1/n : n ≥ 1} forms a base
for the neighborhoods of θ0, and hence one can allow the set of measure 1 to depend
on U . In other words, it is enough to show that for each neighborhood U of θ0,

Π(U |Xn(ω)) → 1 a.e. P∞
θ0

Further, when Θ is a separable metric space it follows from the Portmanteau theo-
rem that consistency of the sequence {Π(·|Xn)} at θ0 is equivalent to requiring that
{Π(·|Xn)} weakly→ δθ0 a.e.Pθ0 .

Thus the posterior is consistent at θ0, if with Pθ0 probability 1, as n gets large, the
posterior concentrates around θ0.

Why should one require consistency at a particular θ0? A Bayesian may think of
θ0 as a plausible value and question what would happen if θ0 were indeed the true
value and the sample size n increases. Ideally the posterior would learn from the data
and put more and more mass near θ0. The definition of consistency captures this
requirement.

The idea goes back to Laplace, who had shown the following. If X1, X2, . . . , Xn are
i.i.d. Bernoulli with Pθ(X = 1) = θ and π(θ) is a prior density that is continuous and
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positive on (0, 1), then the posterior is consistent at all θ0 in (0, 1). Von Mises [162]
calls this the second fundamental law of large numbers; the first being Bernoulli’s
weak law of large numbers.

An elementary proof of Lapalace’s result for a beta prior may be of some interest.
Let the prior density with respect to Lebesgue measure on (0, 1) be

Π(θ) =
Γ(α + β)
Γ(α) Γ(β)

θα−1(1 − θ)β−1

Then the posterior density given X1, X2, . . . , Xn is

Γ(α + β + n)
Γ(α + r) Γ(β + (n − r))

θα+r−1(1 − θ)β+(n−r)−1

where r is the number of Xis equal to 1. An easy calculation shows that the posterior
mean is

E(θ|X1, X2, . . . , Xn) =
(

α + β

α + β + n

)
α

α + β
+

(
n

α + β + n

)
r

n

which is a weighted combination of the consistent estimate r/n of the true value θ0

and the prior mean α/(α + β). Because the weight of r/n goes to 1,

E(θ|X1, X2, . . . , Xn) → θ0 a.e. Pθ0

A similar easy calculation shows that the posterior variance

V ar(θ|X1, X2, . . . , Xn) =
(α + r)(β + (n − r))

(α + β + n)2(α + β + n + 1)

goes to 0 with probability 1 under θ0. An application of Chebyshev’s inequality com-
pletes the proof.

1.3.2 Posterior Consistency and Posterior Robustness

Posterior consistency is also connected with posterior robustness. A simple result is
presented next [84].

Theorem 1.3.1. Assume that the family {Pθ : θ ∈ Θ} is dominated by a σ-
finite measure µ and let pθ denote the density of Pθ. Let θ0 be an interior point of Θ
and π1, π2 be two prior densities with respect to a measure ν, which are positive and
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continuous at θ0. Let πi(θ|Xn), i = 1, 2 denote the posterior densities of θ given Xn.
If πi(·|Xn), i = 1, 2 are both consistent at θ0 then

lim
n→∞

∫
|π1(θ|Xn) − π2(θ|Xn)| dν(θ) = 0 a.s Pθ0

Proof. We will show that with P∞
θ0

probability 1,

∫
Θ

π2(θ|Xn)
∣∣∣∣1 − π1(θ|Xn)

π2(θ|Xn)

∣∣∣∣ dν(θ) → 0

Fix δ > 0, η > 0, and ε > 0 and use the continuity at θ0 to obtain a neighborhood
U of θ0 such that for all θ ∈ U∣∣∣∣π1(θ)

π2(θ)
− π1(θ0)

π2(θ0)

∣∣∣∣ < δ and |πj(θ0) − πj(θ)| < δ for j = 1, 2.

By consistency there exists Ω0, P
∞
θ0

(Ω0) = 1, such that for ω ∈ Ω0,

Πj(U |Xn(ω)) =

∫
U

∏n
1 pθ(Xi(ω)) πj(θ) dν(θ)∫

Θ

∏n
1 pθ(Xi(ω)) πj(θ) dν(θ)

→ 1

Fix ω ∈ Ω0 and choose n0 such that, for n > n0,

Πj(U |Xn(ω)) ≥ 1 − η for j = 1, 2

Note that
π1(θ|Xn)
π2(θ|Xn)

=
π1(θ)
π2(θ)

∫
Θ

∏n
1 pθ(Xi) π2(θ) dν(θ)∫

Θ

∏n
1 pθ(Xi) π1(θ) dν(θ)

Hence for n > n0 and θ ∈ U , after some easy manipulation, we have

(
π1(θ0)
π2(θ0)

− δ

)
(1 − η)

∫
U

∏n
1 pθ(Xi(ω)) π2(θ) dν(θ)∫

U

∏n
1 pθ(Xi(ω)) π1(θ) dν(θ)

≤ π1(θ|Xn(ω))
π2(θ|Xn(ω))

≤
(

π1(θ0)
π2(θ0)

+ δ

)
(1 − η)−1

∫
U

∏n
1 pθ(Xi(ω)) π2(θ) dν(θ)∫

U

∏n
1 pθ(Xi(ω)) π1(θ) dν(θ)
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and by the choice of U ,

(πj(θ0) − δ)
∫

U

n∏
1

pθ(Xi(ω)) dν(θ) ≤
∫

U

n∏
1

pθ(Xi(ω))πj(θ)dν(θ)

≤ (πj(θ0) + δ)
∫

U

n∏
1

pθ(Xi(ω)) dν(θ)

(1.1)

Using (1.1) we have, again for θ ∈ U ,(
π1(θ0)
π2(θ0)

− δ

)
(1 − η)

(
π2(θ0) − δ

π1(θ0) + δ

)
≤ π1(θ|Xn(ω))

π2(θ|Xn(ω))

≤
(

π1(θ0)
π2(θ0)

+ δ

)
(1 − η)−1

(
π2(θ0) + δ

π1(θ0) − δ

)

so that for δ, η small ∣∣∣∣π1(θ|Xn(ω))
π2(θ|Xn(ω))

− 1
∣∣∣∣ < ε

Hence, for n > n0,∫
|π1(θ|Xn(ω)) − π2(θ|Xn(ω))| dν(θ)

≤
∫

U

π2(θ|Xn(ω))
∣∣∣∣1 − π1(θ|Xn(ω))

π2(θ|Xn(ω))

∣∣∣∣ dν(θ) + 2η

≤ ε(1 − η) + 2η

This completes the proof.

Another notion related to Theorem 1.3.1 is that of merging where, instead of the
posterior, one looks at the predictive distribution of Xn+1, Xn+2, . . . given X1 . . . , Xn.
Here the attempt is to formalize the idea that two Bayesians starting with different
priors Π1 and Π2 would eventually agree in their prediction of the distribution of
future observations.

For a prior Π if we define, for any measurable subset C of Ω

λΠ (C|Xn) =
∫

Θ
P∞

θ (C)Π(dθ|Xn)
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then, λΠ (·|Xn) is a version of the predictive distribution of Xn+1, Xn+2, . . . given
X1, X2, . . . , Xn. Note that given Xn, the predictive distribution is a probability mea-
sure on Ω = R∞.

Let λΠ1 (·|Xn) and λΠ2 (·|Xn) be two predictive distributions, corresponding to
priors Π1 and Π2.

An early result in merging is due to Blackwell and Dubins [24]. They showed that
if Π2 is absolutely continuous with respect to Π1, then for θ in a set of Π2 probability
1, the total variation distance between λΠ1 (·|Xn) and λΠ2 (·|Xn) goes to 0 almost
surely P∞

θ .
The connection with consistency was observed by Diaconis and Freedman [46].

Towards this, say that the predictive distributions merge weakly with respect to Pθ0 if
there exists Ω0 ⊂ Ω with P∞

θ (Ω0) = 1, such that for each ω ∈ Ω0,∣∣∣∣
∫

φ(ω′)λΠ1 (dω′|Xn(ω)) −
∫

φ(ω′)λΠ2 (dω′|Xn(ω))
∣∣∣∣ → 0

for all bounded continuous functions φ on Ω.

Proposition 1.3.1. Assume that θ �→ Pθ is 1-1 and continuous with respect to
weak convergence. Also assume that there is a compact set K such that Pθ(K) = 1
for all θ.

If Π1 and Π2 are two priors such that the posteriors Π1(·|Xn) and Π2(·|Xn) are
consistent at θ0, then the predictive distributions λΠ1 (·|Xn) and λΠ2 (·|Xn), merge
weakly with respect to Pθ0.

Proof. Let G be the class of all functions on Ω that are finite linear combinations of
functions of the form

φ(ω) =
k∏
1

fi(ωi)

where f1, f2, . . . , fk are continuous functions on K. It is easy to see that if φ ∈ G then
θ �→

∫
φ(ω′) dP∞

θ (ω′) is continuous. Further, by the Stone-Weirstrass theorem G is
dense in the space of all continuous functions on K∞.

From the definition of λΠ1 (·|Xn) and λΠ2 (·|Xn), if Ω0 is the set where the posterior
converges to δθ0 , then for ω ∈ Ω0, for φ ∈ G,

∫
φ(ω′)λΠi

(dω′|Xn(ω)) =
∫

Θ

∫
Ω

φ(ω′) dP∞
θ (ω′) Πi(dθ|(Xn(ω))
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The inside integral gives rise to a bounded continuous function of θ. Hence by weak
consistency at θ0, for both i = 1, 2 the right-hand side converges to

∫
Ω φ(ω′) dP∞

θ0
(ω′).

This yields the conclusion.

Further connections between merging and posterior consistency is explored in Di-
aconis and Freedman[46].

Note a few technical remarks: According to the definition, posterior consistency is
a property that is specific to the fixed version Π(·|Xn). Measure theoretically, the
posterior is unique only up to λn null sets. So the posterior is uniquely defined up to
Pθ0 if P n

θ0
is dominated by λn. Without this condition it is easy to construct examples

of two versions {Π1(·|Xn)} and {Π2(·|Xn)} such that one is consistent and the other
is not. It is easy to show that if {Pθ ∈ Θ} are all mutually absolutely continuous and
{Π1(·|Xn)} and {Π2(·|Xn)} are two versions of the posterior, then {Π1(·|Xn)} is
consistent iff {Π2(·|Xn} is.

1.3.3 Doob’s Theorem

An early result on consistency is the following theorem of Doob [49].

Theorem 1.3.2. Suppose that Θ and X are both complete separable metric spaces
endowed with their respective Borel σ-algebras B(Θ) and A and let θ �→ Pθ be 1-1.
Let Π be a prior and {Π(·|Xn)} be a posterior. Then there exists a Θ0 ⊂ Θ, with
Π(Θ0) = 1 such that {Π(·|Xn)}n≥1 is consistent at every θ ∈ Θ0.

Proof. The basic idea of the proof is simple. On the one hand, because for each θ
the empirical distribution converges a.s. P∞

θ to Pθ, given any sequence of xi’s we can
pinpoint the true θ. On the other hand, any version of the posterior distributions
Π(·|Xn), via the martingale convergence theorem, converge a.s. with respect to the
marginal λΠ, to the posterior given the entire sequence. One then equates these two
versions to get the result. A formal proof of these observations needs subtle measure
theory.

As before let, Ω= XN , B be the product σ-algebra on Ω, λΠ denote both the joint
distribution of θ and X1, X2, . . . and the marginal distribution of X1, X2, . . . . Let C
be a subset of Θ, then by the martingale convergence theorem, as n → ∞,

Π(C|X1, X2, . . . , Xn) → E(IC |X1, X2, . . . ) .= f a.e. λΠ

We point out that the functions considered above are, formally, functions of two
variables (θ, ω). IC , is to be interpreted as IC×Ω and f is to be thought of as f(θ, ω) =
f(ω) and so on.
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We shall show that there exists a set Θ0 with Π(Θ0) = 1 such that

for θ ∈ Θ0 ∩ C, f = 1 a.e. P∞
θ (1.2)

This would establish the theorem. To see this, take U = {U1, U2, . . . , } a base for the
open sets of Θ. Take C = Ui in the above step and obtain the corresponding Θ0i ⊂ Θ
satisfying (1.2). If we set Θ0 = ∩iΘ0i then (1.2) translates into “ the posterior is
consistent at all θ ∈ Θ0”.

To establish (1.2), let A0 be a countable algebra generating A. Let

E = {(θ, ω) : lim
n→∞

1
n

n∑
1

δXi(ω)(A) = Pθ(A) for all A ∈ A0}

The set E, since it arises from the limit of a sequence of measurable functions, is
a measurable set and further by the law of large numbers for each θ the sections Eθ

satisfy

(i) for all θ, P∞
θ (Eθ) = 1

(ii) if θ �= θ′, Eθ ∩ Eθ′ = ∅

Define

f ∗(ω) =

{
1 if, ω ∈ ∪θ∈CEθ

0 otherwise.

It is a consequence of a deep result in set theory that ∪θ∈CEθ is measurable, from
which it follows that f ∗ is measurable.

From its definition, f ∗ satisfies:

1. for all θ ∈ C, f ∗ = 1 a.e. P∞
θ

2. for all θ not in C, f ∗ = 0 a.e. P∞
θ

In other words for all θ, f ∗ = IC(θ)f ∗ a.e. P∞
θ

We claim that f ∗ is a version of E(IC |X1, X2, . . . ). For any measurable set B ∈ B,∫
IBf ∗dλΠ =

∫
IBIC(θ)f ∗dP∞

θ dΠ(θ) =
∫

IC(θ)P∞
θ (B)dΠ(θ) = λΠ(C × B)

Since f and f ∗ are both versions of E(IC |X1, X2, . . . ), we have

f = f ∗ a.e. λΠ



24 1. PRELIMINARIES AND THE FINITE DIMENSIONAL CASE

By Fubini’s theorem, there exists a set Θ0 with Π(Θ0) = 1, such that for θ in Θ0

f = f ∗ a.e.P∞
θ

(1.2) follows easily from the properties 1 and 2 of f ∗ mentioned earlier.
This completes the proof.

Remark 1.3.2. A well known result in set theory, the Borel Isomorphism theorem,
states that any two uncountable Borel sets of complete separable metric spaces are
isomorphic [[153],Theorem 3.3.13 ]. The result that we used from set theory is a
version of this theorem which states that if S and T are Borel subsets of complete
metric spaces and if φ is a 1-1 measurable function from S into T, then, the range of
φ is a measurable set and φ−1 is also measurable. To get the result that we used, just
set S = E,T = Ω and φ(θ, ω) = ω.

Remark 1.3.3. Another consequence of the Borel Isomorphism theorem is that
Doob’s theorem holds even when Θ and X are just Borel subsets of a complete
separable metric space.

Many Bayesians are satisfied with Doob’s theorem, which provides a sort of internal
consistency but fails to answer the question of consistency at a specific θ0 of interest
to a Bayesian. Moreover in the infinite-dimensional case, the set of θ0 values where
consistency holds may be a very small set topologically [70] and may exclude infinitely
many θ0s of interest. Disturbing examples and general results of this kind appear in
Freedman [69] in the context of an infinite-cell multinomial.

If θ0 is not in the support of the prior Π then there exists an open set U such
that Π(U) = 0. This implies that Π(U |Xn) =0 a.s λn. Hence,it is not reasonable to
expect consistency outside the support of Π. Ideally, one might hope for consistency
at all θ0 in the support of Π. This is often true for a finite-dimensional Θ. However,
for an infinite-dimensional Θ this turns out to be too strong a requirement. We will
often prove consistency for a large set of θ0s . A Bayesian can then decide whether it
includes all or most of the θ0s of interest.

1.3.4 Wald-Type Conditions

We begin with a uniform strong law.

Theorem 1.3.3. Suppose that K is a compact subset of a separable metric space.
Let T (·, ·) be a real-valued function on θ × R such that

(i) for each x, T (·, x) is continuous in θ, and
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(ii) for each θ, T (θ, ·) is measurable.

Let X1, X2, . . . i.i.d. random variables defined on (Ω, A, P ) with E(T (θ, X1)) = µ(θ)
and assume further that

E

(
sup
θ∈K

|T (θ, Xi)|
)

< ∞

Then, as n → ∞,

sup
θ∈K

∣∣∣∣∣ 1n
n∑
1

T (θ, Xi) − µ(θ)

∣∣∣∣∣ → 0 a.s. P

Proof. Continuity of T (., x) and separability ensures that sup
θ∈K

|T (θ, Xi)| is measurable.

It follows from the dominated convergence theorem that θ �→ µ(θ) is continuous.
Another application of the dominated convergence theorem shows that for any θ0 ∈ K,

lim
δ→0

E

[
sup

|θ−θ0|<δ

|T (θ, X1) − µ(θ) − T (θ0, X1) − µ(θ0)|
]

= 0

Let Zji = sup
ρ(θ,θi)<δi

|T (θ, Xj) − µ(θ) − T (θi, Xj) − µ(θi)|. By compactness of K, there

exist θ1, θ2, . . . , θk and δ1, δ2, . . . , δk such that K = ∪k
1{θ : ρ(θ, θi) < δi}, and EZ1i < ε

for i = 1, 2, . . . , k.
By the strong law of large numbers, since E(Z1,i) < ε for i = 1, 2, . . . , k, there is a

Ω0 with P (Ω0) = 1 such that for ω ∈ Ω0, n > n(ω), for i = 1, 2, . . . , k,

1
n

n∑
1

Zj,i < 2ε

and ∣∣∣∣∣ 1n
n∑

j=1

T (θi, Xj) − µ(θi)

∣∣∣∣∣ < ε

Now if θ ∈ {θ : ρ(θ, θi) < δi},

1
n

∣∣∣∑T (θ, Xj(ω)) − µ(θ)
∣∣∣

≤ 1
n

∑
Zj,i(ω) +

∣∣∣∣ 1n
∑

T (θi, Xj(ω)) − µ(θi)
∣∣∣∣ ≤ 3ε

Hence sup
θ∈K

| 1
n

∑
T (θ, Xj(ω)) − µ(θ)| < 3kε.
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Remark 1.3.4. A very powerful approach to uniform strong laws is through em-
pirical processes. One considers a sequence of i.i.d. random variables Xi and studies
uniformity over a family of functions F with an integrable envelope function φ, i.e.,
E(φ) < ∞, and |f(x)| ≤ |φ(x)|, f ∈ F . Good references are Pollard [[139], II.2] and
Van der Vaart and Wellner [[161], 2.4].

Here is an easy consequence of the last theorem. First a definition: Let Θ be a space
endowed with a σ-algebra and θ �→ Pθ be 1-1. For each θ in Θ, let X1, X2, . . . be
i.i.d. Pθ . Assume that Pθ s are dominated by a σ-finite measure µ and pθ = dPθ/dµ.

Definition 1.3.2. A measurable function θ̂n(X1, X2, . . . , Xn) taking values in Θ is
called a maximum likelihood estimate (MLE) if the likelihood function at X1, X2, . . . , Xn

attains its maximum at θ̂n(X1, X2, . . . , Xn) or formally,

n∏
1

pθ̂n(X1,X2,...,Xn)(Xi) = sup
θ

n∏
1

pθ(Xi)

Theorem 1.3.4. Let Θ be compact metric. For a fixed θ0, let

T (θ, x) = log (pθ(x)/pθ0(x))

If T (θ, Xi) satisfy the assumptions of Theorem 1.3.3 with P=Pθ0, then

1. any MLE θ̂n is consistent at θ0 ;

2. if Π is a prior on Θ and if θ0 is in the support of Π then the posterior defined
by the density (with respect to Π)

∏n
1 pθ(Xi)/

∫ ∏n
1 pθ(Xi) dΠ(θ) is consistent at

θ0.

Proof. (i) Take any open neighborhood U of θ0 and let K = U c. Note that µ(θ) =
Eθ0(T (θ, Xi)) = −K(θ0, θ) < 0 for all θ and hence by the continuity of µ(·), sup

θ∈K
µ(θ) <

0.
On the one hand, by Theorem 1.3.3, given 0 < ε < | sup

θ∈K
µ(θ)|, there exists n(ω),

such that for n > n(ω),

sup
θ∈K

∣∣∣∣ 1n
∑

T (θ, Xi) − µ(θ)
∣∣∣∣ < ε

On the other hand, (1/n)
∑

T (θ̂n, Xi) ≥ 0. So θ̂n �∈ K and hence θ̂n ∈ U .
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As a curiosity, we note that we have not used the measurability assumption on θ̂n.
We have shown that the samples where the MLE is consistent contain a measurable
set of P∞

θ0
measure 1.

(ii) Let U be a neighborhood of θ0 . We shall show that Π(U |X1, X2, . . . , Xn) → 1
a.s Pθ0 . As before, let K = U c and T (θ, Xi) = log (pθ(Xi)/pθ0(Xi)) and Uδ = {θ :
ρ(θ, θ0) < δ}. Let

A1 = inf
θ∈Ūδ

µ(θ) and A2 = sup
θ∈K

µ(θ)

Clearly A1 < 0, A2 < 0. Choose δ small enough so that Uδ ⊂ U and |A1| < |A2|. This
can be done because µ(θ) is continuous and as δ ↓ 0, inf

θ∈Ūδ

µ(θ) ↑ 0.

Choose ε > 0 such that A1 − ε > A2 + ε. By applying the uniform strong law of
large numbers to K and Ūδ, for ω in a set of Pθ0-measure 1, there exists n(ω) such
that for n > n(ω), ∣∣∣∣ 1n

∑
T (θ, Xi) − µ(θ)

∣∣∣∣ < ε ∀θ ∈ K ∪ Ūδ

Now

Π(U |X1, X2, . . . , Xn) =

∫
U

e
∑n

1 T (θ,Xi)dΠ(θ)∫
U

e
∑n

1 T (θ,Xi)dΠ(θ) +
∫

Uc e
∑n

1 T (θ,Xi)dΠ(θ)

≥ 1/

(
1 +

∫
K

e
∑n

1 T (θ,Xi)dΠ(θ)∫
Uδ

e
∑n

1 T (θ,Xi)dΠ(θ)

)

≥ 1/
(

1 +
Π(K)en(A2+ε)

Π(Uδ)en(A1−ε)

)

Since A2 − A1 + 2ε < 0 and Π(Uδ) > 0, the last term converges to 1 as n → ∞ .

Remark 1.3.5. Theorem 1.3.4 is related to Wald’s paper [163]. His conditions and
proofs are similar but he handles the noncompact case by assumptions of the kind
given next which ensure that the MLE θ̂n is inside a compact set eventually, almost
surely. Here are two assumptions; we will refer to them as Wald’s conditions:

1. Let Θ = ∪Ki where the Kis are compact and K1 ⊂ K2 ⊂ . . . . For any sequence
θi ∈ Kc

(i−1) ∩ Ki, lim
i

p(x, θi) = 0.

2. Let φi(x) = sup
θ∈Kc

(i−1)

(log p(x, θ)/p(x, θ0)). Then Eθ0φ
+
i (X1) < ∞ for some i.
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Assumption (1) implies that lim
i→∞

φi(x) = −∞. Using Assumption (2), the monotone
convergence theorem and the dominated convergence theorem one can show

lim
i→∞

Eθ0φi(X1) = −∞

Thus, given any A3 < 0, we can choose a compact set Kj such that

Eθφj = Eθ0 sup
θ∈Kc

(j−1)

log p(Xi, θ) − Eθ0p(Xi, θ0) < A3

Using

1
n

sup
θ∈Kc

j

n∑
1

log p(Xi, θ)/p(Xi, θ0) ≤ 1
n

n∑
1

sup
θ∈Kc

j

log p(Xi, θ)/p(Xi, θ0)

and applying the usual SLLN to 1/n
∑n

i=1 φj(Xi), it can be concluded that eventually
it is ≤ 0 a.s. Pθ0 . This implies that eventually, θ̂n ∈ Kj a.s Pθ0 . This result for the
compact case can now be used to establish consistency of θ̂n.

Remark 1.3.6. Suppose Θ is a convex open subset of Rp and for θ ∈ Θ,

log fθ(xi) = A(θ) +
p∑
1

θjxi + ψ(xi)

and
(

∂ log fθ

∂θ

)
,
(

∂2 log fθ

∂θ2

)
exist. Then by Lehman[123]

I(θ) = Eθ

(
∂ log fθ

∂θ

)2

= −Eθ

(
∂2 log fθ

∂θ2

)
=

d2A(θ)
dθ2 > 0

Thus the likelihood is log concave. In this case also the MLE is consistent without
compactness by a simple direct argument using Theorem 1.3.4. Start with a bounded
open rectangle around θ0 and let K be its closure. Because K is compact, the MLE
θ̂K , with K as the parameter space exists and given any open neighborhood V ⊂ K of
θ0, θ̂K lies in V with probability tending to 1. If θ̂K ∈ V it must be a local maximum
and hence a global maximum because of log concavity. This completes the proof. In
the log concave situation more detailed and general results are available in Hjort and
Pollard [101]

Remark 1.3.7. Under the assumptions of either of the last remarks it can be verified
that the posterior is consistent.
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The next two examples show that even in the finite-dimensional case consistency
of the MLE and the posterior do not always occur together.

Example. This example is due to Bahadur. Our presentation follows Lehman [124].
Here Θ = {1, 2, . . . , }. For each θ, we define a density fθ on [0, 1] as follows:
Let h(x) = e1/x2 . Define a0 = 1 and an by

∫ an−1

an
(h(x) − C) dx = 1 − C where

0 < C < 1. Because
∫ 1

0 e1/x2
dx = ∞ it is easy to show that ans are unique and tend

to 0 as n → ∞.
Define fk(x) on [0, 1] by

fk(x) =

{
h(x) if ak < x < ak−1

C otherwise

For each k, let X1, X2, . . . , Xn be i.i.d. fk. Denoting min(X1, X2, . . . , Xn) by X
(n)
1 , we

can write the likelihood function as

LX1,X2,...,Xn(k) =

{
Cn if ak−1 < X

(n)
1∏

di if ak−1 > X
(n)
1

where di = IAi
(Xi)h(Xi) + IAc

i
(Xi)C and Ai = (ai, ai−1].

Because h(x) > 1, the likelihood function attains its maximum in the finite set
{k : ak > X

(n)
1 }, and hence an MLE exists.

Fix j ∈ Θ. We shall show that any MLE θ̂n fails to be consistent at j by showing

Pj

{
n∑
1

log
fθ̂n

(Xi)
fj(Xi)

> 1

}
→ 1

Actually, we show more, namely, for each j, θ̂n converges in Pj probability to ∞.
Fix m and consider the set Θ1 = {1, 2, . . . , m} ⊂ Θ. It is enough to show as n → ∞,

Pj{θ̂n �∈ Θ1} → 1

Define k∗(X1, X2, . . . , Xn) to be k if X
(n)
1 ∈ (ak, ak−1). Because the likelihood func-

tion at θ̂n is larger than that at k∗ it suffices to show that

n∑
1

log
fK∗

n
(Xi)

fj(Xi)
→ ∞ in Pj probability
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Towards this first note that for any k and j,

n∑
1

log
fk(Xi)
fj(Xi)

=
(k)∑

log
h(Xi)

C
−

(j)∑
log

h(Xi)
C

where
∑(k) is the sum over all i such that Xi ∈ (ak, ak−1). With k∗

n in place of k, we
have

n∑
1

log
fk∗

n
(Xi)

fj(Xi)
=

(∗)∑
log

h(Xi)
C

−
(j)∑

log
h(Xi)

C

where
∑(∗) is the sum over all i such that Xi ∈ (ak∗

n
, ak∗

n−1).
Because for each x, h(x)/C > 1, the first sum on the right-hand side is larger than

log(h(X(n)
(1) )/C), one of the terms appearing in the sum. Formally,

(∗)∑
log

h(Xi)
C

≥ log
h(X(n)

(1) )

C

On the other hand, because h is decreasing

(j)∑
log

h(Xi)
C

≤ νk,n log
h(aj)

C

where νk,n is the number of Xis in (aj, aj−1).
Thus

n∑
1

1
n

log
fk∗

n
(Xi)

fj(Xi)
≥ 1

n
log

h(X(n)
1 )

C
− 1

n
νk,n

log h(aj)
C

Because (1/n)νk,n → Pj(aj, aj−1), the second term converges to a finite constant.
We complete the proof by showing

1
n

log h(X(n)
1 ) =

1

n(X(n)
1 )2

→ ∞

in Pj probability.
Toward this, consider X ∼ Pj and Y ∼ U(0, 1/C). Then for all x,

P (X > x) ≤ P (Y > x)
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To see this, P (Y > x) = 1 − Cx and for P (X > x) note that

if x > aj−1 then P (X > x) = C(1 − x) < 1 − Cx

If x ∈ (aj, aj−1) then P (X > x) ≤ 1 − ajC ≤ 1 − Cx

and
if x < aj, then P (X > x) = 1 − Cx

Consequently X
(n)
(1) is stochastically smaller than Y

(n)
(1) and because h is decreasing

P{h(X(n)
(1) ) > x} ≥ P{h(Y (n)

(1) ) > x}.

Therefore to show that (1/n) log h(X(n)
(1) ) → ∞ in Pj probability, it is enough to

show that (1/n) log h(Y (n)
(1) ) → ∞ in U(0, 1/C) probability. This follows because

1
n

log h(Y (n)
(1) ) =

1

n(Y (n)
(1) )2

and easy computation shows that nY
(n)
(1) has a limiting distribution and is hence

bounded in probability and Y
(n)
(1) → 0 a.s.

On the other hand, Θ being countable, Doob’s theorem assures consistency of the
posterior at all j ∈ Θ. This result also follows from Schwartz’s theorem which provides
more insight on the behavior of the posterior.

Intuitively, a Bayesian with a proper posterior is better off in such situations be-
cause a proper prior assigns a small probability to large values of K, which cause
problems for θ̂n. For an illuminating discussion of integrating rather than maximizing
the likelihood, see the discussion of a counterexample due to Stein in [9].

Example. This is an example where the posterior fails to be consistent at θ0 in
the support of Π. This example is modeled after an example of Schwartz [145], but is
much simpler. In the next example Θ is finite-dimensional. In the infinite-dimensional
case there are many such examples due to Freedman [69] and Diaconis and Freedman
[46], [45].

Let Θ = (0, 1) ∪ (2, 3) and X1, X2, . . . , Xn be i.i.d U(0, θ). Let θ0 =1. Π is a prior
with density π, which is positive and continuous on Θ with π(θ) = e−1/(θ−θ0)2 on
(0, 1).Because

∫ 1
0 π(θ) dθ < 1, there exists such a prior density π, which is also positive

on (2, 3).
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We will argue that the posterior density fails to be consistent at θ0 by showing that
the posterior probability of (2, 3) goes to one in Pθ0 probability. The proof rests on
the following facts both of which are easy to verify:
Let X(n) denote the maximum of X1, X2, . . . , Xn. Then under Pθ0 , i.e., under U(0, 1),
n(X(n) − θ0) = OP (1). In fact, n(X(n) − θ0) converges to an exponential distribution.
The second fact is (1/n) log(1 − Xn−1

(n) ) → 0 in Pθ0 probability, because by direct
calculation the distribution of (1 − Xn−1

(n) ) w→ U(0, 1).
Now the posterior probability of (2, 3) is given by

∫ 3
2

1
θn I(0,θ)(X(n)) π(θ) dθ∫ 1

0
1
θn I(0,θ)(X(n)) π(θ) dθ +

∫ 3
2

1
θn I(0,θ)(X(n)) π(θ) dθ

Because 0 ≤ X(n) ≤ 1 a.e. Pθ0 , the numerator is equal to
∫ 3

2 (1/θn) π(θ) dθ and the
first integral in the denominator is

∫ 1
X(n)

1
θn π(θ) dθ. So the posterior probability of

(2, 3) reduces to
1(

1 +
∫ 1

X(n)
θ−n π(θ) dθ

∫ 3
2 θ−n π(θ) dθ

) =
1(

1 + I1
I2

)

Now

I1 ≤ π(X(n))
∫ 1

X(n)

θ−n dθ =
π(X(n))
n − 1

(1 − Xn−1
(n) )

Xn−1
(n)

and (1/n) log I1 is less than

−n − 1
n

log X(n) − log(n − 1)
n

+
1
n

log(1 − Xn−1
(n) ) +

1
n

log π(X(n))

As n → ∞ the first two terms on the right side go to 0. The third goes to 0 by the
second remark. The last term, using the explicit form of π on (0, 1), goes to −∞ in
Pθ0 probability. Thus (1/n) log I1 → −∞ in Pθ0 probability.

On the other hand

1
3n

Π(2, 3) <

∫ 3

2

1
θn

π(θ) dθ <
1
2n

Π(2, 3)

Hence
−(log 3)Π(2, 3) ≤ 1

n
log I2 ≤ −(log 2)Π(2, 3)
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and thus log(I1/I2) → −∞ in Pθ0 probability. Equivalently, I1/I2 → 0 in Pθ0 proba-
bility.

In this example, the MLE is consistent. We could have taken the parameter space
to be [ε, 1] ∪ [2, 3] and ensured compactness. What goes wrong here, as we shall later
recognize, is the lack of continuity of the Kullback-Leibler information and, of course,
the behavior of Π in the neighborhood of θ0. If a prior Π satisfies Π(θ0, θ0 + h) >
0, for all h > 0, then similar calculations or an application of the Schwartz theorem,
to be proved later, show that the posterior is consistent.

Remark 1.3.8. We have seen that consistency of MLE neither implies nor is implied
by consistency of the posterior. The following condition implies both. Let V be any
open set containing θ0. Then the condition is

sup
θ∈V c

n∏
1

fθ(Xi)/fθ0(Xi) → 0 a.s θ0

Theorem 1.3.4 implies this stronger condition.

1.4 Asymptotic Normality of MLE and
Bernstein–von Mises Theorem

A standard result in the asymptotic theory of maximum likelihood estimates is its
asymptotic normality. In this section we briefly review this and its Bayesian parallel-
the Bernstein–von Mises theorem-on the asymptotic normality of the posterior dis-
tribution. A word about the asymptotic normality of the MLE: This is really a result
about the consistent roots of the likelihood equation ∂ log fθ/∂θ = 0. If a global MLE
θ̂n exists and is consistent, then under a differentiability assumption it is easy to see
that for each Pθ0 , θ̂n is a consistent solution of the likelihood equation almost surely
Pθ0 . On the other hand, if fθ is differentiable in θ, then for each θ0 it is possible to
construct [Serfling [147] 33.3; Cramér [35]] a sequence Tn that is a solution of the like-
lihood equation and that converges to θ0. The problem, of course, is that Tn depends
on θ0 and so will not qualify as an estimator. If there exists a consistent estimate
θ′

n, then a consistent sequence that is also a solution of the likelihood equation can
be constructed by picking θ̂n to be the solution closest to θ′

n. For a sketch of this
argument, see Ghosh [89].

As before, let X1, X2, . . . , Xn be i.i.d. fθ, where fθ is a density with respect to
some dominating measure µ and θ ∈ Θ, and Θ is an open subset of R. We make the
following regularity assumptions on fθ:
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(i) {x : fθ(x) > 0} is the same for all θ ∈ Θ

(ii) L(θ, x) = log fθ(x) is thrice differentiable with respect to θ in a neighborhood
(θ0 − δ, θ0 + δ). If L̇, L̈,and

...
L stand for the first, second, and third derivatives,

then Eθ0L̇(θ0) and Eθ0L̈(θ0) are both finite and

sup
θ∈(θ0−δ,θ0+δ)

|
...
L(θ, x)| < M(x) and Eθ0M < ∞

(iii) Interchange of the order of expectation with respect to θ0 and differentiation at
θ0 are justified, so that

Eθ0L̇(θ0) = 0, Eθ0L̈(θ0) = −Eθ0(L̇(θ0))2

(iv) I(θ0)
.= Eθ0(L̇(θ0))2 > 0.

Theorem 1.4.1. If {fθ : θ ∈ Θ} satisfies conditions (i)–(iv) and if θ̂n is a consis-
tent solution of the likelihood equation then

√
n(θ̂n − θ0)

D→ N(0, 1/I(θ0)).

Proof. Let Ln(θ) =
∑n

1 L(θ, Xi). By Taylor expansion

0 = L̇n(θ̂n) = L̇n(θ0) + (θ̂n − θ0)L̈n(θ0) +
(θ̂n − θ0)2

2
...
Ln(θ′)

where θ0 < θ′ < θ̂n. Thus,

√
n(θ̂n − θ0) =

1√
n
L̇n(θ0)

− 1
n
L̈n(θ0) − 1

2(θ̂n − θ0) 1
n

...
Ln(θ′)

By the central limit theorem, the numerator converges in distribution to N(0, I(θ0));
the first term in the denominator goes to I(θ0) by SLLN; the second term is oP (1) by
the assumptions on θ̂n and

...
L.

We next turn to asymptotic normality of the posterior. We wish to prove that if
θ̂n is a consistent solution of the likelihood equation, then the posterior distribution
of

√
n(θ − θ̂n) is approximately N(0, 1/I(θ0)). Early forms of this theorem go back to

Laplace, Bernstein, and von Mises [see [46] for references]. A version of this theorem
appears in Lehmann [124]. Condition (v) in Theorem 1.4.2 is taken from there. Other
related references are Bickel and Yahav [20], Walker [164], LeCam [121], [120] and
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Borwanker et al. [27]. Ghosal [75, 76, 77] has developed posterior normality results in
cases where the dimension of the parameter space is increasing. Further refinements
developing asymptotic expansions appear in Johnson [107],[108] , Kadane and Tierney
[158] and Woodroofe [173]. Lindley [129], Johnson [108] and Ghosh et al. [82], provide
expansions of the posterior that refine posterior normality. See the next section for
an alternative unified treatment of regular and nonregular cases.

Theorem 1.4.2. Suppose {fθ : θ ∈ Θ} satisfies assumptions (i)–(iv) of the Theo-
rem 1.4.1 and θ̂n is a consistent solution of the likelihood equation. Further, suppose

(v) for any δ > 0, there exists an ε > 0 such that

Pθ0

{
sup

|θ−θ0|>δ

1
n

(Ln(θ) − Ln(θ0)) ≤ −ε

}
→ 1

(vi) The prior has a density π(θ) with respect to Lebesgue measure, which is con-
tinuous and positive at θ0.

Let Xn stand for X1, X2, . . . , Xn and fθ(Xn) for its joint density. Denote by π∗(s|Xn)
the posterior density of s =

√
n(θ − θ̂n(Xn)). Then as n → ∞,

∫
R

∣∣∣∣∣π∗(s|Xn) −
√

I(θ0)√
2π

e− s2I(θ0)
2

∣∣∣∣∣ ds
Pθ0→ 0 (1.3)

Proof. Because s =
√

n(θ − θ̂n),

π∗(s|Xn) =
π(θ̂n + s√

n
)fθ̂n+s/

√
n(Xn)∫

R
π(θ̂n + t√

n
)fθ̂n+t/

√
n(Xn) dt

To avoid notational mess, we suppress the Xn and rewrite the last line as

π(θ̂n + s√
n
)eLn(θ̂n+s/

√
n)−Ln(θ̂n)∫

R
π(θ̂n + t/

√
n)eLn(θ̂n+ t√

n
)−Ln(θ̂n)

dt

Thus we need to show

∫
R

∣∣∣∣∣ π(θ̂n + s/
√

n)eLn(θ̂n+s/
√

n)−Ln(θ̂n)∫
R

π(θ̂n + t/
√

n)eLn(θ̂n+t/
√

n)−Ln(θ̂n) dt
−

√
I(θ0)
2π

e− s2I(θ0)
2

∣∣∣∣∣ ds
Pθ0→ 0 (1.4)
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It is enough to show that∫
R

∣∣∣∣π(θ̂n +
t√
n

)eLn(θ̂n+t/
√

n)−Ln(θ̂n) − π(θ0)e− t2I(θ0)
2

∣∣∣∣ dt
Pθ0→ 0 (1.5)

To see this, note that writing Cn for
∫

R

π(θ̂n + t/
√

n)eLn(θ̂n+t/
√

n)−Ln(θ̂n)dt, (1.4) is

C−1
n

[∫
R

∣∣∣∣∣π(θ̂n +
s√
n

)eLn(θ̂n+s/
√

n)−Ln(θ̂n) − Cn

√
I(θ0)
2π

e− s2I(θ0)
2

∣∣∣∣∣ ds

]
Pθ0→ 0

Because (1.5) implies that Cn → π(θ0)
√

2π/I(θ0) it is enough to show that the
integral inside the brackets goes to 0 in probability, and this term is less than I1 + I2,
where

I1 =
∫

R

∣∣∣∣π(θ̂n +
s√
n

)eLn(θ̂n+s/
√

n)−Ln(θ̂n) − π(θ0)e− s2I(θ0)
2

∣∣∣∣ ds

and

I2 =
∫

R

∣∣∣∣∣π(θ0)e− s2I(θ0)
2 − Cn

√
I(θ0)
2π

e− s2I(θ0)
2

∣∣∣∣∣ ds

Now I1 goes to 0 by (1.5) and I2 is equal to∣∣∣∣∣π(θ0) − Cn

√
I(θ0)
2π

∣∣∣∣∣
∫

R

e− s2I(θ0)
2 ds

which goes to 0 because Cn → π(θ0)
√

2π/I(θ0).
To achieve a further reduction, set

hn = − 1
n

n∑
1

L̈(θ̂n, Xi) = − 1
n

L̈n(θ̂n, Xi)

Because as n → ∞, hn → I(θ0) a.s. Pθ0 , to verify (1.5) it is enough if we show that∫
R

∣∣∣∣π(θ̂n +
t√
n

)eLn(θ̂n+t/
√

n)−Ln(θ̂n) − π(θ̂n)e− t2hn
2

∣∣∣∣ dt
Pθ0→ 0 (1.6)

To show (1.6), given any δ, c > 0, we break R into three regions:
A1 = {t : |t| < c log

√
n},
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A2 = {t : c log
√

n < |t| < δ
√

n}, and
A3 = {t : |t| > δ

√
n}.

We begin with A3.∫
A3

∣∣∣∣π(θ̂n +
t√
n

)eLn(θ̂n+t/
√

n)−Ln(θ̂n) − π(θ̂n)e− t2hn
2

∣∣∣∣ dt

≤
∫

A3

π(θ̂n +
t√
n

)eLn(θ̂n+t/
√

n)−Ln(θ̂n) dt +
∫

A3

π(θ̂n)e− t2hn
2 dt

The first integral goes to 0 by assumption (v). The second is seen to go to 0 by the
usual tail estimates for a normal.

Because θ̂n → θ0, by Taylor expansion, for large n,

Ln(θ̂n +
t√
n

) − Ln(θ̂n) =
t2

2n
L̈n(θ̂n) +

1
6
(

t√
n

)3...
Ln(θ′) = −t2hn

2
+ Rn

for some θ′ ∈ (θ0, θ̂n). Now consider

∫
A1

∣∣∣∣π(θ̂n +
t√
n

)e− t2hn
2 +Rn − π(θ̂n)e− t2hn

2

∣∣∣∣ dt

≤
∫

A1

π(θ̂n +
t√
n

)
∣∣∣e− t2hn

2 +Rn − e− t2hn
2

∣∣∣ dt +
∫

A1

∣∣∣∣π(θ̂n +
t√
n

) − π(θ̂n)
∣∣∣∣ e− t2hn

2 dt

Because π is continuous at θ0, the second integral goes to 0 in Pθ0 probability. The
first integral equals

∫
A1

π(θ̂n +
t√
n

)e− t2hn
2

∣∣eRn − 1
∣∣ dt

≤
∫

A1

π(θ̂n +
t√
n

)e− t2hn
2 e|Rn| |Rn| dt

(1.7)

Now,

sup
t∈A1

Rn = sup
t∈A1

(
t√
n

)3...
Ln(θ′) ≤ c3 (log

√
n)3

n
OP (1) = oP (1)

and hence (1.7) is

≤ sup
t∈A1

π(θ̂n +
t√
n

)
∫

A1

e− t2hn
2 e|Rn| |Rn| dt = oP (1)
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Next consider ∫
A2

∣∣∣∣π(θ̂n +
t√
n

)e
t2hn

2 +Rn − π(θ̂n)e− t2hn
2

∣∣∣∣ dt

≤
∫

A2

π(θ̂n +
t√
n

)e
t2hn

2 +Rn dt +
∫

A2

π(θ̂n)e− t2hn
2 dt

The second integral is

≤2π(θ̂n)e− hnc log
√

n
2 [δ

√
n − c log

√
n]

≤ Kπ(θ̂n)
√

n

nchn/4

so that by choosing c large, the integral goes to 0 in Pθ0 probability.
For the first integral, because t ∈ A2, and c log

√
n < |t| < δ

√
n, we have |t|/√n <

δ. Thus |Rn| = ( |t|√
n
)3 1

6

...
Ln(θ′) ≤ δ t2

6
1
n

...
Ln(θ′)

Because sup
θ′∈(θ0−δ,θ0+δ)

(1/n)
∣∣∣ ...Ln(θ′)

∣∣∣ is OP (1), by choosing δ small we can ensure that

Pθ0

{
|Rn| <

t2

4
hn for all t ∈ A2

}
> 1 − ε for n > n0 (1.8)

or

Pθ0

{
−t2hn

2
+ Rn < −t2hn

4
for all t ∈ A2

}
> 1 − ε (1.9)

Hence, with probability greater than 1 − ε,∫
A2

π(θ̂n +
t√
n

)e− t2hn
2 +Rn dt

≤ sup
θ∈A2

π(θ̂n + t/
t√
n

)
∫

A2

e−t2hn/4 dt

→ 0 as n → ∞

Finally, the three steps can be put together, first by choosing a δ to ensure ( 1.8) and
then by working with this δ in steps 1 and 3.

An asymptotic normality result also holds for Bayes estimates.

Theorem 1.4.3. In addition to the assumptions of Theorem 1.4.2 assume that∫
|θ|π(θ) dθ < ∞. Let θ∗

n =
∫

R
θ Π(dθ|X1, X2, . . . , Xn) be the Bayes estimate with

respect to squared error loss. Then
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(i)
√

n(θ̂n − θ∗
n) → 0 in Pθ0 probability

(ii)
√

n(θ∗
n − θ0) converges in distribution to N(0, 1/I(θ0)).

Proof. The assumption of finite moment for π and a slight refinement of detail in the
proof of Theorem 1.4.2 strengthens the assertion to∫

R

(1 + |t|)π(θ̂n +
t√
n

)
∣∣∣eLn(θ̂n+t/

√
n)−Ln(θ̂n) − e− t2hn

2

∣∣∣ dt
Pθ0→ 0 (1.10)

Consequently ∫
R

(1 + |t|)
∣∣∣∣∣π∗(t|Xn) −

√
I(θ0)√
2π

e− t2I(θ0)
2

∣∣∣∣∣ dt
Pθ0→ 0

and hence
∣∣∣∣∫R

t

∣∣∣∣π∗(t|Xn) − (
√

I(θ0)/2π)e− t2I(θ0)
2

∣∣∣∣ dt

∣∣∣∣ Pθ0→ 0. Note that because

√
I(θ0)
2π

∫
R

te− t2I(θ0)
2 dt = 0

we have
∫

R
t π∗(dt|Xn) → 0.

To relate these observations to the theorem, note that

θ∗
n =

∫
R

θ Π(dθ|X1, X2, . . . , Xn) =
∫

R

(θ̂n +
t√
n

) π∗(dt|Xn)

and hence
√

n(θ∗
n − θ̂n) =

∫
R

t π∗(dt|Xn).
Assertion (ii) follows from (i) and the asymptotic normality of θ̂n discussed earlier.

Remark 1.4.1. This theorem shows that the posterior mean of θ can be approxi-
mated by θ̂n up to an error of oP (n−1/2). Actually, under stronger assumptions one
can show [82] that the error is of the order of n−1 . A result of this type also holds
for the posterior variance.

Remark 1.4.2. With a stronger version of assumption (v), namely, for any δ,

sup
|θ−θ0|>δ

1
n

[Ln(θ) − Ln(θ0)] ≤ −ε eventually a.e. Pθ0

and θ̂n → θ0 a.s., we can have the L1-distance in (1.3) go to 0 a.s. Pθ0 .
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Remark 1.4.3. If we have almost sure convergence at each θ0, then by Fubini, the
L1-distance evaluated with respect to the joint distribution of θ, X1, X2, . . . , Xn goes
to 0. For refinements of such results see [82].

Remark 1.4.4. Multiparameter extensions follow in a similar way.
Remark 1.4.5. It follows immediately from (1.5) that

log
∫

R

n∏
1

fθ(Xi)π(θ)dθ = Ln(θ̂n) + log Cn − 1
2

log n

= Ln(θ̂n) − 1
2

log n +
1
2

log 2π − 1
2

log I(θ0) + log π(θ0) + oP (1)

In the multiparameter case with a p dimensional parameter, this would become

log
∫

R

n∏
1

fθ(Xi)π(θ)dθ = Ln(θ̂n)− p

2
log n+

p

2
log 2π− 1

2
log ||I(θ0)||+log π(θ0)+oP (1)

where ||I(θ0)|| stands for the determinant of the Fisher information matrix.
This is identical to the approximation of Schwarz [146] needed for developing his

BIC (Bayes information criteria) for selecting from K given models. Schwarz rec-
ommends the use of the penalized likelihood under model j with a pj-dimensional
parameter, namely,

Ln(θ̂n) − pj

2
log n

to evaluate the jth model. One chooses the model with highest value of this criterion.
The proof suggested here does not assume exponential families as in Schwarz[146]

but assumes that the true density f0 is in the model being considered. To have a
similar approximation when f0 is not in the model, one assumes

inf
θ

∫
f0 log

f0

fθ

is attained at θ0. We use this θ0 in the assumptions of this section.
Remark 1.4.6. The main theorem in this section remains true if we replace the

normal distribution N(0, 1/I(θ0) by N(0, 1/a) where a = −(1/n)(d2 log L/dθ2)|θ̂n
is

the observed Fisher information per unit observation. To a Bayesian, this form of the
theorem is more appealing because it does not involve a true (but unknown) value
θ0. The proof requires very little change.
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1.5 Ibragimov and Hasminskĭı Conditions

Ibragimov and Hasminskĭı, henceforth referred to as IH, in their text [102] used a
very general framework for parametric models that includes both the regular model
treated in the last section and nonregular problems like U(0, θ). In fact, IH verify
their conditions for various classes of nonregular problems and some stochastic pro-
cesses. Within their framework we will provide a necessary and sufficient condition
for a suitably normed posterior to have a limit in probability. This theorem includes
Theorem 1.4.2 on posterior normality under slightly different conditions and with
results on nonregular cases. It also answers some questions on nonregular problems
raised by Smith [152].

We begin with notations and conditions appropriate for this section. Let Θ be an
open set in Rk. For simplicity we take k to be 1.

The joint probability distribution of X1, X2, . . . , Xn is denoted by P n
θ and its density

with respect to Lebesgue measure (or any other σ- finite measure) by p(Xn, θ). Let
φn be a sequence of positive constants converging to 0. If k > 1 then φn would be
a k-dimensional vector of such constants. In the so-called regular case treated in the
last section, φn = 1/

√
n. In the nonregular cases, typically φn → 0 at a faster rate.

Consider the map U defined by U(θ) = φ−1
n (θ − θ0), where θ0 is the true value. Let

Un be the range of this map, i.e., Un = {U(θ) : θ ∈ Θ}. The variable u is a suitably
scaled deviation of θ from θ0. The likelihood ratio process is defined as

Zn(u,Xn) =
p(Xn, θ0 + φnu)

p(Xn, θ0)

The IH conditions can be thought of as two conditions on the Hellinger distance
and one on weak convergence of finite-dimensional distributions of Zn.

IH conditions

1. For some M > 0, m1 ≥ 0, α > 0, n0 ≥ 1,

Eθ0

∣∣∣Z 1
2
n (u1) − Z

1
2
n (u2)

∣∣∣2 ≤ M(1 + Am1)|u1 − u2|α

∀u1, u2 ∈ Un with |u1| ≤ A, |u2| ≤ A

for all n ≥ n0.

Note that the left-hand side is the square of the Hellinger distance between
p(Xn, θ0+φnu1) and p(Xn, θ0+φnu2). The condition is like a Lipschitz condition
in the rescaled parameter space but uniformly in n.
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2. For all u ∈ Un and n ≥ n0,

Eθ0

∣∣∣Z 1
2
n (u)

∣∣∣ ≤ e−gn(|u|)

where gn is a sequence of real-valued functions satisfying the following condi-
tions:

(a) for each n ≥ 1, gn(y) ↑ ∞ as y → ∞,

(b) for any N > 0,
lim
y→∞
n→∞

yNe−gn(y) = 0

3. The finite-dimensional distributions of {Zn(u) : u ∈ Un} converge to those of a
stochastic process {Z(u) : u ∈ R}.

For i.i.d. X1, X2, . . . , Xn with compact Θ, condition 2 will hold if φ−1
n is bounded

by a power of n, as is usually the case. This may be seen as follows: Note that

Eθ0Z
1
2
n (u) = [A(θ0, θ0 + φnu)]n

where [A(θ0, θ0 + φnu)]n is the affinity between pθ0 and p(θ0+φnu) given by∫ √
pθ0p(θ0+φnu)dx. Define

gn(y) =

{
−n log A(θ0, θ0 + φny) if y ∈ Un

∞ otherwise

Condition 2(a) and 2(b) follow trivially. For non compact cases the condition is
similar to the Wald conditions. The following result appears in IH (theorem I.10.2).

Theorem 1.5.1. Let Π be a prior with continuous positive density at θ0 with respect
to the Lebesgue measure. Under the IH conditions and with squared error loss, the nor-
malized Bayes estimate φ−1

n (θ̃n−θ0) converges in distribution to
∫

uZ(u) du/
∫

Z(u) du.

A similar result holds for other loss functions. This result of IH is similar to the
result that was derived as a corollary to the Bernstein–von Mises theorem on posterior
normality. So it is natural to ask if such a limit, not necessarily normal, exists for the
posterior under conditions of IH.

We begin with a fact that immediately follows from the Hewitt-Savage 0-1 law.
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Proposition 1.5.1. Suppose X1, X2, . . . , Xnare i.i.d. and Π is a prior.
Let θ̂(X1, X2, . . . , Xn)be a symmetric function of X1, X2, . . . , Xn. Let

t = φ−1
n

(
θ − θ̂(X1, X2, . . . , Xn)

)
and let A be a Borel set. Suppose

Π(t ∈ A|X1, X2, . . . , Xn)
Pθ0→ YA

Then YA is constant a.e. Pθ0.

In view of this, the following definition of convergence of posterior seems appropri-
ate, at least in the i.i.d. case.

Definition 1.5.1. For some symmetric function θ̂(X1, X2, . . . , Xn) the posterior
distribution of t = φ−1

n

(
θ − θ̂(X1, X2, . . . , Xn)

)
has a limit Q if

sup
A

{|Π(t ∈ A|X1, X2, . . . , Xn) − Q(A)|} Pθ0→ 0

In this case, θ̂(X1, X2, . . . , Xn) is called a proper centering.
We now state our main result.

Theorem 1.5.2. Suppose the IH conditions hold and Π is a prior with continuous
positive density at θ0 with respect to the Lebesgue measure. If a proper centering
θ̂(X1, X2, . . . , Xn)exists, then there exists a random variable W such that

(a) φ−1
n (θ0 − θ̂(X1, X2, . . . , Xn)) converges in distribution to W .

(b) For almost all η ∈ R, with respect to the Lebesgue measure ξ(η − W ) = q(η) is
nonrandom, where ξ(u) = Z(u)/

∫
R

Z(u) du, u ∈ R.

Conversely if b holds for some random variable W , then the posterior mean given
X1, X2, . . . , Xn, is a proper centering with Q(A) =

∫
A

q(t) dt.

Remark 1.5.1. Under the IH conditions it can be shown that the posterior mean
given X1, X2, . . . , Xn exists. (See the proof of IH theorem 10.2)

Remark 1.5.2. It is proved in Ghosal et al. [79] that under IH conditions the poste-
rior with centering at θ0 converges weakly to ξ(.) a.s. Pθ0 . Theorem 1.5.2 shows that
if weak convergence is to be strengthened to convergence in probability by centering
at a suitable θ̂(X1, X2, . . . , Xn), then conditions (a) and (b) are needed.
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Example 1.5.1. We sketch how the current theorem leads to (a version of) the
Bernstein–von Mises theorem. Assume that the Xis are i.i.d. and conditions 1 and 2
of IH hold and that the following stochastic expansion used earlier in this chapter is
valid.

log Zn(u) =
u√
n

n∑
1

∂ log p(Xi, θ)
∂θ

|θ0 − u2

2
I(θ0) + oP (1).

Then

log Zn(u) D→ uV − u2

2
I(θ0) where V is a N(0, I(θ0)) random variable.

Let log Z(u) = uV − (u2/2)I(θ0). This implies that

(log Zn(u1), log Zn(u2), . . . log Zn(um))

converges in distribution to

(log Z(u1), log Z(u2), . . . log Z(um))

i.e., condition 3 of IH holds. An elementary calculation now shows that W = V/I(θ0)
and q(η) is the normal density at η with mean 0 and variance I−1(θ0).

Some feeling about condition 1 in the regular case may be obtained as follows: Easy
calculation shows

Eθ0

(
Z

1
2
n (u1)(Z

1
2
n (u2)

)
= A(u1, u2)n

If we expand (pθ0+(u/
√

n)) =
1
2 up to the quadratic term and integrate, we get the

following approximation.

{1 + C
(u1 − u2)2

n
+ 3Rn}

Because
Eθ0

∣∣∣(Z 1
2
n (u1) − Z

1
2
n (u2)

∣∣∣2 = 2 − 2A(u1, u2)n

it can be bounded as required in condition 2 under appropriate conditions on the
negligibility of the remainder term Rn. A useful sufficient condition is provided in
lemma 1.1 of IH.

Example. The following is a nonregular case where the posterior converges to a
limit:

p(x, θ) =

{
e−(x−θ) x > θ

0 otherwise
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The norming constant φn is n−1 and a convenient centering is θ̂(X1, X2, . . . , Xn) =
min(X1, X2, . . . , Xn). Conditions 1 and 2 of IH are verified in chapter 5 of IH under
very general assumptions that cover the current example. We shall verify the easy
condition 3 and the necessary and sufficient condition of Theorem 1.5.2. Let Vn =
n(θ̂(X1, X2, . . . , Xn) − θ) and W be a random variable exponentially distributed on
(−∞, 0) with mean −1. Then Vn and W have the same distribution for all n. Also

Zn(u) =

{
eu if u − Vn < 0
0 otherwise

Define Z(u) similarly with W replacing Vn. Because W and Vn have the same distri-
bution, the finite-dimensional distributions of Zn and Z are the same. Moreover

ξ(u) =

{
eu+W if u + W < 0
0 otherwise

and so q(η) = eη if η < 0 and 0 otherwise. The case when Pθ is uniform can be
reduced to this case by a suitable transformation of X and θ.

Example. This example deals with the hazard rate change point problem. Consider
X1, X2, . . . , Xn i.i.d. with hazard rate

fθ(x)
1 − Fθ(x)

=

{
a if 0 < x < θ

b if x > θ

Typically a is much bigger than b. This density has been used to model electronic
components with initial high hazard rate and cancer relapse times. For details see
Ghosh et al.[85].

Let θ̂(X1, X2, . . . , Xn) be the MLE of θ. It can be shown that φn = n−1 is the right
norming constant and that the IH conditions hold. But the necessary condition that
ξ(u − W ) is nonrandom fails. On the other hand, if a, b are also unknown, it can be
shown that the posterior distribution of

(√
n(a − â),

√
n(b − b̂)

)
has a limit in the

sense of theorem 1.5.2. For details see [85] and [79]
Remark 1.5.3. Ghosal et al. [84] show that typically in non-regular examples the

necessary condition of Theorem 1.5.2 fails.
Remark 1.5.4. Theorems 2.2 and 2.3 of [84] imply consistency of the posterior

under conditions of IH.
Remark 1.5.5. If

∑
φs

n < ∞ for some s > 0, then posterior consistency holds in
the a.s sense.
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1.6 Nonsubjective Priors

This section contains a brief discussion of nonsubjective priors. This term has been
generally used in the literature for the so-called noninformative priors. In this section
we use it as a generic description of all priors that are not elicited in a fully subjective
manner.

1.6.1 Fully Specified

Fully specified nonsubjective priors try to quantify low information in one sense or
another. Because there is no completely satisfactory definition of information, many
choices are available. Only the most common are discussed. A comprehensive survey is
by Kass and Wasserman [111]. A quick overview is available in Ghosh and Mukherjee
[86] and Ghosh [83]. In particular, we use this term to describe conjugate priors and
their mixtures.

For convenience we take Θ = Rp. The use of uniform distribution, namely, the
Lebesgue measure, as a prior goes back to Bayes and Laplace. It has been criticized
as being improper (i.e., total measure is not finite), a property that applies to all
the priors considered in this section, and is a consequence of Θ being unbounded.
An improper prior may be used only if it leads to a proper posterior for all samples.
This posterior may then be used to calculate Bayes estimates and so on. However,
even then there arise problems with testing hypotheses and model selection. Because
we will not consider testing for infinite-dimensional Θ we will not pursue this. For
finite-dimensional Θ, attractive possibilities are available. See, for example, Berger
and Pericchi [16] and Ghosh and Samanta [88]

As pointed out by Fisher, choice of uniform distribution is not invariant in the
following sense. Take a smooth 1-1 function η(θ) of θ. Argue that if one has no
information about θ then the same is true of η(θ), and hence one can quantify this
belief by a uniform distribution for η. Going back to θ one gets a nonuniform prior π
for θ satisfying

π(θ) = |dη

dθ
|

where |dη/dθ| is the Jacobian, i.e., the determinant of the p × p matrix [∂ηi/∂θj].
It appears that Fisher’s criticism led to the decline of Bayesian methods based on

uniform priors. This also helped the growth of methods based on maximizing the
likelihood. However, Basu [9] makes a strong case for a uniform distribution after a
suitable finite discrete approximation to Θ. This idea will be taken up in Chapter 8.



1.6. NONSUBJECTIVE PRIORS 47

A natural Bayesian answer to Fisher’s criticism is to look for a method that pro-
duces priors π1(θ), π2(η) for θ and η such that one can pass from one to the other by
the usual Jacobian formula

π1(θ) = π2(η(θ))|dη

dθ
| (1.11)

Suppose the likelihood satisfies regularity conditions and the p × p Fisher’s infor-
mation matrix

I(θ) =
[
Eθ

(
∂ log fθ

∂θi

· ∂ log fθ

∂θj

)]
is positive definite. Then Jeffreys suggested the use of

π1(θ) = {det I(θ)}1/2

This is known as the Jeffreys prior. It is easily verified that (1.11) is satisfied if we
set

π2(η) =
{

det
[
Eθ

(
∂ log fθ

∂ηi

· ∂ log fθ

∂ηj

)]}1/2

using the Fisher information matrix in the η-space. One apparently unpleasant as-
pect is the dependence of the prior on the experiment. This is examined in the next
subsection.

The Jeffreys prior was the most popular nonsubjective prior until the introduction
of reference priors by Bernardo [18]. The algorithm described next is due to Berger
and Bernardo [14], [15]. We follow the treatment given in Ghosh [83].

For a discrete random variable or vector W with probability function p(w), the
Shannon entropy is

S(p) = S(W ) = −Ep(log p(W ))

It can be axiomatically developed and is a basic quantity in information and com-
munication theory. Maximization of entropy, which is equivalent to minimizing infor-
mation, leads to a discrete uniform distribution, provided W assumes only finitely
many values.

Unfortunately, no such universally accepted measure exists if W is not discrete. In
the general case we may still define

S(p) = S(W ) = −Ep(log p(W ))

where p is the density with respect to some σ-finite measure µ. Unfortunately, this
S(p) depends on µ and is rarely used directly in information or communication theory.
Further, if one maximizes S(p) one gets p =constant, i.e. one gets essentially µ.



48 1. PRELIMINARIES AND THE FINITE DIMENSIONAL CASE

A different measure, also due to Shannon, was used by Lindley [128] and Bernardo
[18]. Consider two random vectors V, W with joint density p. Then

S(p) ≡ S(V, W ) = S(V ) + SV (W )

where
SV (W ) = E(I(W |V ))

I(W |V ) = −E{log p(W |V )|V }
Here SV (W ) is the part of the entropy of W that can be explained by its dependence

on V . The residual entropy is

S(W ) − SV (W ) = E

{
E

(
log

p(W |V )
p(W )

|V
)}

≥ 0

Because ∫
p(w|v) log (p(w|v)/p(w)) µ(dw) ≥ 0

this quantity is taken as a measure of entropy in the construction of reference priors.
Let X = (X1, X2, . . . , Xn) have density p(x|θ) and let the prior be p(θ) and posterior

density be p(θ|x). Lindley’s measure of information in X is

S(X, p(θ)) = E

{
E

(
log

p(θ|x)
p(θ)

|X
)}

(1.12)

So it is a measure of how close the prior is to the posterior. If the prior is most in-
formative, i.e., degenerate at a point, then the quantity is 0. Maximizing the quantity
should therefore make the prior as noninformative as possible provided S(X, p(θ)) is
the correct measure of entropy.

Bernardo[18] recommended taking a limit first as n → ∞ and then maximizing.
Taking a limit seems to introduce some stability and removes dependence on n. Sub-
sequent research has shown that maximizing for a fixed n may lead to discrete priors,
which are unacceptable as noninformative.

To ensure that a limit exists, one assumes i.i.d. observations with enough regularity
conditions for posterior normality in a sufficiently strong sense. Details are available
in Clarke and Barron [33].

Suppose Ki is an increasing sequence of compact sets whose union is the whole
parameter space Θ. To avoid confusion with the density p the dimension of θ is taken
as d. Then using the posterior normality

S(x, p) = −E (log p(θ)) + E (log p(θ|X))
= −E (log p(θ)) + E log N(θ) + o(1)
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where N is the normal density with mean θ̂ and dispersion matrix I−1(θ̂)/n.
The second term on the right equals

−nE

(∑ (θi − θ̂i)(θj − θ̂j)Iij(θ̂)
2

)
+ E log

{
det I(θ̂)

}1/2
+

d

2
log

n

2π

If we approximate I0(θ̂) by I0(θ) and E(θi−θ̂i)(θj−θ̂j) by Iij(θ)/n, S(x, p) simplifies
to

d

2
log

n

2πe
+

∫
Ki

p(θ) log {det I(θ)}1/2 −
∫

Ki

p(θ) log p(θ) + o(1) (1.13)

Thus as n → ∞, S(X, p) is decomposed into a term that does not depend on p(θ)
and

J(p,Ki) =
∫

Ki

p(θ) log
{det I(θ)}1/2

p(θ
) dθ

which is maximized at

pi(θ) =

{
const. {det I(θ)}1/2 if θ ∈ K1

= 0 otherwise

If one lets i → ∞, pis may be regarded as converging to the Jeffreys prior. This
is a rederivation of the Jeffreys prior from an information theoretic point of view
by Bernardo [18]. To get a reference prior, one writes θ = (θ1, θ2), where θ1 is the
parameter of interest and θ2 is a nuisance parameter. Let di be the dimension of θi,
and for convenience take Θ = Θ1 × Θ2.

For a fixed θ1, let p(θ2|θ1) be a conditional prior for θ2 given θ1. By integrating out
θ2, one is left with θ1 and X. Then one finds the marginal prior p(θ1) as described
earlier. This depends on the choice p(θ2|θ1). Bernardo [18] recommended use of the
Jeffreys prior const · det{I22(θ)}1/2, treating θ2 as variable and with θ1 held constant.
Here I22(θ) = [Iij(θ), i, j, = d1 + 1, . . . , d1 + d2].

Fix compact sets Ki1, Ki2 of Θ1 and Θ2. Consider priors concentrating on Ki1×Ki2.
Let pi(θ2|θ1) be a given conditional prior. Our first object is to maximize the entropy
in θ1 and find the marginal p(θ1).

Let

S(X, pi(θ1)) = E

{
log

pi(θ1|X)
pi(θ1)

}

= S(X, pi(θ1, θ2)) −
∫

Ki1

pi(θ1)S(X, pi(θ2|θ1)) dθ1

(1.14)
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Assuming that one can interchange integration with respect to θ1, using the asymp-
totic form of (1.13) of S(X, p(θ1, θ2),

S(X, pi(θ1)) =
d1

2
log

n

2πe
+

∫
Ki1

pi1(θ1)
{

log
ψi(θ1)
pi(θ1)

}
dθ1 + o(1)

where

ψi(θ1) = exp

{∫
Ki1

pi(θ2|θ1) log
(

det I(θ)
det I22(θ)

)1/2

dθ2

}

Maximizing S(X, pi(θ1)) asymptotically,

pi(θ1) = const ψi(θ1) on Ki1

where the constant is for normalization.
Then

pi(θ1, θ2) =

{
constant ψi(θ1)pi(θ2|θ1) on Ki1 × Ki2

0 elsewhere

Finally take

p(θ2|θ1) =

{
ci(θ1) {det I22(θ)}1/2 on Ki2

0 otherwise

To choose a limit in some sense, fix θ0 = (θ10, θ20) and assume

lim pi(θ1, θ2)/pi(θ10, θ20) = p(θ1, θ2)

exists for all θ ∈ Θ. Then p(θ1, θ2) is the reference prior when θ1 is more important
than θ2. If the convergence to p(θ1, θ2) is uniform on compacts, then for any pair of
sets B1, B2 contained in a fixed Ki01 × Ki02

lim

∫
B1

pi(θ1, θ2) dθ∫
B2

pi(θ1, θ2) dθ
=

∫
B1

p(θ1, θ2) dθ∫
B2

p(θ1, θ2) dθ

Berger and Bernardo [15] recommend a d-dimensional break up of θ as (θ1, θ2, . . . , θd)
and a d-step algorithm starting with

p(θd|θ1, . . . , θd−1) = c(θ1, θ2, . . . , θd−1)
√

Idd(θ) on Kid

Some justification for this is provided in Datta and Ghosh [38].
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There is still another class of nonsubjective priors obtained by matching what a
frequentist might do (because, presumably, that is how a Bayesian without prior in-
formation would act). Technically, this amounts to matching posterior and frequentist
probabilities up to a certain order of approximation. This leads to a differential equa-
tion involving the prior. For d = 1 the Jeffreys prior is the unique solution. For d > 1,
reference priors are often a solution of the matching equation. More details are given
in Ghosh [83].

Finally, there is one class of problems in which there is some sort of consensus
on what nonsubjective prior to use. These are problems where a nice group G of
transformations leaves the problem invariant and either acts transitively on Θ, i.e.,
{g(θ0); g ∈ G} = Θ, or reduces Θ to a one-dimensional maximal invariant parameter.
See, for example, Berger [13]. In the next example G acts transitively. In such problems
the right invariant Haar measure is a common choice and is a reference prior. The
Jeffreys prior is a left invariant Haar measure which causes problems [see, e.g., Dawid,
Stone, and Zidek [39]). For examples involving one-dimensional maximal invariants,
see Datta and Ghosh [38]. Here also reference priors do well.

Example 1.6.1. Xis are i.i.d. normal with mean θ2 and variance θ1; θ1 is the
parameter of importance. The information matrix is

I(θ) =

(
1

2θ2
1

0
0 1

θ1

)

and so the reference prior may be obtained through the following steps:

pi(θ2|θ1) = di on Ki2

ψi(θ1) = exp[
∫

Ki2

di log
1√
2θ1

] dθ2

pi(θ1, θ2) = ci
1
θ1

on Ki2 × Ki2

pi(θ1, θ2) = θ10/θ1

which is also known to arise from the right invariant Haar measure for (µ, σ). The
Jeffreys prior is proportional to θ−3

1 , which corresponds to the left invariant Haar
measure.

If the mean is taken to be θ1 and variance θ2, then the reference prior is proportional
to θ−1

1 . But, in general, a reference prior depends on how the components are ordered.
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1.6.2 Discussion

Nonsubjective priors are best thought of as providing a tool for calculating posteriors.
Theorems like posterior normality indicate that the effect of the prior washes away as
the sample size increases. Hence a posterior obtained from a nonsubjective prior may
be thought of as an approximation to a posterior obtained from a subjective prior.

Though there is no unique choice for a nonsubjective prior, the posterior obtained
from different nonsubjective priors will usually be close to each other, even for mod-
erate values of n. Thus lack of uniqueness may not matter very much.

It is true that a nonsubjective prior usually depends on the experiment, e.g.,
through the information matrix I(θ). This would not seem paradoxical if one remem-
bers that nonsubjective priors have low information, and it seems that information
cannot be defined except in the context of an experiment. The measure of information
used by Bernardo [18] clarifies this.

Nonsubjective priors are typically improper but some justification comes from the
work of Heath and Sudderth [97], [96]. They show that, at least for amenable groups,
the posterior obtained from a right invariant measure can be obtained from a proper
finitely additive prior.

For improper priors one has to verify that the posteriors are proper. In many
cases this is not easy. Some Bayesians use improper priors and restrict it to a large
compact set. In general, this is not advisable. It is a remarkable fact that for the
Jeffreys or reference priors, the posteriors are often proper, but there exist simple
counterexamples; see for example, [38]. If the likelihood shows marked inhomogeneities
asymptotically, as in the so-called nonergodic cases, one must take these into account
through suitable conditioning.

1.7 Conjugate and Hierarchical Priors

Let Xis be i.i.d. Consider exponential densities with a special parametrization

fθ(x) = exp{A(θ) +
p∑
1

θjTj(x) + ψ(x)}

Given X1, X2, . . . , Xn, the sufficient statistic is (
∑n

1 T1(xi), . . . ,
∑n

1 Tp(xi)). Assume
Θ is an open p- dimensional rectangle. Because

Eθ

(
∂ log fθ

∂θj

)
= 0
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one has
∂A(θ)
∂θj

= Eθ(Tj) = ηj(θ)

η = (η1, η2, . . . , ηp) provides another natural parametrization. Note that the MLE
η̂ = T/n.

A class of priors C is said to be a conjugate family if given p ∈ C the posterior for
all n belongs to C. One can generate such families by choosing a σ-finite measure ν
on Θ and defining elements of C by

p(θ|m, t1, t2, . . . , tp) = const. exp{mA(θ) +
p∑
1

θjtj} (1.15)

where m is a positive integer and t1, t2, . . . , tp are elements in the sample space of
T1, T2 . . . , Tp. The constants m, t1, t2, . . . , tp are parameters of the prior distribution
chosen such that the prior is proper.

Usually, ν is a nonsubjective prior. Then the prior displayed in (1.15) can be in-
terpreted as a posterior when the prior is ν and one has a conceptual sample of size
m yielding values of sufficient statistics T = (t1, t2, . . . , tp), i.e., compared with ν it
represents prior information equivalent to a sample of size m.

The case when ν is the Lebesgue measure deserves special attention. Under certain
conditions, one can prove the following by an argument involving integration by parts,

E(η|X1, X2, . . . , Xn) =
mE(η) + nη̂

m + n
(1.16)

which shows that the posterior mean is a convex combination of the prior mean
and a suitable frequentist estimate. The relation strengthens the interpretation of m
as a measure of information in the prior. The elements of C corresponding to the
Lebesgue measure are usually called conjugate priors. Diaconis and Ylvisaker [47]
have shown that these are the only priors that satisfy (1.16). One can elicit the values
of t1, t2, . . . , tp by eliciting the prior mean and m by comparing prior information
with information from a sample. This makes these priors relatively easy to elicit,
but because one is only eliciting some aspects of the prior, a conjugate prior is a
nonsubjective prior with some parameters reflecting prior belief.

Example. fθ is normal density with mean µ and standard deviation σ. Here θ1 =
µ/2σ2, θ2 = −1/σ2, A(θ) = −(µ2/2σ2)−log σ, and T1(x) = x, T2(x) = x2. A conjugate
prior is of the form

p(θ) = Const. emA(θ)+t1θ1+t2θ2
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which can be displayed as the product of a normal and inverse gamma.
Example. fθ is Bernoulli with parameter θ. Conjugate priors are beta distributions.
Example. fθ is multinomial with parameters θ1, θ2, . . . , θp, where θi ≥ 0,

∑
θi = 1.

Conjugate priors are Dirichlet distributions discussed in the next chapter.
Conjugate priors have been criticized on two grounds. The relation (1.16) may not

be reasonable if there is conflict between the prior and the data. For example, if p = 1
and the prior mean is 0 and η̂ is 20, should one believe the data or the prior? A convex
combination of two incompatible estimates is unreasonable.

For N(µ, σ2), a t-prior for µ and a nonsubjective prior for σ ensures that in cases
like this the posterior mean shifts more toward the data, i.e., a choice of such a prior
means that, in cases of conflict, one trusts the data. The t-prior is a scale mixture of
normal. In general, it seems that mixtures on conjugate priors will possess this kind
of property, but we have not seen any general investigation in the literature.

The other criticism of conjugate priors is that only one parameter m is left to model
the prior belief on uncertainty. Once again, a mixture of conjugate priors offers more
flexibility.

These mixtures may be thought of as modeling prior belief in a hierarchy of stages
called hierarchical priors. The reason for their current popularity in Bayesian analysis
is that they are flexible and posterior quantities can be calculated by Markov chain
Monte Carlo. A good source is Schervish [144].

1.8 Exchangeability, De Finetti’s Theorem,
Exponential Families

Subjective priors can be elicited in special simple cases, a relatively recent treatment is
Kadane et al. [109]. However there is one class of problems where subjective judgments
can be made relatively easily and can lead to both a model and a prior.

Suppose {Xi} is a sequence of random variables. This sequence is said to be ex-
changeable if for any n distinct i1, i2, . . . , in,

P{Xi1 ∈ B1, Xi2 ∈ B2, . . . , Xin ∈ Bn}
= P{X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn (1.17)

Suppose {Xi} take values in {0, 1}. One may be able to judge if the {Xi}s are
exchangeable. In some sense, such judgments are fundamental to science when one
makes inductions about future based on past experience. The next theorem of De
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Finetti shows that this subjective judgment leads to a model and affirms the existence
of a prior.

Theorem 1.8.1. If a sequence of random variables {Xi} is exchangeable and if
each Xi takes values in {0, 1} then there exists a distribution Π such that

P{X1 = x1, X2 = x2, . . . , Xn = xn1} =
∫ 1

0
θr(1 − θ)n−rdΠ(θ)

with r =
∑n

1 xi

The theorem implies that one has a Bernoulli model and a prior Π. To specify a
prior, one needs additional subjective judgments. For example, if given X1, X2, . . . , Xn

one predicts Xn+1 = (α +
∑

xi)/(α + β + n), Π then must be a beta prior.
Regazzini [67] has shown that judgments on Exchangeability, along with certain

judgments on predictive distributions of Xn+1 given X1, X2, . . . , Xn lead to a similar
representation theorem, which leads to an exponential model along with a mixing
distribution, which may be interpreted as a prior. Earlier Bayesian derivations of
exponential families is due to Lauritzen [117] and Diaconis and Freedman [44]. A
good treatment is in Schervish [144] where partial exchangeability and its modeling
through hierarchical priors is also discussed.



2
M(X ) and Priors on M(X )

2.1 Introduction

As mentioned in Chapter 1, in the nonparametric case the parameter space Θ is
typically the set of all probability measures on X . We denote the set of all probability
measures on X by M(X ). The cases of interest to us are when X is a finite set and
when X = R. The Bayesian aspect requires prior distributions on M(X ), in other
words, probabilities on the space of probabilities. In this chapter we develop some
measure-theoretic and topological features of the space M(X ) and discuss various
notions of convergence on the space of prior distributions.

The results in this chapter, except for the last section, are mainly used to assert
the existence of the priors discussed later. Thus, for a reader who is prepared to
accept the existence theorems mentioned later, a cursory reading of this chapter would
be adequate. On the other hand, for those who are interested in measure-theoretic
aspects, a careful reading of this chapter will provide a working familiarity with the
measure-theoretic subtleties involved. The last section where formal definitions of
consistency are discussed, can be read independently. While we generally consider
the case X =R, most of the arguments would go through when X is a complete
separable metric space.
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2.2 The Space M(X )

As before, let X be a complete separable metric space with B the corresponding
Borel σ-algebra on X . Denote by M(X ) the space of all probability measures on
(X , B).

As seen in the chapter 1 there are many reasonable notions of convergence on the
space M(X ) , but they are not all equally convenient for our purpose. We begin with
a brief discussion of these.

Total Variation Metric. Recall that the total variation metric was defined by

‖P − Q‖ = 2 sup
B

|P (B) − Q(B)|

If p and q are densities of P and Q with respect to some σ-finite measure µ, then
‖P − Q‖ is just the L1-distance

∫
|p − q| dµ between p and q. The total variation

metric is a strong metric. If x ∈ X and δx is the probability degenerate at x, then
Ux = {P : ‖P − δx‖ < ε} = {P : P (x) > 1 − ε} is a neighborhood of δx. Further
if x �= x′ then Ux ∩ Ux′ = ∅. Thus, when X is uncountable, {Ux : x ∈ X} is an
uncountable collection of disjoint open sets, the existence of which renders M(X )
nonseparable. Further, no sequence of discrete measures can converge to a continuous
measure and vice versa. These properties make the total variation metric uninteresting
when considered on all of M(X ).

The total variation metric when restricted to sets of the form Lµ—all probability
measures dominated by a σ-finite measure µ—is extremely useful and interesting. In
this context we will refer to the total variation as the L1-metric. It is a standard result
that Lµ with the L1-metric is complete and separable.

Hellinger Metric. This metric was also discussed in Chapter 1. Briefly the Hellinger
distance between P and Q is defined by

H(P, Q) =
[∫

(
√

p − √
q)2 dµ

]1/2

where p and q are densities with respect to µ. The Hellinger metric is equivalent to
the L1 metric. Associated with the Hellinger metric is a useful quantity A(P, Q) called
affinity, defined as A(P, Q) =

∫ √
p
√

q dµ. The relation H2(P n, Qn) = 2−2(A(P, Q))n,
where P n, Qn are n-fold product measures, makes the Hellinger metric convenient in
the i.i.d. context.

Setwise convergence. The metrics defined in the last section provide corresponding
notions of convergence. Another natural way of saying Pn converges to P is to require
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that Pn(B) → P (B) for all Borel sets B. A way of formalizing this topology is as
follows. Let F be the class of functions {P �→ P (B) : B ∈ B}. On M(X ) give the
smallest topology that makes the functions in F continuous. It is easy to see that
under this topology, if f is a bounded measurable function, then P �→

∫
f dP is

continuous. Sets of the form {P : |P (Bi) − P0(Bi)| < εi, B1, B2, . . . , Bk ∈ B} give a
neighborhood base at P0.

Setwise convergence is an intuitively appealing notion, but it has awkward topo-
logical properties that stem from the fact that convergence of Pn(B) to P (B) for sets
in an algebra does not ensure the convergence for all Borel sets. We summarize some
additional facts as a proposition.

Proposition 2.2.1. Under setwise convergence:

(i) M(X ) is not separable,

(ii) If P0 is a continuous measure then P0 does not have a countable neighborhood
base, and hence the topology of setwise convergence is not metrizable.

Proof. (i) Ux = {P : P{x} > 1 − ε} is a neighborhood of δx, and as x varies form
an uncountable collection of disjoint open sets.

(ii) Suppose that there is a countable base for the neighborhoods at P0. Let B0 be
a countable family of sets such that sets of the type

U = {P : |P (Bi) − P0(Bi)| < εi, B1, B2, . . . , Bk ∈ B0}

form a neighborhood base at P0. It then follows that Pn(B) → P (B) for all
Borel sets B iff Pn(B) → P (B) for all sets in B0.

Let Bn = σ(B1, B2, . . . , Bn) where B1, B2, . . . is an enumeration of B0. Denote by
Bn1, Bn2, . . . Bnk(n) the atoms of Bn. Define Pn to be the discrete measure that
gives mass P0(Bni) to xni where xni is a point in Bni. Clearly Pn(Bmj) → P0(Bmj)
for all mj. On the other hand Pn(∪i,m{xmi}) = 1 for all n but P0((∪i,m{xmi}) =
0.

These shortcomings persist even when we restrict attention to subsets M(X ) of the
form Lµ.

Supremum Metric. When X is R, the Glivenko-Cantelli theorem on convergence
of empirical distribution suggests another useful metric, which we call the supremum
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metric. This metric is defined by

dK(P, Q) = sup
t

|P (−∞, t] − Q(−∞, t]|

Under this metric M(X ) is complete but not separable.
Weak Convergence. In many ways weak convergence is the most natural and useful

topology on M(X ). Say that

Pn → P weakly or Pn
weakly→ P if∫

f dPn →
∫

f dP

for all bounded continuous functions f on X . For any P0 a neighborhood base consists
of sets of the form ∩k

1{P :
∣∣∫ fi dP0 −

∫
fi dP

∣∣ < ε} where fi, i = 1, 2, . . . , k are
bounded continuous functions on X . One of the things that makes the weak topology
so convenient is that under weak convergence M(X ) is a complete separable metric
space.

The main results that we need with regard to weak convergence are the Portman-
teau theorem and Prohorov’s theorem given in Chapter 1.

Because M(X ) is a complete separable metric space under weak convergence, we
define the Borel σ-algebra BM on M(X ) to be the smallest σ-algebra generated by
all weakly open sets, equivalently all weakly closed sets. This σ-algebra has a more
convenient description as the smallest σ-algebra that makes the functions {P �→
P (B) : B ∈ B} measurable. Let B0 be the σ-algebra generated by all weakly open
sets. Consider all B such that P �→ P (B) is B0-measurable. This class contains all
closed sets, and from the π-λ theorem (Theorem 1.2.1) it follows easily that BM is
the σ-algebra generated by all weakly open sets.

We have discussed two other modes of convergence on M(X ) : the total variation
and setwise convergence. It is instructive to pause and investigate the σ-algebras
corresponding to these and their relationship with BM .

Because these are nonseparable spaces, there is no good acceptable notion of a
Borel σ-algebra. In the case of total variation metric, the two common σ-algebras
considered are

(i) Bo—the σ-algebra generated by open sets and

(ii) Bb—the σ-algebra generated by open balls.
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The σ-algebra Bo generated by open sets is much larger than BM . To see this, restrict
the σ-algebra to the space of degenerate measures DX = {δx : x ∈ X}. Then each δx

is relatively open, and this will force the restriction of Bo to DX to be the power set.
On the other hand, BM restricted to DX is just the inverse of the Borel σ-algebra on
X under the map δx �→ x.

Because every open ball is in BM , so is every set in the σ-algebra generated by
these balls. It can be shown that Bb is properly contained in BM .

Similar statements hold when we consider the σ-algebras for setwise convergence.
The corresponding σ-algebras here would be those generated by open sets and those
generated by basic neighborhoods at a point. A discussion of these different σ-algebras
can be found in [71].

We next discuss measurability issues on M(X ) . Following are a few of elementary
propositions.

Proposition 2.2.2. (i) If B0 is an algebra generating B then

σ {P �→ P (B) : B ∈ B0} = BM

(ii) σ
{
P �→

∫
f dP : f bounded measurable

}
= BM

Proof. (i) Let B̃ = {B : P �→ P (B) is BM measurable}. Then B̃ is a σ-algebra and
contains B0. The result now follows from Theorem 1.2.1.

(ii) It is enough to show that P �→
∫

f dP is BM measurable. This is immediate for
f simple, and any bounded measurable f is a limit of simple functions.

Proposition 2.2.3. Let fP (x) be a bounded jointly measurable function of (P, x).
Then P �→

∫
fP (x) dP (x) is BM measurable.

Proof. Consider

G =
{
F ⊂ M(X ) × X such that P (F P ) is BM measurable

}
Here F P is the P -section {x : (P, x) ∈ F} of F . G is a λ-system that contains the
π-class of all sets of the form C × B; C ∈ BM , B ∈ B, and by Theorem 1.2.1 is the
product σ-algebra on M(X )×X . This proves the proposition when fP (x) = IF (P, x).
The proof is completed by verifying when fP (x) is simple, and by passing to limits.

Proposition 2.2.3 can be used to prove the measurability of the set of discrete
probabilities.
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Proposition 2.2.4. The set of discrete probabilities is a measurable subset of
M(X ).

Proof. If E = {(P, x) : P{x} > 0} is a measurable set, then setting fP (x) = IE(P, x),
the set of discrete measures is just {P :

∫
fP (x)dP = 1} and would be measurable by

Proposition 2.2.3. To see that E = {(P, x) : P{x} > 0} is measurable, we show that
(P, x) �→ P{x} is jointly measurable in (P, x). Consider the set of all a measurable
subsets F of X × X such that (P, x) �→ P (F x) is measurable in (P, x). As before,
F x = {y : (x, y) ∈ F}. This class contains all Borel sets of the form B1 × B2 and is
a λ-system, and by Theorem 1.2.1 is the Borel σ-algebra on X × X . In particular
(P, x) �→ P (F x) is measurable when F = {(x, x) : x ∈ X} is the diagonal and
E = {(P, x) : P (F x > 0)}.

Consider fP (x) used in Proposition 2.2.4. Then P is continuous iff
∫

fP (x)dP = 0.
It follows that the set of continuous measures is a measurable set.

If µ is a σ-finite measure on R, then Lµ is a measurable subset of M(X ). To see
this, assume without loss of generality that µ is a probability measure. Let Bn be an
increasing sequence of algebras, with finitely many atoms, whose union generates B.
Denote the atoms of Bn by Bn1, Bn2, . . . Bk(n), and for any probability measure P ,
set fP (x) = lim

∑k(n)
1 P (Bni)/µ(Bni) when it exists and 0 otherwise. To complete the

argument note that Lµ = {P :
∫

fP (x)dµ = 1}.

2.3 (Prior) Probability Measures on M(X )

2.3.1 X Finite

Suppose X = {1, 2, . . . , k}. In this case M(X ) can be identified with the (k − 1)
dimensional probability simplex Sk = {p1, p2, . . . , pk : 0 ≤ pi ≤ 1,

∑
pi = 1}. One

way of defining a prior on M(X ) is by defining a measure on Sk. Any such measure
defines the joint distribution of {P (A) : A ⊂ X}, because for any A, P (A) =

∑
i∈A pi,

where pk = 1 − ∑k−1
1 pi.

An example of a prior distribution on Sk is the uniform distribution—the normal-
ized Lebesgue measure on {p1, p2, . . . , pk−1 : 0 ≤ pi ≤ 1,

∑
pi ≤ 1}. Another example

is the Dirichlet density which is given by

Π(p1, p2, . . . , pk−1) =
Γ(

∑k
1 αi)∏

Γ(αi)
pα1−1

1 pα2−1
2 . . . p

αk−1−1
k−1 (1 −

k−1∑
1

pi)αk−1
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where α1, α2, . . . , αk are positive real numbers. This density will be studied in greater
detail later.

A different parametrization of M(X ) yields another method of constructing a prior
on M(X ). Assume for ease of exposition that X contains 2k elements {x1, x2, . . . , x2k}.
Let

B0 = {x1, x2, . . . , x2k−1} and B1 = {x2k−1+1, x2k−1+2, . . . , x2k}
be a partition of X into two sets. Let B00, B01 be a partition of B0 into two halves
and B10, B11 be a similar partition of B1. Proceeding this way we can get partitions
Bε1ε2...εi0, Bε1ε2...εi1 of Bε1ε2...εi

where each εi is 0 or 1 and i < k. Clearly, this partition
stops at i = k.

We next note that the partitions can be used to identify X with Ek = {0, 1}k.
Any x ∈ X corresponds to a sequence ε1(x)ε2(x) . . . εk(x) where εi(x) = 0 if x is in
Bε1(x)ε2(x)...εi−1(x)0 and 1 if x is in Bε1(x)ε2(x)...εi−1(x)1 . Conversely, any sequence ε1ε2 . . . εk

corresponds to the point ∩k
1Bε1ε2...εi

. Thus there is a correspondence—depending on
the partition—between the set M(X ) of probability measures on X and the set
M(Ek) of probability measures on Ek.

Any probability measure on Ek is determined by quantities like

yε1ε2...εk
= P (εi+1 = 0 | ε1, ε2, . . . , εi)

Specifically, let E∗
k be the set of all sequences of 0 and 1 of length less than k, including

the empty sequence ∅. If 0 ≤ yε ≤ 1 is given for all ε ∈ E∗
k , then there is a probability

on Ek by

P (ε1ε2 . . . εk) =
k∏

i=1,εi=0

yε1ε2...εi−1

k∏
i=1,εi=1

(1 − yε1ε2...εi−1)

where i = 1 corresponds to the empty sequence ∅. Hence construction of a prior on
Ek amounts to a specification of the joint distribution for {yε : ε ∈ E∗

k}.
A little reflection will show that all we have done is to reparametrize a probability

P on X by

P (B0), P (B00|B0), P (B10|B1), . . . , P (Bε1ε2...εk−10|Bε1ε2...εk−10)

Of interest to us is the case where the Yεs, equivalently P (Bε0|Bε)s, are all indepen-
dent. The case when these are independent beta random variables—the Polya tree
processes—will be studied in Chapter 3

Yet another method of obtaining a prior distribution on M(X ) is via De Finetti’
theorem. De Finetti’s theorem plays a fundamental role in Bayesian inference, and
we refer the reader to [144] for an extensive discussion.
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Let X1, X2, . . . , Xn be X -valued random variables. X1, X2, . . . , Xn is said to be ex-
changeable if X1, X2, . . . , Xn and Xπ(1), Xπ(2), . . . , Xπ(n) have the same distribution for
every permutation π of {1, 2, . . . , n}. A sequence X1, X1, . . . is said to be exchangeable
if X1, X2, . . . , Xn is exchangeable for every n.

Theorem 2.3.1. [De Finetti] A sequence of X -valued random variables is ex-
changeable iff there is a unique measure Π on M(X ) such that for all n,∫

M(X )

n∏
1

p(xi) dΠ(p) = Pr {X1 = x1, X2 = x2, . . . , Xn = xn}

In general it is not easy to construct Π from the distribution of the Xis. Typically,
we will have a natural candidate for Π. By uniqueness, it is enough to verify the
preceding equation. On the other hand, given Π, the behavior of X1, X1, . . . often
gives insight into the structure of Π.

As an example, let X = {x1, x2, . . . , xk}. Let α1, α2, . . . , αk be positive integers. Let
ᾱ(i) = αi/

∑
αj. Consider the following urn scheme: Suppose a box contains balls of

k- colors, with αi balls of color i. Choose a ball at random, so that P (X1 = i) = ᾱ(i).
Replace the ball and add one more of the same color. Clearly, P (X2 = j|X1 = i) =
(αj + δi(j))/(

∑
αi + 1) where δi(j) = 1 if i = j and 0 otherwise. Repeat this process

to obtain X3, X4, . . . Then

(i) X1, X2, . . . are exchangeable; and

(ii) the prior Π for this case is the Dirichlet density on Sk.

2.3.2 X = R

We next turn to construction of measures on M(X ) . Because the elements of M(X )
are functions on B, M(X ) can be viewed as a subset of [0, 1]B where the product
space [0, 1]B is equipped with the canonical product σ-algebra, which makes all the
coordinate functions measurable. Note that the restriction of the product σ-algebra
to M(X ) is just BM . A natural attempt to construct measures on M(X ) would be to
use Kolomogorov’s consistency theorem to construct a probability measure on [0, 1]B,
which could then be restricted to M(X ) . However M(X ) is not measurable as a
subset of [0, 1]B, and that makes this approach somewhat inconvenient. To see that
M(X ) is not measurable, note that singletons are measurable subsets of M(X ) but
not so in the product space.

When X = R, distribution functions turn out to be a useful crutch to construct
priors on M(R). To elaborate:
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(i) Let Q be a dense subset of R and let F∗ be all real-valued functions on Q such
that

(a) F is right-continuous on Q,

(b) F is nondecreasing, and

(c) limt→∞ = F (t) = 1, limt→−∞ F (t) = 0.

(ii) Let F be all real-valued functions on R such that

(a) F is right-continuous on R,

(b) F is non decreasing, and

(c) limt→∞ F (x) = 1, limt→−∞ F (x) = 0.

(iii) M(R) = {P : P is a probability measure on R}
There is a natural 1-1 correspondence between these three sets: Let φ1 : M(R) �→

F be the function that takes a probability measure P to its distribution function
FP (t) = P (−∞, t] and let φ2 : F → F∗ be the function that maps a distribution
function to its restriction on Q. These maps are 1-1, onto, and bi-measurable. Thus
any probability measure on F∗ can be transferred to a probability on F and then
to M(R). A prior on F∗ only involves the distributions of

(F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1))

for tis in Q. However, because any F (t) is a limit of F (tn), tn ∈ Q, the distributions of
quantities like (F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1)) for ti-real can be recovered,
at least as limits. On the other hand since a general Borel set B has no simple
description in terms of intervals, one can assert the existence of a distribution for
P (B) that is compatible with the prior on F∗, but it may not be possible to arrive
at anything resembling an explicit description of the distribution.

It is convenient to use the notation L(·|Π) to stand for the distribution or law of a
quantity under the distribution Π.

Theorem 2.3.2. Let Q be a countable dense subset of R. Suppose for every k and
every collection t1 < t2 < . . . < tk with {t1, t2, . . . , tk} ⊂ Q, Πt1,t2,...,tk is a probability
measure on [0, 1]k which is a specification of a distribution of ((F (t1), F (t2), . . . , F (tk))
such that

(i) if {t1, t2, . . . , tk} ⊂ {s1, s2, . . . , sl} then the marginal distribution on (t1, t2, . . . , tk)
obtained from Πs1,s2,...,sl

is Πt1,t2,...,tk ;
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(ii) if t1 < t2 then Πt1,t2{F (t1) ≤ F (t2)} = 1;

(iii) if (t1n, t2n, . . . , tkn) ↓ (t1, t2, . . . , tk) then Π(t1n,t2n,...,tkn) converges in distribution
to Π(t1,t2,...,tk); and

(iv) if tn ↓ −∞ then Πtn → 0 in distribution and if tn ↑ ∞ then Πtn → 1 in
distribution.

then there exists a probability measure Π on M(R) such that for every t1 < t2 < . . . <
tk, with {t1, t2, . . . , tk} ⊂ Q,

L ((F (t1), F (t2), , . . . , F (tk)) |Π) = Πt1,t2,...,tk .

Proof. By the Kolomogorov consistency theorem (i) ensures the existence of a proba-
bility measure Π on [0, 1]Q with Π(t1,t2,...,tk) as marginals. We will argue that Π(F∗) = 1

Suppose F∗
1 = ∩ti<tj

{
F ∈ [0, 1]Q : F (ti) ≤ F (tj)

}
. Because Q is countable by (ii),

Π(F∗
1 ) = 1.

Next, fix t and a sequence tn in Q decreasing to t. On F∗
1 , F (tn) as a function of F

is decreasing in n and hence has a limit. If F ∗(t) = limn F (tn) then F ∗(t) ≥ F (t) and
by assumption (iii) EΠF ∗(t) = EΠF (t), so that F ∗(t) = F (t) a.e. Π. Consequently

Π{F ∈ F∗
1 : F is right-continuous at t} = 1

and the countability of Q yields

Π{F : F is monotone and F is right-continuous at all t ∈ Q} = 1

A similar argument shows that with Π probability 1, for F in F∗
1 , limt→∞ = F (t) =

1, and limt→−∞ F (t) = 0. This shows that Π(F∗) = 1.
Thus we have established the existence of a probability measure on F∗. Using the

discussion preceding the theorem this prior can be lifted to all of M(R).

The assumptions of Theorem 2.3.2 require specification of finite-dimensional dis-
tribution only for tis in Q and the conclusion also involves only the finite dimensional
distributions for tis in Q. It is easy to see that if one starts with Π(t1,t2,...,tk) with ti’s
real and satisfying the conditions of Theorem 2.3.2 then one would get a Π for which
the marginals are Π(t1,t2,...,tk) for tis real.

A convenient way of specifying the distribution of (F (t1), F (t2), . . . , F (tk)) for t1 <
t2 < . . . , tk, is by specifying the distribution, say Π′

t1,t2,...,tk
, of

(F (t1), F (t2) − F (t1), . . . , F (tk − F (tk−1))
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The convenience arises from the fact that (−∞, t1], (t1, t2], . . . , (tk, ∞) can be thought
of as k + 1 cells and (p1, p2, . . . , pk+1) as the corresponding multinomial probabili-
ties. Note that Π′

t1,t2,...,tk
is a probability measure on Sk = {(p1, p2, . . . , pk : pi ≥

0,
k∑
1

pi ≤ 1}. If the specifications of the collection Π′
t1,t2,...,tk

satisfy assumptions

(ii),(iii), and (iv) of Theorem 2.3.2, then so would the collection Πt1,t2,...,tk = L((p1, p1+
p2, . . . ,

∑k
1 pi)|Π′

t1,t2,...,tk
). These observations give the following easy variant of Theo-

rem 2.3.2.

Theorem 2.3.3. Suppose that for every k and every collection t1 < t2 < . . . < tk
with {t1, t2, . . . , tk} ⊂ R, Πt1,t2,...,tk is a probability measure on Sk = {(p1, p2, . . . , pk) :

pi ≥ 0,
k∑
1

pi ≤ 1} such that

(i) if {t1, t2, . . . , tk} ⊂ {s1, s2, . . . , sl} then the marginal distribution on (t1, t2, . . . , tk)
obtained from Πs1,s2,...,sl

is Πt1,t2,...,tk ;

(ii) if (t1n, t2n, . . . , tkn) → (t1, t2, . . . , tk) then Π(t1n,t2n,...,tkn) converges in distribution
to Π(t1,t2,...,tk); and

(iii) if tn ↓ −∞ then Πtn → 0 in distribution and if tn ↑ ∞ then Πtn → 1 in
distribution.

then there exists a probability measure Π on F (equivalently on M(R) such that for
every t1 < t2 < . . . < tk, with {t1, t2, . . . , tk} ⊂ R,

L ((F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1)) |Π) = Πt1,t2,...,tk

Suppose (B1, B2, . . . , Bk) is a collection of disjoint subsets of R; the next theorem
shows that if the distribution of P (B1), P (B2), . . . , P (Bk) are themselves prescribed
consistently then the prior Π would have the prescribed marginal distribution for
(P (B1), P (B2), . . . , P (Bk)).

Theorem 2.3.4. Suppose for each collection of disjoint Borel sets (B1, B2, . . . , Bk)
a distribution ΠB1,B2,...,Bk

is assigned for (P (B1), P (B2), . . . , P (Bk)) such that

(i) ΠB1,B2,...,Bk
is a probability measure on k-dimensional probability simplex Sk and

if A1, A2, . . . , Al is another collection of disjoint Borel sets whose elements are
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union of sets from (B1, B2, . . . , Bk) then

ΠA1,A2,...,Al
= distribution of

( ∑
Bi⊂A1

P (Bi),
∑

Bi⊂A2

P (Bi), . . . ,
∑

Bi⊂Al

P (Bi)

)

(ii) if Bn ↓ ∅; and ΠBn → 0 in distribution,

(iii) P (R) ≡ 1.

Then there exists a probability measure Π on M(R) such that for any collection of
disjoint Borel sets (B1, B2, . . . , Bk), the marginal distribution of (P (B1), . . . , P (Bk))
under Π is ΠB1,B2,...,Bk

.

Remark 2.3.1. Given ΠB1,B2,...,Bk
as earlier, we can extend the definition to obtain

ΠA1,A2,...,Am for any collection (not necessarily disjoint) of Borel sets A1, A2, . . . , Am.
Toward this, let B1 = A1, Bi = Ai−∪j<iAj, and define ΠA1,A2,...,Am as the distribution
of (P (B1, P (B1) + P (B2) + . . . ,

∑m
1 P (Bj)) under ΠB1,B2,...,Bm . The following proof

shows that the marginal distribution under Π of (P (A1), P (A2), . . . , P (Ak)) of any
collection of Borel sets is ΠA1,A2,...,Ak

.

Proof. As in the Theorem 2.3.3 start with partitions of the form Bi = (ti−1, ti] for
i = 1, 2, . . . , k; and let Π be the measure obtained on F . Let φ2 be the map from F to
M(R) defined by φ2(F ) = PF , where PF is the probability measure corresponding to
F . It is easy to see that this map is 1-1 and measurable. We will continue to denote
by Π the induced measure on M(R).

Π by construction sits on M(R). What we then need to show is that the marginal
distribution of (P (B1), P (B2), . . . , P (Bk)) under Π is ΠB1,B2,...,Bk

.
Step 1 (ii) implies that

if (B1n, B2n, . . . , Bkn) ↓ (B1, B2, . . . , Bk1) then

(P (B1n), P (B2n), . . . , P (Bkn)) → (P (B1), P (B2), . . . , P (Bk)) in distribution.

To see this,

((P (B1n), P (B2n), . . . , P (Bkn))
= (P (B1) + (P (B1n) − P (B1)), P (B2) + (P (B2n) − P (B2)), . . . ,

P (Bk) + (P (Bkn) − P (Bk)))
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and for each i, (Bin − Bi) ↓ ∅ and hence (P (Bin) − P (Bi)) goes to 0 in distribution
and hence in probability. As a result, the whole vector

((P (B1n) − P (B1)), (P (B2n) − P (B2)), . . . , (P (Bkn) − P (Bk))) ↓ 0 in probability

Step 2 Denote by B0 the algebra generated by intervals of the form (a, b]. For
any B1, B2, . . . , Bk, let L (P (B1), P (B2), . . . , P (Bk)|Π) denote the distribution of the
vector (P (B1), P (B2), . . . , P (Bk)) under Π. Fix k. Let Ci = (ai, bi], i = 2, . . . , k.
Consider

B̂ =
{
B1 : L (P (B1), P (C2), . . . , P (Ck)|Π) = Π(B1,C2,...,Ck)

}
Then B̂ contains all sets of the form (a, b], is closed under disjoint unions of such

sets, and hence contains B0. In addition, by Step 1 this is a monotone class. So B̂ is
B.

Step 3 Now consider{
B2 : L (P (B1), P (B2), P (C3), . . . , P (Ck)|Π) = Π(B1,B2,C3,...,Ck)

}
From step 2, this class contains all sets of the form (a, b], and their finite disjoint

unions and hence contains B0. Further, it is a monotone class and so is B. Continuing
similarly, it follows that for any Borel sets B1, B2, . . . , Bk ,

L (P (B1), P (B2), . . . , P (Bk)|Π) = ΠB1,B2,...,Bk

.

Example 2.3.1. Let α be a finite measure on R. For any partition (B1, B2, . . . , Bk),
let ΠB1,B2,...,Bk

on Sk be a Dirichlet (α(B1), α(B2), . . . , α(Bk)). We will show in Chap-
ter 3 that this assignment satisfies the conditions of Theorem 2.3.4.

Remark 2.3.2. Theorem 2.3.4 on constructing a measure Π on F through finite-
dimensional distribution can be viewed from a different angle. Toward this, for each
n, divide the interval [−2n, 2n] into intervals of length 2−n and let −2n = tn1 <
tn2 < . . . < tnk(n) = 2n denote the endpoints of the intervals. These define a partition
of R into k(n) + 1 cells in an obvious way. Any probability (p1, p2, . . . , pk(n)+1) on
these k(n) + 1 cells corresponds to a distribution function on R, which is constant on
each interval and thus any probability Πtn1,tn2,...,tnk(n) on Sk(n)+1 defines a probability
measure µn on Fn = all distribution functions, which are constant on the interval
(tni, tni+1]. The consistency assumption on Πtn1,tn2,...,tnk(n) shows that the marginal
distribution on Fn obtained from µn+1 is just µn. Now it can be shown that
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1. {µn}n≥1 is tight as a sequence of probability measures on F . To see this, let
εi ↓ 0 and let Ki be a sequence of compact subsets of R. Then

{P : P (Ki) ≥ 1 − εi for all i}

is a compact subset of M(R). What is needed to show tightness is that given δ,
there is a set of the form given earlier with µn measure greater than 1−δ for all n.
Use assumptions (i) and (iii) of Theorem 2.3.4 and show that for each i, you can
get an ni such that for all n, µn{F : F (tni0) > εi and 1−F (tni,k(ni)) > εi} < δ/2i;

2. {µn} converges to a measure Π; and

3. Π satisfies the conclusions of Theorem 2.3.4.

2.3.3 Tail Free Priors

When X is finite, we have seen that by partitioning X into

{B0, B1}, {B00, B01, B10, B11}, . . .

and reparametrizing a probability by P (B0), P (B00|B0) . . ., we can identify measures
on M(X ) with Ek—the set of sequences of 0s and 1s of length k. Tail free priors arise
when these conditional probabilities are independent. In this section we extend this
method to the case X =R.

Let E be all infinite sequences of 0s and 1s, i.e., E = {0, 1}N. Denote by Ek all
sequences ε1, ε2, . . . , εk of 0s and 1s of length k, and let E∗ = ∪kEk be all sequences
of 0s and 1s of finite length. We will denote elements of E∗ by ε.

Start with a partition
T 0 = {B0, B1}

of X into two sets. Let
T 1 = {B00, B01, B10, B11, }

where B00, B01 is a partition of B0 and B10, B11 is a partition of B1. Proceeding this
way,let T n be a partition consisting of sets of the form Bε, where ε ∈ En and further
Bε1 , Bε0 is a partition of Bε.

We assume that we are given a sequence of partitions T = {Tn}n≥1 constructed as
in the last paragraph such that the sets {Bε : ε ∈ E∗} generate the Borel σ-algebra.
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Definition 2.3.1. A prior Π on M(R) is said to be tail free with respect to
T = {Tn}n≥1 if rows in

{P (B0)}
{P (B00|B0), P (B10|B1)}

{P (B000|B00), P (B000|B00), P (B010|B01), P (B100|B10), P (B110|B11)}
· · · · · · · · ·

are independent.

To turn to the construction of tail free priors on M(R), start with a dense set of
numbers Q, like the binary rationals in (0, 1), and write it as Q = {aε : ε ∈ E∗} such
that for any ε ε0 < ε < ε1 and construct the following sequence of partitions of R:
T 0 = {B0, B1} is a partition of R into two intervals, say

B0 = (−∞, a0], B1 = (a0, ∞)

Let T 1 = {B00, B01, B10, B11, }, where

B00 = (−∞, a00], B01 = (a00, a0]

and
B10 = (a0, a01], B11 = (a01, ∞)

Proceeding this way, let T n be a partition consisting of sets of the form Bε1,ε2,...,εn ,
where ε1, ε2, . . . , εn are 0 or 1 and further Bε1,ε2,...,εn0, Bε1,ε2,...,εn1 is a partition of
Bε1,ε2,...,εn .

The assumption that Q is dense is equivalent to the statement that the sequence
of partitions T = {Tn}n≥1 constructed as in the last paragraph are such that the sets
{Bε : ε ∈ E∗} generate the Borel σ-algebra.

For each ε ∈ E∗, let Yε be a random variable taking values in [0, 1]. If we set
Yε = P (Bε0 |Bε), then for each k, {Yε : ε ∈ ∪i≤kEi} define a joint distribution for
P (Bε) : ε ∈ Ek. By construction, these are consistent. In order for these to define a
prior on M(R) we need to ensure that the continuity condition (ii) of Theorem 2.3.2
holds.

Theorem 2.3.5. If Yε = P (Bε0 |Bε), where Yε : ε ∈ E∗ is a family of [0, 1] valued
random variables such that

(i)
Y ⊥{Y0, Y1}⊥{Y00, Y01, Y10, Y11}⊥ . . .
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(ii) for each ε ∈ E∗,
Yε0Yε00Yε000 . . . = 0 and Y1Y11 . . . = 0 (2.1)

then there exists a tail free prior Π on M(R) (with respect to the partition under
consideration) such that Yε = P (Bε0|Bε).

Proof. As noted earlier we need to verify condition (ii) of Theorem 2.3.2. In the
current situation it amounts to showing that if εo = ε0

1ε
0
2 . . . ε0

k and as n → ∞, aεn

decreases to aε0 , then the distribution of F
(
aεn

)
converges to F

(
aε0

)
. Because any

sequence of aε decreasing to aε0 is a subsequence of aε01, aε010, aε0100, · · · ,

F
(
aε010...0

)
= F

(
aε0

)
+ P (Bε010...0)

and
P (Bε01,0...0) = P (Bε0)(1 − Yε0)Yε01Yε010 . . .

the result follows from (ii).

These discussions can be usefully and elegantly viewed by identifying R with the
space of sequences of 0s and 1s.

As before, let E be {0, 1}N. Any probability on E gives rise to the collection of
numbers {yε : ε ∈ E∗}, where yε1ε2...εn = P (εn+1 = 0|ε1ε2 . . . εn). Conversely, setting
yε1ε2...εn = P (εn+1 = 0|ε1ε2 . . . εn), any set numbers {yε : ε ∈ E∗}, with 0 ≤ yε ≤ 1
determines a probability on E. In other words,

P (ε1ε2 . . . εk) =
k∏

i=1,εi=0

yε1ε2...εi−1

k∏
i=1,εi=1

(1 − yε1ε2...εi−1) (2.2)

Hence, to define a prior on M(E), we need to specify a joint distribution for {Yε :
ε ∈ E∗}, where each Yε is between 0 and 1.

As in the finite case, we want to use the partitions T = {Tn}n≥1 to identify R

with sequences of 0s and 1s. and Let x ∈ R. φ(x) is the function that sends x to the
sequence ε in E, where

ε1(x) = 0 if x ∈ B0 ε1(x) = 1 if x ∈ B1

εi(x) = 0 if x ∈ Bε1,ε2,...,εi−10 εi(x) = 1 if x ∈ Bε1ε2...εi−11

Because each T n is a partition of R, φ defines a function from R into E. φ is 1-
1, measurable but not onto E. The range of φ will not contain sequences that are
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eventually 0. This is another way of saying that with binary expansions we consider
the expansion with 1 in the tails rather than 0s. If D = {ε ∈ E : εi = 0 for all i ≥
n for some n} ∪ {ε : εi = 1 for all i}, then φ is 1-1, measurable from R onto Dc ∩ E.
Further, φ−1 is measurable on Dc∩E. Thus, as before, the set of probability measures
M(R) can be identified with M0(E)—the set of probability measures on E that give
mass 0 to D. This reduces the task of defining a prior on M(R) to one of defining a
prior on M0(E).

The condition P (D) = 0 gets translated to

yε0(yε00) . . . = 0 for all ε ∈ E∗ and y1y11 . . . = 0 (2.3)

As before, defining a prior on M(R), equivalently on M0(E), amounts to defining
{Yε : ε ∈ E∗} such that (2.3) is satisfied almost surely. Satisfying (2.3) almost surely
corresponds to condition (ii) in Theorem 2.3.5.

A useful way to specify a prior on M(E) is by having Yε for ε of different lengths
be mutually independent, which yields tail free priors. In Chapter 3, we return to this
construction, to develop Polya tree priors.

Tail free prior are conjugate in the sense that if the prior is tail free, then so is the
posterior. To avoid getting lost in a notational mess we first state an easy lemma.

Lemma 2.3.1. Let ξ1, ξ2, . . . , ξk be independent random vectors (not necessarily
of the same dimension) with joint distribution µ =

∏k
1 µi. Let J be a subset of

{1, 2, . . . , k} and let µ∗ be the probability with

dµ∗

dµ
= C

∏
j∈J

ξj

Then ξ1, ξ2, . . . , ξk are independent under µ∗.

Proof. Clearly C =
∏

j∈J [
∫

ξjdµj]−1. Further,

Prob(ξi ∈ Bi : 1 ≤ i ≤ k) =
∫

(ξi∈Bi:1≤i≤k)
C[

∏
j∈J

ξj]dµ

=
∏
i/∈J

µi(Bi)
∏
j∈J

∫
Bj

ξjdµj∫
ξjdµj
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Theorem 2.3.6. Suppose Π is a tail free prior on M(R) with respect to the sequence
of partitions {T k}k≥1. Given P , let X1, X2, . . . , Xn be,i.i.d. P ; then the posterior is
also tail free with respect to {T k}k≥1.

Proof. We will prove the result for n = 1; the general case follows by iteration.
Consider the posterior distribution given T k. Because {Bε : ε ∈ Ek} are the atoms of
T k, it is enough to find the posterior distribution given X ∈ Bε′ for each ε′ ∈ Ek.

Let ε′ = ε1ε2 . . . εk. Then the likelihood of P (Bε′) is

k∏
1

P (Bε1,ε2,...,εj
|Bε1,ε2,...,εj−1)

so that the posterior density of {P (Bε1 |Bε)} with respect to Π is

C
n∏

i=1,εi=0

P (Bε1ε2...εi
|Bε1ε2...εi−1)

n∏
i=1,εi=1

(1 − P (Bε1ε2...εi
|Bε1ε2...εi−1)

From Lemma 2.3.1

{P (Bε1 |Bε) : ε ∈ E1}, {P (Bε1 |Bε) : ε ∈ E2}, . . . , {P (Bε1 |Bε) : ε ∈ Ek−1}

are independent under the posterior.
In particular if m < k, independence holds for

{P (Bε1 |Bε) : ε ∈ E1}, {P (Bε1 |Bε) : ε ∈ E2}, . . . , {P (Bε1 |Bε) : ε ∈ Em−1}.

Letting k → ∞, an application of the martingale convergence theorem gives the
conclusion for the posterior given X1.

In this section we have discussed two general methods of constructing priors on
M(R) . There are several other techniques for obtaining nonparametric priors. There
are priors that arise from stochastic processes. If f is the sample path of a stochastic
process then f̂ = k−1(f)ef yields a random density when k(f) = Eef is finite. We
will study a method of this kind in the context of density estimation. Or one can
look at expansions of a density using some orthogonal basis and put a prior on the
coefficients. A class of priors called neutral to the right priors, somewhat like tail free
priors, will be studied in Chapter 10 on survival analysis.
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2.4 Tail Free Priors and 0-1 Laws

Suppose Π is a prior on M(R) and {Bε : ε ∈ E∗} is a set of partitions as described
in the last section. To repeat, for each n, T n = {Bε : ε ∈ En} is a partition of R and
Bε0, Bε1 is a partition of Bε. Further B = σ {Bε : ε ∈ E∗}. Unlike the last section it
is not required that Bε be intervals. The choice of intervals as sets in the partition
played a crucial role in the construction of a probability measure on M(R). Given a
probability measure on M(R), the following notions are meaningful, even if the Bε

are not intervals.
For notational convenience, as before, denote by Yε = P (Bε0|Bε). Formally, Yε is a

random variable defined on M(R) with Yε(P ) = P (Bε0|Bε). Recall that Π is said to
be tail free with respect to the partition T = {Tn}n≥1 if

Y ⊥{Y0, Y1}⊥{Y00, Y01, Y10, Y11}⊥ . . .

Theorem 2.4.1. Let λ be any finite measure on R, with λ(Bε) > 0 for all ε. If
0 < Yε < 1 for all ε then

Π{P : P << λ} = 0 or 1

Proof. Assume without loss of generality that λ is a probability measure.
Let Z0 = Y, Z1 = {Y0, Y1}, Z2 = {Y00, Y01, Y10, Y11}, . . . . By assumption, Z1, Z2, . . .

are independent random vectors. The basic idea of the proof is to show that L(λ) =
{P : P << λ} is a tail set with respect to the Zis. The Kolmogorov 0 − 1 law
then yields the conclusion. In the next two lemmas it is shown that for each n, L(λ)
depends only on Zn, Zn+1, . . . and is hence a tail set.

Lemma 2.4.1. When P (Bε) > 0, define P (·|Bε) to be the probability P (A|Bε) =
P (A ∩ Bε)/P (Bε) . Define λ(·|Bε) similarly. Fix n; then

L(λ) = {P : P (·|Bε) << λ(·|Bε) for all ε ∈ En such that P (Bε) > 0}

Proof. Because

P (A) =
∑
ε∈En

P (A|Bε)P (Bε) and λ(A) =
∑
ε∈En

λ(A|Bε)λ(Bε)

the result follows immediately.
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Lemma 2.4.2. Let Y = {Yε(P ) : ε ∈ E∗, P ∈ M(R)}. The elements y of Y are
thus a collection of conditional probabilities arising from a probability. Conversely
any element y of Y gives rise to a probability which we denote by Py. Then for each
ε ∈ En, for all A ∈ B, and for every y in Y

Py(A|Bε) depends only on Zn, Zn+1, . . .

Proof. Let

B0 =
{

A : for all y, Py(A|Bε) depends only on Zn, Zn+1, . . .
}

Because 0 < Yε < 1 for all ε ∈ E∗, Py (Bε) > 0 for all ε ∈ E∗. Hence B0 contains the
algebra of finite disjoint unions of elements in {Bε′ : ε′ ∈ ∪m>nEm} and is a monotone
class. Hence B0 = B.

Remark 2.4.1. Let Π be tail free with respect to T = {Tn}n≥1 such that 0 < Yε <
1; for all ε ∈ E∗. Argue that P is discrete iff P (.|Bε) is discrete for all ε ∈ En. Now
use the Kolmogorov 0-1 law to conclude that Π{P : P is discrete } = 0 or 1.

The next theorem, due to Kraft, is useful in constructing priors concentrated on
sets like L(λ).

Let Π, {Bε : ε ∈ E∗}, {Yε : ε ∈ E∗} be as in the Theorem 2.4.1, and, as before
given any realization y = {yε : ε ∈ E∗}, let Py denote the corresponding probability
measure on R.

Theorem 2.4.2. Let λ be a probability measure on R such that λ(Bε) > 0 for all
ε ∈ E∗. Suppose

fn
y (x) =

∑
ε∈En

Py (Bε)
λ(Bε)

IBε(x) =
∑
ε∈En

∏k
i=1,εi=0 yε1ε2...εi−1

∏k
i=1,εi=1(1 − yε1ε2...εi−1)

λ(Bε)

If supn EΠ

[
fn

y (x)
]2

≤ K for all x then Π{P : P << λ} = 1

Proof. For each y ∈ Y , by the martingale convergence theorem fn
y converges almost

surely λ to a function fy . Consider the measure Π×λ, which is the joint distribution

of y and x, on
∏
ε∈E∗

Yε × R.
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Because for each y , fn
y → fy a.s λ, we have fn

y → fy a.s Π × λ. Further, under

our assumption
{

fn
y (x) : n ≥ 1

}
is uniformly integrable with respect to Π × λ and

hence EΠ×λ

∣∣∣fn
y (x) − fy (x)

∣∣∣ → 0. Now for each y , by Fatou’s lemma, Eλfy ≤ 1.
On the other hand, EΠ×λf

n
y (x) = 1 for all n, and by the L1-convergence mentioned

earlier, EΠ×λfy (x) = 1. Thus Eλfy = 1 a.e. π and this shows π{L(λ)} = 1.

The next theorem is an application of the last theorem. It shows how, given a
probability measure λ, by suitably choosing both the partitions and the parameter
of the Yεs , we can obtain a prior that concentrates on L(λ).

Theorem 2.4.3. Let λ be a continuous probability distribution on R. Denote by
F the distribution function of λ and construct a partition as follows:

B0 = F−1(0, 1/2] B1 = F−1(1/2, 1]
B00 = F−1(0, 1/4], B01 = F−1(1/4, 1/2] B10 = F−1(1/2, 3/4], B11 = F−1(3/4, 1]

and in general

Bε1,ε2,...,εn = F−1

(
n∑
1

εi

2n
,

n∑
1

εi

2n
+

1
2n

]

Suppose E(Yε) = 1/2 for all ε ∈ E∗ and sup
ε∈En

V (Yε) ≤ bn, with
∑

bn < ∞. Then

the resulting prior satisfies Π(L(λ)) = 1.

Proof. λ(Bε) > 0, because λ(Bε0|Bε) = 1/2, for all Bε. Fix x. If x ∈ Bε1ε2,...εn , then

fn
Y (x) =

n∏
i=0

Y 1−εi
ε1ε2,...εi−1

(1 − Yε1ε2,...εi−1)
εi

1/2

and

E[fn
Y (x)]2 =

n∏
o

4E
[
[Y 2

ε1ε2,...εi−1
]1−εi [(1 − Yε1ε2,...εi−1)

2]εi

]

≤
n∏
0

4ai

where ai = max
(
EY 2

ε1ε2,...εi−1
, E(1 − Yε1ε2,...εi−1)

2
)
. Now
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EY 2
ε1ε2,...εi−1

= V (Yε1ε2,...εi−1) + (1/2)2 ≤ bi + 1/4

and
E

(
1 − Yε1ε2,...,εi−1)

2) ≤ bi + 1/4

Thus
∏n

1 4ai ≤
∏n

1 (1 + 4bi) converges, because
∑

bn < ∞.

2.5 Space of Probability Measures on M(R)

We next turn to a discussion of probability measures on M(R). To get a feeling for
what goes on we begin by asking when are two probability measures Π1 and Π2

equal?
Clearly Π1 = Π2 if for any finite collection B1, B2, . . . , Bk of Borel sets,

(P (B1), P (B2), . . . , P (Bk))

has the same distribution under both Π1 and Π2. This is an immediate consequence
of the definition of BM .

Next suppose that (C1, C2, . . . , Ck) are Borel sets. Consider all intersections of the
form

Cε1
1 ∩ Cε2

2 ∩ · · · ∩ Cεk
k

where εi = 0, 1, C1
i = Ci and C0

i = Cc
i . These intersections would give rise to a

partition of X , and since every Ci can be written as a union of elements of this
partition, the distribution of (P (C1), P (C2), . . . , P (Ck)) is determined by the joint
distribution of the probability of elements of this partition. In other words, if the
distribution of (P (B1), P (B2), . . . , P (Bk)) under Π1 and Π2 are the same for every
finite disjoint collection of Borel sets then Π1 = Π2. Following is another useful
proposition.

Proposition 2.5.1. Let B0 = {Bi : i ∈ I} be a family of sets closed under finite
intersection that generates the Borel σ-algebra B on X . If for every B1, B2, . . . , Bk

in B0, (P (B1), P (B2), . . . , P (Bk)) has the same distribution under Π1 and Π2, then
Π1 = Π2.

Proof. Let B0
M = {E ∈ BM : Π1(E) = Π2(E)}. Then B0

M is a λ-system. For any J
finite subset of I, by our assumption Π1 and Π2 coincide on the σ-algebra BJ

M—the
σ-algebra generated by {P (Bj) : j ∈ J} and hence BJ

M ⊂ B0
M . Further the union of

BJ
M over all finite subsets of I forms a π-system. Because these also generate BM ,

B0
M = BM .
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Remark 2.5.1. A convenient choice of B0 is the collection of all open balls, all closed
balls, etc. When X = R a very useful choice is the collection {(−∞, a] : a ∈ Q}, where
Q is a dense set in R.

As noted earlier M(R) when equipped with weak convergence becomes a complete
separable metric space with BM as the Borel σ-algebra. Thus a natural topology
on M(R) is the weak topology arising from this metric space structure of M(R).
Formally, we have the following definitions.

Definition 2.5.1. A sequence of probability measure {Π}n on M(R) is said to
converge weakly to a probability measure Π if∫

φ(P ) dΠn →
∫

φ(P ) dΠ

for all bounded continuous functions φ on M(R).

Note that continuity of φ is with respect to the weak topology on M(R). If f is a
bounded continuous function on R then φ(P ) =

∫
fdP is bounded and continuous on

M(R) . However in general there is no clear description of all the bounded continuous
functions on M(R). If X is compact metric, then the following description is available.

If X is compact metric then, by Prohorov’s theorem, so is M(X ) under weak
convergence. It follows from the Stone-Weirstrass theorem that the set of all functions
of the form ∑ ki∏

j=1

φri
fi,j

where φri
fi,j

(P ) =
∫

fi,j(x)dP (x) with fi,j(x) continuous on X , is dense in the space of
all continuous functions on M(X ).

The following result is an extension of a similar result in Sethuraman and Tiwari
[149].

Theorem 2.5.1. A family of probability measures {Πt : t ∈ T} on M(R) is tight
with respect to weak convergence on M(R) iff the family of expectations {EΠt : t ∈ T},
where EΠt(B) =

∫
P (B) dΠt(P ), is tight in R.

Proof. Let µt = EΠt . Fix δ > 0. By the tightness of {µt : t ∈ T}, for every positive
integer d there exists a sequence of compact sets Kd in R, such that sup

t
µt(Kc

d) ≤
6δ/(d3π2).
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For d = 1, 2, . . . , let, Md = {P ∈ M(R) : P (Kc
d) ≤ 1/d}, and let M = ∩dMd. Then,

by the pormanteau and Prohorov theorems, M is a compact subset of M(R), in the
weak topology. Further, by Markov’s inequality,

Πn(M c
d) ≤ dEΠt(P (Kc

d))
= dµt(Kc

d)

≤ 6δ
d2π2

Hence, for any t ∈ T, Πt(M) ≤
∑

d 6δ/(d3π2) = δ. This proves that {µt}t∈T is
tight. The converse is easy.

Theorem 2.5.2. Suppose Π, Πn, n ≥ 1 are probability measures on M . If any of
the following holds then Πn converges weakly to Π.

(i) For any (B1, B2, . . . , Bk) of Borel sets

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(ii) For any disjoint collection (B1, B2, . . . , Bk) of Borel sets

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(iii) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (ai, bi],

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(iv) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (ai, bi],ai, bi rationals,

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(v) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (−∞, ti],

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(vi) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k,Bi = (−∞, ti], ti rationals

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))
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Proof. Because (vi) is the weakest, we will show that (vi) implies Πn
weakly→ Π. Note

that for all rationals t, EΠn (P (−∞, t)) → EΠ (P (−∞, t)) and hence EΠn converges
weakly to EΠ. By the Theorem 2.5.1 this shows that {Πn} is tight. If Π∗ is the limit
of any subsequence of {Πn}, then it follows, using Proposition 2.5.1, that Π∗ = Π.

Remark 2.5.2. Note that Πn
weakly→ Π does not imply any of the preceding. The

modifications are easy, however. For example (i) would be changed to “For any
(B1, B2, . . . , Bk) of Borel sets such that (P (B1), P (B2), . . . , P (Bk)) is continuous a.e
Π.”

We have considered other topologies on M(R) namely, total variation, setwise con-
vergence and the supremum metric. It is tempting to consider the weak topologies on
probabilities on M(R) induced by these topologies. But as we have observed, these
topologies possess properties that make the notion of weak convergence awkward to
define and work with. Besides, the σ-algebras generated by these topologies, via either
open sets or open balls do not coincide with BM [57]. Our interests do not demand
such a general theory. Our chief interest is when the limit measure Π is degenerate
at P0, and in this case we can formalize convergence via weak neighborhoods of P0.

When Π = δP0 , Πn
weakly→ δP0 iff Πn(U) → Π(U) for every open neighborhood U .

Because weak neighborhoods of P0 are of the form U = {P :
∣∣∫ fi dP −

∫
fi dP0

∣∣},
weak convergence to a degenerate measure δP0 can be described in terms of continuous
functions of R rather than those on M(R) and can be verified more easily. The next
proposition is often useful when we work with weak neighborhoods of a probability
P0 on R.

Proposition 2.5.2. Let Q be a countable dense subset of R. Given any weak neigh-
borhood U of P0 there exist a1 < a2 . . . < an in Q and δ > 0 such that

{P : |P [ai, ai+1) − P0[ai, ai+1)| < δ for 1 ≤ i ≤ n} ⊂ U

Proof. Suppose U = {P : |
∫

fdP −
∫

fdP0| < ε}, where f is continuous with compact
support. Because Q is dense in R given δ there exist a1 < a2 . . . < an in Q such that
f(x) = 0 for x ≤ a1, x ≥ an, and |f(x) − f(y)| < δ for x ∈ [ai, ai+1], 1 ≤ i ≤ n − 1.
Then the function f ∗ defined by

f ∗(x) = f(ai) for x ∈ [ai, ai+1), i = 1, 2, . . . n − 1

satisfies sup
x

|f ∗(x) − f(x)| < δ.
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For any P ,
∫

f ∗dP =
∑

f(ai)P [ai, ai+1),

|
∫

f ∗dP −
∫

f ∗dP0| < ckδ where c = sup
x

|f(x)|

In addition, if P is in U then we have

|
∫

fdP −
∫

fdP0| < 2δ + ckδ

Thus with Bi = [ai, ai+1] for small enough δ,{P : |P (Bi) − P0(Bi)| < δ} is contained
in U . The preceding argument is easily extended if U is of the form

{P : |
∫

fidP −
∫

fidP0| ≤ εi, 1 ≤ i ≤ k, fi continuous with compact support}

Following is another useful proposition.

Proposition 2.5.3. Let U = {F : sup−∞<x<∞ |F0(s) − F (x)| < ε} be a supre-
mum neighborhood of a continuous distribution function F0. Then U contains a weak
neighborhood of F0.

Proof. Choose −∞ = x0 < x1 < x2 < . . . < xk = ∞ such that F (xi+1) −F (xi) < ε/4
for i = 1, . . . , k − 1. Consider

W = {F : |F (xi) − F0(xi)| < ε/4}, i = 1, 2, . . . , k

If x ∈ (xi−1, xi),

|F (x) − F0(x)| ≤|F (xi−1) − F0(xi)| ∨ |F (xi) − F0(xi−1)|
≤|F (xi−1) − F0(xi−1)| + |F0(xi−1) − F0(xi)|

+ |F (xi) − F0(xi)| + |F0(xi−1) − F0(xi)|

which is less than ε if F ∈ W .
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2.6 De Finetti’s Theorem

Much of classical statistics has centered around the conceptually simplest setting of
independent and identically distributed observations. In this case, X1, X2, . . . are
a sequence of i.i.d. random variables with an unknown common distribution P . In
the parametric case, P would be constrained to lie in a parametric family, and in
the general nonparametric situation P could be any element of M(R). The Bayesian
framework in this case consists of a prior Π on the parameter set M(R); given P
the X1, X2, . . . is modeled as i.i.d. P . In a remarkable theorem, De Finetti showed
that a minimal judgment of exchangeability of the observation sequence leads to the
Bayesian formulation discussed earlier.

In this section we briefly discuss De Finetti’s theorem. A detailed exposition of
the theorem and related topics can be found in Schervish [144] in the section on De
Finetti’s theorem and the section on Extreme models.

As before, let X1, X2, . . . be a sequence of X -valued random variables defined on
Ω = R∞.

Definition 2.6.1. Let µ be a probability measure on R∞. The sequence X1, X2, . . .
is said to be exchangeable if, for each n and for every permutation g of {1, . . . , n}, the
distribution of X1, X2, . . . , Xnis the same as that of Xg(1), Xg(2), . . . , Xg(n).

Theorem 2.6.1 (De Finetti). Let µ be a probability measure on R∞. Then
X1, X2, . . . is exchangeable iff there is a unique probability measure Π on M(R) such
that for all n and for any Borel sets B1, B2, . . . , Bn,

µ {X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn} =
∫

M(R)

n∏
1

P (Bi) dΠ(P ) (2.4)

Proof. We begin by proving the theorem when all the Xis take values in a finite set
X = {1, 2, . . . , k}. This proof follows Heath and Sudderth [95].

So let X = {1, 2, . . . , k} and µ be a probability measure on X ∞ such that X1, X2, . . .
is exchangeable. For each n, let Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk), where rj =

n∑
i=1

I{j}(Xi) is the number of occurrences of js in X1, X2, . . . , Xn. Let µ∗
n denote the

distribution of Tn/n = (r1/n, r2/n, . . . , rk/n) under µ. µ∗
n is then a discrete probability

measure on M(X ) supported by points of the form (r1/n, r2/n, . . . , rk/n), where for
j = 1, 2, . . . , k, rj ≥ 0 is an integer and

∑
rj = n. Because M(X ) is compact, there

is a subsequence {ni} that converges to a probability measure Π on M(X ). We will
argue that Π satisfies (2.4).
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Because X1, X2, . . . , Xn is exchangeable, it is easy to see that the conditional distri-
bution of X1, X2, . . . , Xn given Tn is also exchangeable. In particular, the conditional
probability given Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk) is just the uniform distribution
on T−1

n (r1, r2, . . . , rk). In other words, the conditional distribution of X1, X2, . . . , Xn

given Tn = (r1, r2, . . . , rk) is the same as the distribution of n successive draws from
an urn containing n balls with ri of color i, for i = 1, 2, . . . , k.

Fix m and n > m. Then, given Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk), the conditional
probability that(

X1 = 1, . . . , Xs1 = 1, Xs1+1 = 2, . . . , Xs1+s2 = 2, . . . , Xm−sk−1+1 = k, . . . , Xm = k
)

is (r1)s1(r2)s2 . . . (rk)sk
/(n)m, where for any real a and integer b, (a)b =

∏b−1
0 (a − i).

Because

∑
(r1,r2,...,rk),

∑
rj=n

(r1)s1(r2)s2 . . . (rk)sk

(n)m

µ

(
Tn

n
= (

r1

n
,
r2

n
, . . . ,

rk

n
)
)

=
∫

M(X )

(p1n)s1(p2n)s2 . . . (pkn)sk

(n)m

dµ∗
n(p1, p2, . . . , pk)

As n → ∞ the sequence of functions

(p1n)s1(p2n)s2 . . . (pkn)sk

(n)m

converges uniformly on M(X )to
∏

p
sj

j so that by taking the limit through the sub-
sequence {ni}, the probability of

(Xi = 1, 1 ≤ i ≤ s1; Xi = 2, s1 + 1 ≤ i ≤ s1 + s2, . . . , Xi = k, m − sk−1 + 1 ≤ i ≤ m)

is ∫
M(X )

∏
p

sj

j dΠ(p1, p2, . . . , pk) (2.5)

Uniqueness is immediate because if Π1, Π2 are two probability measures on M(X )
satisfying (2.5) then it follows immediately that they have the same moments.

To move on to the general case X = R, let B1, B2, . . . , Bk be any collection of
disjoint Borel sets in R. Set B0 =

(
∪k

1Bi

)c
.
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Define Y1, Y2, . . . by Yi = j if Xi ∈ Bj. Because X1, X2, . . . is exchangeable, so are
Y1, Y2, . . .. Since each Yi takes only finitely many values, we use what we have just
proved and writing Xi ∈ Bj for Yi = j, there is probability measure ΠB1,B2,...,Bk

on
{p1, p2, . . . , pk : pj ≥ 0,

∑
pj ≤ 1} such that for any m,

µ (X1 ∈ Bi1, X2 ∈ Bi2, . . . , Xm ∈ Bim) =
∫ m∏

1

P (Bij) dΠB1,B2,...,Bk
(P ) (2.6)

where i1, i2, . . . , im are all elements of {0, 1, 2, . . . , k} and P (B0) = 1 −
∑k

1 P (Bi).
We will argue that these ΠB1,B2,...,Bk

s satisfy the conditions of Theorem 2.3.4.
If A1, A2, . . . , Al is a collection of disjoint Borel sets such that Bi are union of sets

from A1, A2, . . . , Al then the distribution of P (B1), P (B2), . . . , P (Bk) obtained from
P (A1), P (A2), . . . , P (Al) and ΠB1,B2,...,Bk

both would satisfy (2.5). Uniqueness then
shows that both distributions are same.

If (B1n, B2n, . . . , Bkn) → (B1, B2, . . . , Bk) then (2.6) again shows that moments of
ΠB1n,B2n,...,Bkn

converges to the corresponding moment of ΠB1,B2,...,Bk
.

It is easy to verify the other conditions of Theorem 2.3.4. Hence there exists a Π
with ΠB1,B2,...,Bk

s as marginals. It is easy to verify that Π satisfies (2.4).

De Finetti’s theorem can be viewed from a somewhat general perspective. Let Gn

be the group of permutations on {1, 2, . . . , n} and let G = ∪Gn. Every g ∈ G induces
in a natural way a transformation on Ω = X ∞ through the map, if, say g in Gn, then
(x1, . . . , xn, . . .) �→ (xg(1), . . . , xg(n), . . .). It is easy to see that the set of exchangeable
probability measures is the same as the set of probability measures on Ω that are
invariant under G. This set is a convex set, and De Finetti’s theorem asserts that the
set of extreme points of this convex set is {P∞ : P ∈ M(X )} and that every invariant
measure is representable as an average over the set of extreme points. This view of
exchangeable measures suggests that by suitably enlarging G it would be possible
to obtain priors that are supported by interesting subsets of M(X ) . Following is a
simple, trivial example.

Example 2.6.1. Let H = {h, e}, where h(x) = −x and e(x) = x. Set H =
∪Hn. If (h1, h2, . . . , hn)) ∈ Hn, then the action on Ω is defined by (x1, x2, . . . , xn) �→
(h(x1), h(x2), . . . , h(xn). Then an exchangeable probability measure µ is H invariant
iff it is a mixture of symmetric i.i.d. probability measures. To see this by De Finetti’s
theorem

µ(A) =
∫

P∞(A)dΠ(P )
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Because by H invariance µ (X1 ∈ A, X2 ∈ −A) = µ (X1 ∈ A, X2 ∈ A), it is not hard
to see that EΠ(P (A) − P (−A))2 = 0. Letting A run through a countable algebra
generating the σ-algebra on X , we have the result.

More non trivial examples are in Freedman [68]
Sufficiency provides another frame through which De Finetti’s theorem can be use-

fully viewed. The ideas leading to such a view and the proofs involve many measure-
theoretic details. Most of the interesting examples involve invariance and sufficiency
in some form. We do not discuss these aspects here but refer the reader to the excel-
lent survey in Schervish [144], the paper by Diaconis and Freedman [[44]] and Fortini,
Ladelli, and Regazzini [67].

To use DeFinetti’s theorem to construct a specific prior on M(R), we need to know
what to expect from the prior in terms of the observables X1, X2, . . . , Xn. Although
this method of assigning a prior is attractive from a philosophical point of view, it
is not easy to either describe explicitly an exchangeable sequence or identify a prior,
given such a sequence. We will not pursue this aspect here.



3
Dirichlet and Polya tree process

3.1 Dirichlet and Polya tree process

In this chapter we develop and study a very useful family of prior distributions on
M(R) introduced by Ferguson [61]. Ferguson introduced the Dirichlet processes, un-
covered many of their basic properties, and applied them to a variety of nonparametric
estimation problems, thus providing for the first time a Bayesian interpretation for
some of the commonly used nonparametric procedures. These priors are relatively
easy to elicit. They can be chosen to have large support and thus capture the non-
parametric aspect. In addition they have tractable posterior and nice consistency
properties. These processes are not an answer to all Bayesian nonparametric or semi-
parametric problems but they are important as both a large class of interpretable
priors and a point of departure for more complex prior distributions.

The Dirichlet process arises naturally as an infinite-dimensional analogue of the
finite-dimensional Dirichlet prior, which in turn has its roots in the one-dimensional
beta distribution . We will begin with a review of the finite-dimensional case.

3.1.1 Finite Dimensional Dirichlet Distribution

In this section we summarize some basic properties of the Dirichlet distribution,
especially those that arise when the Dirichlet is viewed as a prior on M(X ) -the set of
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probability measures on X . Details are available in many standard texts, for example
Berger [13].

First consider the simple case when X = {1, 2}. Then

M(X ) =
{
p = (p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1

}
Because p2 = 1 − p1 and 0 ≤ p1 ≤ 1, any probability measure on [0, 1] defines
a prior distribution on M(X ). In particular say that p has a beta(α1, α2) prior if
α1 > 0, α2 > 0 and if the prior has the density

Π(p1) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

pα1−1
1 (1 − p1)α2−1 0 ≤ p1 ≤ 1

It is easy to see that
E(p1) =

α1

α1 + α2

V (p1) =
α1(α1 + 1)

(α1 + α2)(α1 + α2 + 1)
−

(
α1

(α1 + α2)

)2

=
α1α2

(α1 + α2)2(α1 + α2 + 1)

We adopt the convention of setting the beta prior to be degenerate at p1 = 0 if
α1 = 0 and degenerate at p2 = 0 if α2 = 0. Note that the convention goes well with
the expression for E(p1). In fact the following proposition provides more justification
for this convention.

Proposition 3.1.1. If α1n → 0 and α2n → c, 0 < c < ∞, then beta(α1n, α2n)
converges weakly to δ0.

Proof. If pn is distributed as beta(α1n, α2n), then Epn → 0, V (pn) → 0 and hence
pn → 0 in probability.

The following representation of the beta is useful and well known. Let Z1, Z2 be
independent gamma random variables with parameters α1, α2 > 0, i.e., the density is
given by

f(zi) =
1

Γ(αi)
e−zizαi−1

i zi > 0

then Z1/(Z1 + Z2) is independent of Z1 + Z2 and is distributed as beta(α1, α2).
If we define a gamma distribution with α = 0 to be the measure degenerate at 0,

then the representation of beta random variables remains valid for all α1 ≥ 0, α2 ≥ 0
as long as one of them is strictly positive.
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Suppose X1, X2, . . . , Xn are X -valued i.i.d. random variables distributed as p , then
beta priors are conjugate in the sense that if p has a beta(α1, α2) prior distribution
then the posterior distribution is also a beta, with parameters α1 +

∑
δXi

(1) and
α2 +

∑
δXi

(2), where δx stands for the degenerate measure δx(x) = 1. Moreover, the
marginal distribution of X1, X2, . . . , Xn is exchangeable with marginal probability
λ(X1 = i) = αi/(α1 + α2).

Next we move on to the case where X = {1, 2, . . . , k, }. The set M(X ) of probability
measures on X , is now in 1-1 correspondence with the simplex

Sk =
{

p = (p1, p2, . . . , pk−1) : pi ≥ 0 for i = 1, 2, . . . , k − 1,
∑

pi ≤ 1
}

and as before we set pk = 1−
∑k−1

1 pi. A prior is specified by specifying a probability
distribution for (p1, p2, . . . , pk−1). This distribution determines the joint distribution of
the 2k vectors {P (A) : A ⊂ X} through P (A) =

∑
i∈A

pi. The k- dimensional Dirichlet

distribution is a natural extension of the beta distribution.

Definition 3.1.1. Let α = (α1, α2, . . . , αk) with αi > 0 for i = 1, 2, . . . , k. p =
(p1, p2, . . . , pk) is said to have Dirichlet distribution with parameter (α1, α2, . . . , αk),
if the density is

Π(p1, p2, . . . , pk−1) =
Γ(

∑k
1 αi)

Γ(α1)Γ(α2), . . . , Γ(αk)
pα1−1

1 pα2−1
2 p

αk−1−1
k−1 (1 −

k−1∑
1

pi)αk−1

for (p1, p2, . . . , pk−1) in Sk.

(3.1)

Convention If any αi = 0, we still a define a Dirichlet by setting the corresponding
pi = 0 and interpreting the density (3.1.1) as a density on a lower-dimensional set.

The Dirichlet distribution with the vector (α1, α2, . . . , αk) as parameter will be
denoted by D (α1, α2, . . . , αk). So we have a Dirichlet distribution defined for all
(α1, α2, . . . , αk) , as long as

∑
αi > 0. Following are some properties of the Dirichlet

distribution.
Properties.

1. Like the beta distribution, Dirichlet distributions admit a useful representation
in terms of gamma variables. If Z1, Z2, . . . , Zk are independent gamma random
variables with parameter αi ≥ 0, then
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(a) ⎛
⎜⎜⎜⎜⎝

Z1
k∑
1

Zi

,
Z2
k∑
1

Zi

, . . . ,
Zk

k∑
1

Zi

⎞
⎟⎟⎟⎟⎠ (3.2)

is distributed as D (α1, α2, . . . , αk);

(b) ⎛
⎜⎜⎜⎜⎝

Z1
k∑
1

Zi

,
Z2
k∑
1

Zi

, . . . ,
Zk

k∑
1

Zi

⎞
⎟⎟⎟⎟⎠ (3.3)

is independent of
k∑
1

Zi and

(c) If p = (p1, p2, . . . , pk) is distributed as D (α1, α2, . . . , αk), then for any
partition A1, A2 . . . , Am of X , the vector (P (A1), P (A2), . . . , P (Am)) =(∑

i∈A1

pi,
∑
i∈A2

pi, . . . ,
∑
i∈Am

pi

)
is a D (α′

1, α
′
2, . . . , α

′
k)

where α′
i =

∑
j∈Ai

αj. In particular, the marginal distribution of pi is beta with

parameters (αi,
∑
i
=j

αj).

This property suggests that it would be convenient to view the parameter
(α1, α2, . . . , αk) as a measure α(A) =

∑
i∈A

αi. Thus every non-zero measure α on

X defines a Dirichlet distribution and the last property takes the form

(P (A1), P (A2), . . . , P (Am)) is D (α(A1), α(A2), . . . , α(Am))

2. (Tail Free Property) Let M1, M2, . . . , Mk be a partition of X . For i = 1, 2, . . . , k
with α(Mi) > 0, let P (.|Mi) be the conditional probability given Mi defined by

P (j|Mi) =
P (j)

P (Mi)
: for j ∈ Mi
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If α(Mi) = 0 then take P (.|Mi) to be an arbitrary fixed probability for all P .

If P the probability on X is D(α) then

(i) (P (M1), P (M2), . . . , P (Mk)) , P (.|M1), P (.|M2), . . . , P (.|Mk) are indepen-
dent;

(ii) if α(Mi) > 0 then P (.|Mi) is D(αMi
), where αMi

is the restriction of α to
Mi, and

(iii) (P (M1), P (M2), . . . , P (Mk)) is Dirichlet with parameter
(α(M1), α(M2), . . . , α(Mk))

To see this, let X = {1, 2, . . . , n} and let {Yi : 1 ≤ i ≤ n} be independent
gamma random variables with parameter α(xi). The gamma representation of
the Dirichlet immediately shows that

P (.|M1), P (.|M2), . . . , P (.|Mk) (3.4)

are independent. Further if Zj =
∑

i∈Mj
Yi, then

Z1, Z2, . . . , Zk

are independent, and using (3.4) it is easy to see that (Z1, Z2, . . . , Zk) and hence∑
j Zj is independent of

P (.|M1), P (.|M2), . . . , P (.|Mk)

Because P (Mj) = Zj/
∑

j Zj the result follows.

3. (Neutral to the right property) Let B1 ⊃ B2 ⊃ . . . Bk. Then we have the
independence relations given by

P (B1)⊥P (B2|B1)⊥ . . . ⊥P (Bk|Bk−1)

This follows from the tail free property by successively considering partitions
B1, B

c
1;

Bc
1, B2, B1 ∩ Bc

2; . . .

4. Let α1, α2 be two measures on X and P1, P2 be two independent k-dimensional
Dirichlet random vectors with parameters α1, α2. If Y independent of P1, P2 is
distributed as beta(α1(X ), α2(X )), then Y P1 + (1 − Y )P2 is D(α1 + α2).
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To see this, let Z1, Z2, . . . , Zk be independent random variables with Zi ∼
gamma(α1{i}). Similarly for i = 1, 2, . . . k let Zk+i ∼ Gamma(α2{i}) be inde-

pendent gamma random variables. Then∑k
1 Zi∑2k
1 Zi

(
Z1∑k
1 Zi

, . . . ,
Zk∑k
1 Zi

)
+

∑k
k+1 Zi∑2k
1 Zi

(
Zk+1∑k

1 Zi

, . . . ,
Z2k∑k

1 Zi

)

has the same distribution as Y P1 + (1 − Y )P2. But then the last expression is
equal to (

Z1 + Zk+1∑k
1 Zi

, . . . ,
Zk + Z2k∑k

1 Zi

)

which is distributed as D(α1 + α2). Note that the assertion remains valid even
if some of the α1{i}, α2{j} are zero. An interesting consequence is: If P is D(α)
and Y is independent of P and distributed as Beta(c, α(X )), then

Y δ(1,0,...,0) + (1 − Y )P ∼ D(α{1} + c, α{2}, . . . , α{k})

This follows if we think of δ1,0,...,0 as Dirichlet with parameter (c, 0, . . . , 0). A
corresponding statement holds if (1, 0, . . . , 0) is replaced by any vector with a 1
at one coordinate and 0 at the other coordinates.

5. For each p in M(X ) , let X1, X2, . . . , Xn be i.i.d. P and let P itself be D(α).
Then the likelihood is proportional to

k∏
1

pαi−1+ni
i

where ni = #{j : Xj = i}. Hence the posterior distribution of P given
X1, X2, . . . , Xn can be conveniently written as D(α +

∑
δXi

).

6. The marginal distribution of each Xi is ᾱ where ᾱ(i) = α(i)/α(X ) and also
E(P ) = ᾱ. To see this, note that for each A ⊂ X , P (A) is beta(α(A), α(Ac))
and hence E(P (A) = α(A)/(α(A) + α(Ac)).

Property 5 immediately leads to

7.

D(α) (P ∈ C) =
k∑
1

α(i)
α(X )

D(α + δi)(C)
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This follows from D(α) (P ∈ C) = E (E(P ∈ C|X1)); E(P ∈ C|X1) is by prop-
erty 5, D(α + δX1)(C), and the marginal of X1 is ᾱ.

8. Let P be distributed as D(α) and X independent of P be distributed as ᾱ.
Let Y be independent of X and P be a beta(1, α(X )) random variable. Then
Y δX + (1 − Y )P is again a D(α) random probability.

This follows from properties 4 and 7 by conditioning on x = i, interpreting δi

as a D(δi) distribution, and then using properties 4 and 7.

9. The predictive distribution of Xn+1 given X1, X2, . . . , Xn is

α +
∑n

1 δXi

α(X ) + n

10. α1 �= α2 implies D(α1) �= D(α2), except when α1, α2 are degenerate and put all
their masses at the same point.

This can be verified by choosing an i such that α1(i) �= α2(i). Then P (i) has a
nondegenerate beta distribution under at least one of α1, α2. Next use the fact
that a beta distribution is determined by its first two moments.

11. It is often convenient to write a finite measure α on X as α = cᾱ, where ᾱ is
a probability measure. Let αn = cnᾱn be a sequence of measures on X . Then
D(cnᾱn) is a sequence of probability measures on the compact set Sk and hence
has limit points. The following convergence results are useful.

(a) If ᾱn → ᾱ and cn → c, 0 < c < ∞, then D(cnᾱn) → D(cᾱ) weakly.
If ᾱ{i} > 0 for all i, then the density of D(cnᾱn) converges to that of
D(cᾱ). If ᾱ{i} = 0 for some of the is, then the result can be verified by
showing that the moments of D(cnᾱn) converge to the moments of D(cᾱ).

(b) Suppose that ᾱn → ᾱ and cn → 0. Then D(cnᾱn) converges weakly to the
discrete measure µ which gives mass ᾱi to the probability degenerate at i.
To see this note that ED(cnᾱn)pi = ᾱn{i} → ᾱ{i}, and it follows from
simple calculations that ED(cnᾱn)p

2
i also converges to ᾱ{i}. Thus each pi is

0 or 1 almost surely with respect to any limit point of D(cnᾱn). In other
words, any limit point of D(cnᾱn) is a measure concentrated on the set of
degenerate probabilities on X . It is easy to see that any two limit points
have the same expected value and this together with the fact that they are
both concentrated on degenerate measures shows that D(cnᾱn) converges.
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(c) ᾱn → ᾱ and cn → ∞. In this case also, ED(cnᾱn)pi converges to ᾱ{i}.
However V arD(cnᾱn)pi → 0, and hence D(cnᾱn) converges to the measure
degenerate at ᾱ.

3.1.2 Dirichlet Distribution via Polya Urn Scheme

The following alternative view of the Dirichlet process is both interesting and a pow-
erful tool. For a recent use of this approach, see Mauldin et al.[133].

Consider a Polya urn with α(X ) balls of which α(i) are of color i; i = 1, 2, . . . , k.[For
the moment assume that α(i) are whole numbers or 0]. Draw balls at random from
the urn, replacing each ball drawn by two balls of the same color. Let Xi = j if the i
th ball is of color j. Then

P (X1 = j) =
α(j)
α(X )

(3.5)

P (X2 = j|X1) =
α(j) + δX1(j)

α(X ) + 1
(3.6)

and in general

(3.7)

P (Xn+1 = j|X1, X2, . . . , Xn) =
α(j) +

∑n
1 δXi

(j)
α(X ) + n

(3.8)

Thus we are reproducing the joint distribution of X1, X2, . . . that would be ob-
tained from property 9 in the last section. The joint distribution of X1, X2, . . . is
exchangeable. In fact, if λα denotes the joint distribution

λα (X1 = x1, X2 = x2, . . . , Xn = xn)

=
α(x1)
α(X )

n−1∏
i=1

α + δ∑i−1
1 xj∏i−1

1 (α(X ) + j)
(xi+1)

setting ni = #{Xj = i}

=
{α(1)(α(1) + 1) . . . (α(1) + n1 − 1)} {α(2)(α(2) + 1) . . . (α(2) + n2 − 1)} . . .

α(X )(α(X ) + 1) . . . (α(X ) + n − 1)

=
[α(1)][n1] . . . [α(k)][nk]

[α(X )][n]

(3.9)
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where m[n] is the ascending factorial given by m[n] = m(m + 1) . . . (m + n − 1).
It is clear that (3.5) defines successive conditional distributions even when α{i} is

not an integer but only ≥ 0. The scheme (3.5) thus leads to a sequence of exchangeable
random variables and the corresponding mixing measure Π coming out of De Finetti’s
theorem is precisely Dα. What we need to show is that if Dα is the prior on M(X ) and
if given P , X1, X2, . . . are i.i.d P , then the sequence X1, X2, . . . has the distribution
given in (3.9). In fact, (3.9) is equal to

∫
M(X )

[P (1)]n1 . . . [P (k)]nk Dα(dP )

which is equal to ∫
M(X )

[P (1)]n1 . . . [P (k)]nk Π(dP )

Since the finite-dimensional Dirichlet is determined by its moments, this shows Π =
Dα.

The posterior given X1, X2, . . . , Xn can also be recovered from this approach. For
a given X1, (3.5) defines a scheme of conditional distributions with α replaced by
α + δX1 . Once again DeFinetti’s theorem leads to the prior D(α + δX1), this is also
the posterior given X1.

We end this section with the question of interpretation and elicitation of α. From
property 6, ᾱ = α(·)/α(X ) = E(P ). So ᾱ is the prior guess about the expected P .

If we rewrite property 10 in terms of the Bayes estimate E(pi|X1, X2, . . . , Xn) of pi

given X1, X2, . . . , Xn

E(pi|X1, X2, . . . , Xn) =
α(X )

α(X ) + n
ᾱ(i) +

n

α(X ) + n
(
ni

n
)

which shows the Bayes estimate can be viewed as a convex combination of the “prior
guess” and the empirical proportion. Because the weight of the “prior guess” is de-
termined by α(X ), this suggests interpreting α(X ) as a measure of strength of the
prior belief. This ease in interpretation and elicitation is a consequence of the fact
that Dirichlet is a conjugate prior for i.i.d. sampling from X . We will show that all
these properties hold when X =R. The fact that variability of P is determined by a
single parameter α(X ) can be a problem when k > 2.
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3.2 Dirichlet Process on M(R)

3.2.1 Construction and Properties

Dirichlet process priors are a natural generalization to M(R) of the finite-dimensional
distributions considered in the last section. Let (R, B) be the real line with the Borel
σ-algebra B and let M(R) be the set of probability measures on R, equipped with
the σ-algebra BM .

The next theorem asserts the existence of a Dirichlet process and also serves as a
definition of the process Dα.

Theorem 3.2.1. Let α be a finite measure on (R, B). Then there exists a unique
probability measure Dα on M(R) called the Dirichlet process with parameter α sat-
isfying

For every partition B1, B2, . . . , Bk of R by Borel sets
(P (B1), P (B2) . . . , P (Bk)) is D (α(B1), α(B2) . . . , α(Bk))

Proof. The consistency requirement in Theorem 2.3.4 follows from property 2 in the
last section. Continuity requirement 3 follows from the fact that if Bn ↓ B then
α(Bn) ↓ α(B) and from property 11 of the last section.

Note that finite additivity of α is enough to ensure the consistency requirements.
The countable additivity is required for the continuity condition.

Assured of the existence of the Dirichlet process, we next turn to its properties.
These properties motivate other constructions of Dα via De Finetti’s theorem and an
elegant construction due to Sethuraman. These constructions are not natural unless
one knows what to expect from a Dirichlet process prior.

If P ∼ D(α), then it follows easily that E(P (A)) = ᾱ(A) = α(A)/α(R). Thus one
might write E(P ) = ᾱ as the prior expectation of P .

Theorem 3.2.2. For each P in M(R), let X1, X2, . . . , Xn be i.i.d. P and let P
itself be distributed as Dα, where α is finite measure. (A version of) the posterior
distribution of P given X1, X2, . . . , Xn is Dα+

∑n
1 δXi

.

Proof. We prove the assertion when n = 1; the general case follows by repeated
application. A similar proof appears in Schervish[144].

To show that Dα+δX
is a version of the posterior given X, we need to verify that

for each B ∈ B and C a measurable subset of M(R),∫
B

Dα+δx(C) ᾱ(dx) =
∫

C

P (B) Dα(dP )
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As C varies each side of this expression defines a measure on M(R), and we shall argue
that these two measures are the same. It is enough to verify the equality on σ-algebras
generated by functions P �→ (P (B1), P (B2) . . . , P (Bk)), where B1, B2, . . . , Bk is a
measurable partition of R. We do this by showing that the moments of the vector
(P (B1), P (B2) . . . , P (Bk)) are same under both measures.

First suppose that α(Bi) > 0 for i = 1, 2, . . . , k. For any nonnegative r1, r2, . . . , rn,
look at

∫
B

[∫ k∏
1

[P (Bi)]
ri Dα+δx(dP )

]
ᾱ(dx) (3.10)

If we denote by Dα′+δi
and Dα′ the k-variate Dirichlet distributions with parameters

(α(B1), . . . , α(Bi) + 1, . . . , α(Bk)) and (α(B1), . . . , α(Bi), . . . , α(Bk)), then (3.10) is
equal to

k∑
1

α(B ∩ Bi)
α(B)

∫
yr1

1 . . . yri
i . . . yrn

k Dα′+δi
(dy1 . . . dyk−1).

which in turn is equal to

=
k∑
1

α(B ∩ Bi)
α(B)

∫
yr1

1 . . . yri+1
i . . . yrn

k Dα′(dy1 . . . dyk−1).

On the other hand because P (B) =
∑

P (B ∩ Bi),∫ k∏
1

[P (Bi)]
ri P (B)Dα(dP )

=
k∑
1

∫ k∏
1

[P (Bi)]
ri P (B ∩ Bi)Dα(dP )

=
k∑
1

∫
P (B1)r1 . . . P (Bi)ri+1 . . . P (Bk)rk . . .

P (B ∩ Bi)
P (Bi)

Dα(dP )

Since P (B∩Bi)
P (Bi)

is a Beta random variable and independent of (P (B1), P (B2) . . . , P (Bk)) ,
the preceding equals

k∑
1

α(Bi) ∩ B

α(B)

∫
P (B1)r1 . . . P (Bi)ri+1 . . . P (Bk)rk . . . Dα(dP )
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which is equal to the expression obtained earlier. To take care of the case when some
of the α(Bi) may be 0, consider the simple case when, say α(B1) = 0, r1 > 0 and the
rest of the α(Bi) are positive. In this case

∫
B

[∫ k∏
1

[P (Bi)]
ri Dα+δx(dP )

]
ᾱ(dx) = 0

Because in
∑k

1(α(B∩Bi)/α(B))
∫

yr1
1 . . . yri

i . . . yrn
k Dα′+δi

(dy1 . . . dyk−1), α(B∩B1) =
0 and for i �= 1, y1 = 0 a.e.Dα′+δi

,∫
yr1

1 . . . yri
i . . . yrn

k Dα′+δi
(dy1 . . . dyk−1) = 0

A Similar argument applies when α(Bi) is 0 for more than one i.

Remark 3.2.1 (Tail Free Property). Fix a partition B1, B2, . . . , Bk of X . Consider a
sequence {T}n:n≥1 of nested partitions with T

1
= {B1, B2, . . . , Bk} and σ{{T}n:n≥1} =

B. Then Dα is tail free with respect to this partition. And we leave it to the reader
to verify that with Dirichlet as the prior and with given P , X ∼ P ,

(P (B1), P (B2) . . . , P (Bk)) and X

are conditionally independent given {IBi
(X); 1 ≤ i ≤ k}. Consequently, the condi-

tional distribution of the vector (P (B1), P (B2) . . . , P (Bk)) given T
n

is the same for
all n and is equal to the marginal distribution of

(P (B1), P (B2) . . . , P (Bk))

under the measure Dα+δX
.

The last remark provides an alternative and more natural approach to demonstrate
that Dα+δX

is indeed the posterior given X. For, by the martingale convergence
theorem, the conditional distribution of (P (B1), P (B2) . . . , P (Bk)) given T

n
converges

to the conditional distribution of (P (B1), P (B2) . . . , P (Bk)) given X, and this limit
is the marginal distribution of the vector (P (B1), P (B2) . . . , P (Bk)) arising out of
Dα+δX

. This is true for any partition B1, B2, . . . , Bk and since a measure on M(R)
is determined by the distribution of finite partitions, we can conclude that Dα+δX

is
indeed the posterior.
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Remark 3.2.2 (Neutral to the Right property). Another useful independence prop-
erty follows immediately from Property 4 of the last section. If t1 < t2, . . . < tk,
then

(1 − F (t1)),
1 − F (t2)
1 − F (t1)

, . . . ,
1 − F (tk)

1 − F (tk−1)

are independent.

Many of the properties of the Dirichlet process on M(R) either easily follow from,
or are suggested by the corresponding property for the finite-dimensional Dirichlet
distribution. One major difference is that in the case of M(R) the measure α can be
continuous. This leads to some interesting consequences, some of which are explored
next.

Denote by λα the joint distribution of P, X1, X2, . . . . Suppose P ∼ D(α) and given
P , X1, X2, . . . are i.i.d. P . From Theorem 3.2.2 it immediately follows that the
predictive distribution of Xn+1 given X1, X2, . . . , Xn is

α +
∑n

1 δXi

α(R) + n

and hence that
X1 is distributed as ᾱ
Conditional distribution of X2 given X1 is α+δX1

α(R)+1

Conditional distribution of X3 given X1, X2 is α+δX1+δX2
α(R)+2

Conditional distribution of Xn+1 given X1, X2, . . . , Xn isα+
∑n

1 δXi

α(R)+n
, etc.

Suppose that α is a discrete measure and let X0 be the countable subset of R such
that α(X0) = α(R) and α{x} > 0 for all x ∈ X0. Dα can then be viewed as a prior
on M(X0). Further the joint distribution of X1, X2, . . . , Xn can be written explicitly.

For each (x1, x2, . . . , xn) and for each x ∈ X0, let n(x) be the number of is such
that xi = x. Note that n(x) is nonzero for at most n many xs. If αn denotes the joint
distribution of X1, X2, . . . , Xn, then

αn(x1, x2, . . . , xn) =
∏

x∈X0

α(x)[n(x)] (3.11)

where a[b] = a(a + 1) . . . (a + b − 1).
The case when α is continuous is a bit more involved. Even if α has density with

respect to Lebesgue measure, for n ≥ 2, because P{X1 = X2} �= 0, α2 is no longer
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absolutely continuous with respect to the two-dimensional Lebesgue measure. To see
this formally, note that

α2 {X1 = X2} =
∫

(α + δx1)
α(R) + 1

{x1} dᾱ(x1) =
1

α(R) + 1

On the other hand the Lebesgue measure of {(x, x) : x ∈ R} is 0.
While αn is not dominated by the n-dimensional Lebesgue measure, it is dominated

by a measure λ∗
n composed of Lebesgue measure in lower-dimensional spaces, and with

respect to this measure, it is possible to obtain a fairly explicit form of the density
of αn. We will look at the case n = 3 in some detail and then extend these ideas to
general n.

We will begin by calculating αn(A × B × C) when α is a continuous measure. Let

R1,2,3 = {(x1, x2, x3) : x1, x2, x3 are all distinct }

Then

α3 ((A × B × C) ∩ R1,2,3)
= α3 {X1 ∈ A, X2 ∈ B − {X1}, X3 ∈ C − {X1, X2}}

=
α(A)
α(R)

α(B)
(α(R) + 1)

α(C)
(α(R) + 2)

where the last equality follows from the fact that for each x1, by continuity of α,
α(B − {x1}) = α(B) and δx1(B − {x1}) = 0. Consequently

Pr{X2 ∈ B − {x1} =
[α + δx1 ]
α(R) + 1

(B − {x1}) =
α(B)

α(R) + 1

Similarly for Pr{X3 ∈ C − {x1, x2}.
Next, let

R12,3 = {(x, x, x3) : x �= x3}

Then

α3 ((A × B × C) ∩ R12,3)
= α3 {X1 ∈ A, X2 = {X1}, X3 ∈ C − {X1}}
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Because Pr{X2 = x|X1 = x} = [α + δx] /(α(R) + 1)({x}) = 1/(α(R) + 1), again by
continuity of α, we have the preceding is equal to

α(A ∩ B)
α(R)

1
(α(R) + 1)

α(C)
(α(R) + 2)

Similarly, if
R13,2 = {(x, x2, x) : x �= x2}

then by exchangeability

αn (A × B × C ∩ R13,2) = αn (A × C × B ∩ R12,3)

=
α(A ∩ C)

α(R)
1

(α(R) + 1)
α(B)

(α(R) + 2)

A similar expression holds for R1,23.
Let R123 = {(x, x, x)}. Then A × B × C ∩ R123 = {(x, x, x)x ∈ A ∩ B ∩ C}. We

then have

αn (A × B × C ∩ R123) =
2α(A ∩ B ∩ C)

α(R)
1

(α(R) + 1)
α(B)

(α(R) + 2)
where the factor 2 in the numerator arises from P (X3 = x|X1 = X2 = x) = (δx +
δx)α(B)/(α(R)(α(R) + 1)(α(R) + 2))(x).

Suppose that α has a density α̃ with respect to Lebesgue measure. Define a measure
λ∗

3 as follows:
λ∗

3 restricted to R1,2,3 is the three-dimensional Lebesgue measure
λ∗

3 restricted to R12,3 is the two-dimensional Lebesgue measure obtained from R2 via
the map (x, y) �→ (x, x, y).
Define the restriction on R1,23 and R13,2 similarly.
λ∗

3 restricted to R12,3 is the one-dimensional Lebesgue measure obtained from x �→
(x, x, x).

Note that the function on R1,2,3 defined by

α̃3(x1, x2, x3) =
α̃(x1)α̃(x2)α̃(x3)

α(R)(α(R) + 1)(α(R) + 2)

when viewed as a density with respect to λ∗
3 restricted to R1,2,3 gives, for any (A ×

B × C), αn (A × B × C ∩ R1,2,3). Similarly the function on R12,3 defined by

α̃3(x1, x1, x3) =
α̃(x1)α̃(x3)

α(R)(α(R) + 1)(α(R) + 2)
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corresponds to the density of α3 with respect to λ∗
3 restricted to R12,3 and

α̃3(x1, x1, x1) =
2α̃(x1)

α(R)(α(R) + 1)(α(R) + 2)

corresponds to the density of α3 with respect to λ∗
3 restricted to R123.

The general case is similar but notationally cumbersome. For a partition {C1, . . . , Ck}
of {1, 2, . . . , n}, let

RC1,C2,...,Ck
= {(x1, x2, . . . , xn) : xi = xj iff i, j ∈ Cm for some m, 1 ≤ m ≤ k}

The measure λ∗
n is defined by setting its restriction on RC1,C2,...,Ck

to be the k-
dimensional Lebesgue measure. As before if we set I1 = 1 and{

Ij = 1 if , xj �∈ {x1, x2, . . . , xn}
0 otherwise.

the density of αn with respect to λ∗
n on RC1,C2,...,Ck

is given by

α̃n(x1, x2, . . . , xn) =

∏
j α̃(xj)Ij(ej − 1)!

(α(R))[n] (3.12)

where ej = #cj.
The verification follows essentially the same ideas, for example

αn(A1 × A2 × . . . × An ∩ RC1,C2,...,Ck
) =

α(B1)α(B2) . . . α(Bk)
(α(R))[n]

where Bj = ∩i∈Cj
Ai.

Theorem 3.2.3. Dα {P : P is discrete } = 1.

Proof. Let Ẽ = {(P, x) : P{x} > 0}. Note that P is a discrete probability measure if∑
{x:(P,x)∈Ẽ} P (x) = 1. We saw in the last chapter that Ẽ is a measurable set. Let

Ẽx = {P : P{x} > 0} ẼP = {x : P{x} > 0}

Then

λα(Ẽ) =Eλα

(
λα(Ẽ|X1

)
= Eλα

(
λα(ẼX1 |X1

)
= Eλα

(
Dα+δX1

(ẼX1

)
= 1
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Because P{x1} is beta with positive parameter α{x1}+1, P{x1} > 0 with probability
1. Now

λα(Ẽ) = Eλα

(
λα(Ẽ|P

)
= Eλα

(
P (ẼP )

)
= 1

so P (ẼP ) = 1 almost everywhere Dα.

The preceding proof is based on a presentation in Basu and Tiwari[10] . A variety of
proof for this interesting fact is available. See Blackwell & Mcqueen [25], and Blackwell
[23], Berk and Savage [17]. Another nice proof is due to Hjort [99]

3.2.2 The Sethuraman Construction

Sethuraman [148] introduced and elaborated on a useful and clever construction of
Dα, which provides insight into these processes and helps in simulation of the process.

As before let α be a finite measure and ᾱ = α/α(R). Let Ω be a probability space
with a probability µ such that

θ1, θ2, . . . defined on Ω are i.i.d. beta(1, α(R))

Y1, Y2, . . . are also defined on Ω such that they are i.i.d. ᾱ and independent of the θis

Set p1 = θ1 and for n ≥ 2, let pn = θn

∏n−1
1 (1 − θi). Easy computation shows that

∞∑
1

pn = 1 almost surely. Now define an M(R) valued random variable on Ω by

P (ω,A) =
∞∑
1

pn(ω)δYn(ω)(A) (3.13)

Because
∞∑
1

pn = 1, the function ω �→ P (ω, ·) takes values in M(X ). It is not

hard to see that this map is also measurable. This random measure is a discrete
measure that puts weight pi on Yi. Sethuraman showed that this random measure is
distributed as Dα. Formally, if Π is the distribution of ω �→ P (ω, ·) then Π = Dα. We
will establish this by showing that for every partition B1, B2, . . . , Bk of R by Borel
sets (P (ω,B1), P (ω,B2), . . . , P (ω,Bk)) is distributed as D(α(B1), . . . , α(Bk)).

Denote by δk
Yi

the element of Sk given by (IB1(Yi), IB2(Yi), . . . , IBk
(Yi)). Then for

each ω, (P (ω,B1), P (ω,B2), . . . , P (ω,Bk)) can be written as
∑∞

1 pi(ω)δk
Yi(ω).

Let P be an Sk valued random variable, independent of the Y s and θs, and dis-
tributed as D(α(B1), . . . , α(Bk)).
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Consider the Sk valued random variable

P 1 = p1δ
k
Y1

+ (1 − p1)P

where Y1 ∈ Bi, δk
Yi

is the vector with a 1 in the ith coordinate and 0 elsewhere. Hence
by property 4 from Section 3.1, given Y1 ∈ Bi, P 1 is distributed as a Dirichlet with
parameter (α(B1), . . . , α(Bi) + 1, . . . , α(Bk)). Since µ(Y1 ∈ Bi) = α(Bi), by property
8 in Section 3.1, P 1 is distributed as D(α(B1), . . . , α(Bk)).

It follows by easy induction that for all n, 1 −
∑n

1 pi =
∏n

1 (1 − θi). Using this fact,
a bit of algebra gives

n∑
1

piδ
k
Yi

+ (1 −
n∑
1

pi)P

=
n−1∑

1

piδ
k
Yi

+ (1 −
n−1∑

1

pi)(θnδ
k
Yn

+ (1 − θn)P )

Because our earlier argument showed that θnδ
k
Yn

+(1−θn)P has the same distribution
as P , a simple induction argument shows that, for all n,

n∑
1

piδ
k
Yi

+ (1 −
n∑
1

pi)P

is distributed as D(α(B1), . . . , α(Bk)). Letting n → ∞ and observing that (1−∑n
1 pi)

goes to 0, we get the result.
Note that we have not assumed the existence of a Dα prior. Because P (ω, ·) is

M(X ) valued, the argument also shows the existence of the Dirichlet prior.

3.2.3 Support of Dα

We begin by recalling that M(R) under the weak topology is a complete separable
metric space, and hence for any probability measure Π on M(R) the support—the
smallest closed set of measure 1— exists. Note that support is not meaningful if we
consider the total variation metric or setwise convergence.

Theorem 3.2.4. Let α be a finite measure on R and let E be the support of α.Then

Mα = {P : support of P ⊂ E}

is the weak support of Dα
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Proof. Mα is a closed set by the Portmanteau theorem, since E is closed and if Pn → P
then P (E) ≥ lim supn Pn(E). Further, because P (E) is beta(α(R), 0), Dα(Mα) = 1.

Let P0 belong to Mα and let U be a neighborhood of P0. Our theorem will be
proved if we show that Dα(U) > 0.

Choose points a0 < a1 < . . . < aT−1 < aT and let Wj = (aj, aj+1] ∩ E and J =
{j : α(Wj) > 0}. Then depending on whether α(∪j∈JWj) = α(R) or α(∪j∈JWj) <

α(R), (P (Wj) : j ∈ J) or
(
P (Wj) : j ∈ J, 1 −

∑
j∈J P (Wj)

)
has a finite-dimensional

Dirichlet distribution with all parameters positive. And in either case, for any η > 0,

Dα{P ∈ M(R) : |P (Wj) − P0(Wj)| < δ : j ∈ J} > 0

By Propositon 2.5.2 for small enough δ, U contains a set of the above form. Hence
Dα(U) > 0.

3.2.4 Convergence Properties of Dα

Many of the theorems in this section are adapted from Sethuraman and Tiwari [149].
Because under Dα, E(P ) = ᾱ, Theorem 2.5.1 in Chapter 2 immediately yields the

following.

Theorem 3.2.5. Let {αt : t ∈ T} be a family of finite measures on R. Then the
family {Dαt : t ∈ T} is tight iff {ᾱt : t ∈ T} is tight.

Theorem 3.2.6. Suppose {αm} , α are finite measures on R such that ᾱm → ᾱ
weakly.

(i) If αm(R) → α(R) where 0 < α(R) < ∞, then Dαm → Dα weakly.

(ii) If αm(R) → 0. Then Dαm converges weakly to D∗, where

D∗ {P : P is degenerate} = 1

(iii) If α(R) → ∞ then Dαm converges weakly to δα.

Proof. By Theorem 3.2.5, {Dαm} is tight and hence any subsequence has a further
subsequence that converges to, say, D∗.

(i) We will argue that the limit D∗ is Dα and is the same for all subsequences. By
(iii) of Theorem 2.5.2 and (a) of property 11 of the finite-dimensional Dirichlet
(see Section 3.1) it follows that D∗ = Dα.
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(ii) From property 11 for any ᾱ continuity set A, D∗{P : P (A) = 0, or 1} = 1.
By using a countable collection of ᾱ continuity sets that generate the Borel
σ-algebra, the result follows.

(iii) (iii) Recall that E(P (A)) = ᾱ(A). Because αn(R) → ∞, Var(P (A)) → 0 for
all A. Hence P (A) converges in probability to ᾱ(A). This holds for any finite
collection of sets. The result now follows as in the preceding case.

As a consequence of the theorem we have the following results.

Theorem 3.2.7. (i) Let α be a finite measure. Then for each P0 the posterior
Dα+

∑n
1 δXi

→ δP0 weakly, almost surely P0.

(ii) As α(R) goes to 0, the posterior converges weakly to D∑n
1 δXi

.

Proof. Because a.e. P0, α +
∑n

1 δXi
= αn satisfies ᾱn → P0 and αn → ∞, (iii) of

Theorem 3.2.6 yields the result.

Remark 3.2.3. Note that posterior consistency holds for all P0, not necessarily in
the weak support of Dα. This is possible because the version of the posterior chosen
behaves very nicely. This version is not unique even for P0 in the weak support of Dα.
One sufficient condition for uniqueness up to P0 null sets is that P0 be dominated by
α.

Remark 3.2.4. Assertion (ii) has been taken as a justification of the use of D∑n
1 δXi

as a noninformative (completely nonsubjective in the terminology of Chapter 1) pos-
terior. Note that Theorem 3.2.6 shows that the corresponding prior is far from a
noninformative prior.

The posterior D∑n
1 δXi

has been considered as a sort of Bayesian bootstrap by Rubin
[142]. For an interesting discussion of the Bayesian bootstrap and Efron’s bootstrap,
see Schervish [144].

We would like to remark that all the theorems in this section go through if R is
replaced by any complete separable metric space. The existence aspect of the Dirichlet
process can be handled via the famous Borel isomorphism theorem, which says that
there is a 1-1, bimeasurable function form R onto X . The proofs of other results
require only trivial modifications.
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3.2.5 Elicitation and Some Applications

We have seen that with a Dα prior the posterior given X1, X2, . . . , Xn is Dα+
∑

δXi
.

As α(R) goes to 0, (α +
∑

δXi
)/(α(R) + n) converges to

∑
δXi

/n, the empirical
distribution, further α(R) + n converges to n. Hence as observed in the last section
Dα+

∑
δXi

converges weakly to D∑
δXi

. In particular if the X1, X2, . . . , Xn are distinct
then DδXi

is just the uniform distribution on the n-dimensional probability simplex
S∗

n. This phenomenon suggests an interpretation of α(R) goes to 0, as leading to
a “noninformative”prior. In this section we investigate a few examples, all taken
from Ferguson [61], where as α(R) goes to 0, the Bayes procedure converges to the
corresponding frequentist nonparametric method.

While these examples corroborate the feeling that α(R) goes to 0 leads to a non-
informative prior, (ii) of Theorem 3.2.6 points out the need to be careful with such
an interpretation. As α(R) goes to 0 the posterior leads to an intuitive noninforma-
tive limit. However the corresponding prior cannot be considered noninformative. We
believe these applications are justified in the completely non-parametric context of
making inference about P because the Dirichlet is conjugate in that setting. Similar
assessments of conjugate prior in finite-dimensional problems is well known.

However, the Dirichlet is often used in problems where it is not a conjugate prior.
In such problems the interpretation of α(R) as a sort of sample size or a measure of
prior variability is of doubtful validity. See Newton et al. [136] in this connection.

Estimation of F . Suppose that we want to estimate the unknown distribution
function under the loss L(F,G) =

∫
(F (t) − G(t))2 dt. If Π is a prior on M(R),

equivalently on the space of distribution functions F on R, it is well known that
the no-sample Bayes estimate is given by F̂Π(t) =

∫
F (t) dΠ(F ). If Π is Dα then

because the posterior is Dα+
∑

δXi
, the Bayes estimate of F given X1, X2, . . . , Xn is

(α +
∑

δXi
) (−∞, t]/(α(R) + n). Setting Fn as the empirical distribution, we rewrite

this as

α(R)
α(R) + n

ᾱ(−∞, t] +
n

α(R) + n
Fn

which is a convex combination of the prior guess and a frequentist nonparametric
estimate.

This property makes it clear how α is to be chosen. If the prior guess of the distri-
bution of X is, say, N(0, 1) then that is ᾱ. The value of α(R) determines how certain
one feels about the prior guess. This interpretation of α(R) as a measure of one’s faith
in a prior guess is endorsed by the fact that if α(R) → ∞ then the prior goes to δᾱ.



108 3. DIRICHLET AND POLYA TREE PROCESS

If α(R) → 0 the Bayes estimate of P converges to the empirical distribution and
the posterior converges weakly to DnFn . Since the prior has no role any more, DnFn

is called a noninformative posterior and Fn the corresponding noninformative Bayes
estimate. These intuitive ideas are helpful in calibrating α(R) as a cost of sample size
and α(R) = 1 is sometimes taken as a prior with low information.

Estimation of mean of F. The problem here is to estimate the mean µF of the
unknown distribution function F , the loss function being the usual squared error
loss, i.e., L(F, a) = (µF − a)2. If Π is a prior on F such that F̂Π has finite mean, then
the Bayes estimate µ̂ is

∫
µF dΠ(F ) and with probability 1 this is the same as the

mean of F̂Π . This follows because ∫ [∫
xdF

]
Π(dF )

= lim
∫ [∫

xI[0,n]dF

]
Π(dF )

=
∫

xdF̂Π(x) =
∫

xdF̂Π(x) < ∞

Thus if α has finite mean then

Dα{F : F has finite mean} = 1

and given X1, X2, . . . , Xn, the Bayes estimate of µF is the mean of α +
∑

δXi
. This

is easily seen to be a convex combination of the mean of ᾱ and X̄ and goes to X̄ as
α(R) → 0.

Estimation of median of F. We next turn to the estimation of the median of the
unknown distribution F . For any F ∈ F , t is a median if

F (t−) ≤ 1
2

≤ F (t)

If α has support [K1, K2], −∞ ≤ K1 < K2 ≤ ∞ then with Dα probability 1, F
has unique median. If t1 < t2 are both medians of F , then for any rational a, b; t1 <
a < b < t2 we have F (a) = F (b). On the other hand Dα{F : F (a) = F (b)} = 0. By
considering all rationals a, b in the interval (K1, K2) we have the result.

In the context of estimating the median the absolute deviation loss is more natural
and convenient than the squared error loss. Formally, L(F,m) = |mF − m|. If Π is a
prior on F then the “no-sample” Bayes estimate is just the median of the distribution
of mF .
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If the prior is Dαthen any median of mF is also a median of ᾱ. This may be seen
as follows: t is a median of mF iff

Dα{mF < t} ≤ 1
2

≤ Dα{mF ≤ t}

Now mF ≤ t iff F (t) ≥ 1/2. Because F (t) is beta (α(−∞, t], α(t,∞), Dα{F (t) ≥
1/2} ≥ 1/2 iff α(t,∞)/α(R) ≥ 1/2 (see exercise 11.0.2 ). On the other hand mF < t
iff F (t−) > 1/2 . This yields α(−∞, t)/α(R) ≤ 1/2 and such a t is a median of ᾱ.

Consequently, the Bayes estimate of the median given X1, X2, . . . , Xn is a median of
(α+

∑
δXi

)/(α(R)+n)). If ᾱ is continuous then the median of (α+
∑

δXi
)/(α(R)+n))

is unique. As α(R) goes to 0 the limit points of the Bayes estimates of mF are medians
of the empirical distribution.

Testing for median of F. Consider the problem of testing the hypotheses that the
median of F is less than or equal to 0 against the alternative that the median is
greater than 0. If we view this as a decision problem with 0-1 loss, for a Dα prior on
F the Bayes rule is

decide median is ≤ 0 if Dα{F (0) >
1
2
} >

1
2

Because Dα{F (0) > 1/2} = 1/2 iff the two parameters are equal this reduces to
“accept the hypotheses that the median is 0 iff

α(−∞, 0]
α(R)

>
1
2

′′

Given X1, X2, . . . , Xn this condition becomes “accept the hypotheses that the me-
dian is 0 iff

Wn >
1
2
n + α(R)

(
1
2

− ᾱ(−∞, 0)
)′′

where Wn is the number Xi ≤ 0.
Estimation of P (X ≤ Y ). Suppose that X1, . . . , Xn are i.i.d. F and Y1, . . . , Ym

are independent of the Xis and are i.i.d G. We want to estimate P (X1 ≤ Y1) =∫
F (t) dG(t) under squared error loss. Suppose that the prior for (F,G) is of the

form Π1 × Π2. The Bayes estimate is then
∫

F̂Π1(t) dF̂Π2(dt), where for i = 1, 2,
F̂Πi

(t) is the distribution function
∫

F (t) dΠi(t).
If the prior is Dα then the Bayes estimate given X1, X2, . . . , Xn becomes∫

(α1 +
∑

δXi
)

α1(R) + n
(−∞, t] d

(
α2 +

∑
δYi

α2(R) + n

)
(dt)
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This can be written as

p1,np2,m

∫
ᾱ1(−∞, t)dᾱ2(t) + p1,n(1 − p2,m)

1
n

m∑
1

ᾱ1(−∞, Yj]

+ (1 − p1,n)p2,m)
1
m

n∑
1

(1 − ᾱ2(−∞, Xi)) + (1 − p1,n)(1 − p2,m)
1

mn
U

where p1,n = α1(R)/(α1(R) + n), p2,m = α2(R)/(α2(R) + m) and U, is the number of
pairs for which Xi ≤ Yj, i.e.,

U =
n∑
1

m∑
1

I(∞,Yj ](Xi).

As α1(R) and α2(R) go to 0, the nonparametric estimate converges to (mn)−1U ,
which is the familiar Mann-Whitney statistic.

3.2.6 Mutual Singularity of Dirichlet Priors

As before, we have a Dα prior on M(R), given P , X1, X2, . . . , Xn is i.i.d. P , and λα

is the joint distribution of P and X1, X2, . . . . The main result in this section is ‘ If
α1 and α2 are two nonatomic measures on R, then λα1 and λα2 are mutually singular
and hence so are Dα1 and Dα2 ’. Mutual singularity of all priors in a family being used
is undesirable. It shows that the family is too small to be flexible enough to represent
prior opinion, which is based on information and judgment and is independent of
the data. To clarify, consider a simple example of this sort. Let X1, X2, . . . , Xn be
i.i.d. N(θ, 1) and suppose we are allowed only N(µ, 1) priors and the only values of µ
allowed are finite and widely separated as 0 and 10. Then for a large n if we get X̄,
it is clear that with high probability the data can be reconciled with only one prior
in the family. The result proved next is of this kind but stronger. It follows from a
curious result of Korwar and Hollander [116], who show that the prior Dα can be
estimated consistently from X1, X2, . . . . We begin with their result.

Lemma 3.2.1. Define τ1, τ2, . . . and Y1, Y2, . . . by τ1 = 1 and τn = k if the number
of distinct elements in {X1, X2, . . . , Xk} is n and the number of distinct elements in
{X1, X2, . . . , Xk−1} is n − 1. In other words, τn is the number of observations needed
to get n distinct elements.
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Set Yn = Xτn and set

Dn =

{
1 if Xn �∈ {X1, X2, . . . , Xn−1}
0 otherwise

Note that
∑n

1 Di is the number of distinct units in the first n observations. If α is
nonatomic then

(i) for any Borel set U, 1/n
∑n

1 δYn(U) → ᾱ(U) a.e. λα;

(ii) 1/ log n
∑n

1 (Di − E(Di)) → 0 a.e. λα; and

(iii) 1/ log n
∑n

1 E(Di) → α(X ).

Proof. Note that τi < ∞ a.e.
To prove (i) it is enough to show that Y1, Y2, . . . are i.i.d. ᾱ.
We start with a finer conditioning than Y1, . . . , Yn−1. Consider for t1 < t2, . . . <

tn−1, tn,,

Pr
{
Yn ∈ A|X1, X2, . . . Xtn−1 , τn−1 = tn−1, τn = tn

}
=

Pr
{
Yn ∈ |X1, . . . Xtn−1 , τn−1 = tn−1, τn ≥ tn

}
Pr

{
τn = tn|X1, . . . Xtn−1 , τn−1 = tn−1, τn ≥ tn

} (3.14)

After cancelling out α(X )+tn−1 from the numerator and denominator this becomes

(
α +

∑tn−1
1 δXi

)
(A − {Y1, . . . , Yn})(

α +
∑tn−1

1 δXi

)
(X − {Y1, . . . , Yn})

and by nonatomicity this reduces to ᾱ. Thus Y1, Y2, . . . are i.i.d and (i) follows.
For the second assertion, it is easy to see that the Dn are independent with λα(Dn =

1) = α(R)/(α(R) + n − 1).
By Kolomogorov’s SLLN for independent random variables

1
log n

n∑
1

(Di − E(Di)) → 0 a.s. λα if
∞∑
1

V (Di)
(log i)2 < ∞

Here V (Di) = α(R)(i − 1)/((α(R) + i − 1)2) and the preceding condition holds.
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Moreover
1

log n

n∑
1

E(Di) =
1

log n

n∑
1

α(R)
α(R) + i − 1

→ α(R)

because
n∑
2

α(R)
α(R) + i − 1

=
n∑
2

α(R)
i − 1

− α(R)
n∑
2

α(R)
α(R) + i − 1

1
i − 1

and as n → ∞, the second term on the right converges, so that

n∑
2

α(R)
α(R) + i − 1

= α(R) [log n + O(1)]

Theorem 3.2.8. If α1 and α2 are two nonatomic measures on R, α1 �= α2, then
λα1 and λα2 are mutually singular and hence so are Dα1 and Dα2.

Proof. Let U be a Borel set such that α1(U) �= α2(U), and set

E =

{
ω :

1
n

n∑
1

δYi
(U) → ᾱ1(U) and

1
log n

n∑
1

Di → α1(R)

}

By Lemma 3.2.1, λα1(E) = 1 and λα2(E) = 0.
Further, because E ⊂ R∞, we also have

λα1(E) =
∫

P∞(E) Dα1(dP ) = 1

so that, Dα1{P : P∞(E) = 1} = 1. Similarly Dα2{P : P∞(E) = 1} = 0.

Remark 3.2.5. To handle the general case, consider the decomposition of α1, α2 into
αi = αi1 + αi2, where αi1 is the nonatomic part of αi and αi2 is the discrete part.

Let M1, M2 be the support of α12 and α22. Then if α11 �= α21 but M1 = M2, then
also λα1 and λα2 are singular.

If α11 = α21 and M1 = M2; λα1 and λα2 may not be orthogonal. Sethuraman gives
necessary and sufficient condition for the orthogonality using Kakutani’s well-known
criteria based on Hellinger distance.
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Remark 3.2.6. The Theorem 3.2.8 shows that Dirichlet process used as priors dis-
play a curious behavior. Suppose α is a continuous measure, then for every sample
sequence X1, X2, . . . the continuous part of the successive posterior base measures
changes from α/α(X )+n to α/(α(X )+n+1) and hence the sequence of the posteriors
are mutually singular.

3.2.7 Mixtures of Dirichlet Process

Dirichlet process requires specification of the base measure α, which itself can be
viewed as consisting of the prior expectation ᾱ and the strength of the prior belief
α(R). In order to achieve greater flexibility Antoniak [4] proposed mixtures of Dirich-
let process which arise by considering a family αθ of base measures indexed by a
hyperparameter θ and a prior for the parameter θ.

Because the Dirichlet processes sit on discrete measures, so does any mixture of
these and hence they are unsuitable as priors for densities. For the same reason, it is
also inappropriate for the parametric part of a semiparametric problem. For example,
Diaconis and Freedman [46] show that the Dirichlet prior in a location parameter
problem can lead to pathologies as well as inconsistency of the posterior for even
reasonable “true” densities.

Usually one will not have as a prior a completely specified ᾱ but an αθ—like
N(η, σ2)—with θ = (η, σ2) unknown but having a prior µ so that the distribution
of P given θ is Dαθ

. Suppose that X1, X2, . . . , Xn are—given P—i.i.d P . Because
given θ,X1, X2, . . . , Xn; P is distributed as Dαθ+

∑
δXi

, the distribution of P given
X1, X2, . . . , Xnis obtained by integrating Dαθ+

∑
δXi

with the conditional distribution
of θ given X1, X2, . . . , Xn.

For simplicity let Θ= R let µ be the prior on Θ with density µ̃; for each θ, αθ

is a finite measure on R with density α̃θ with respect to Lebesgue measure. Using
equation (3.12) the joint density of θ and X1, X2, . . . , Xn is

µ̃(θ)

∏
j α̃θ(xj)Ij(ej − 1)!

(αθ(R))[n] (3.15)

The conditional density of θ given X1, X2, . . . , Xn is thus

C(x1, x2, . . . , xn)µ̃(θ)

∏
j α̃θ(xj)Ij(ej − 1)!

(αθ(R))[n] (3.16)
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If the “true” distribution P0 is continuous then with probability 1, the Ijs are all
equal to 1 and the conditional density becomes

C(x1, x2, . . . , xn)µ̃(θ)
∏n

1 α̃(θ)(xj)
(α(θ)(R))[n] (3.17)

Newton et al. [137] provides an interesting heuristic approximation to Bayes esti-
mates in this context.

3.3 Polya Tree Process

Polya tree process are a large class of priors that include Dirichlet processes and
provide a flexible framework for Bayesian analysis of nonparametric problems. Like
the Dirichlet, Polya tree priors form a conjugate class with a tractable expression for
the posterior. However they differ from Dirichlet process in two important aspects.
The Polya tree process are determined by a large collection of parameters and thus
provide means to incorporate a wide range of beliefs. Further, by suitably choosing the
parameters, the Polya tree priors can be made to sit on continuous, even absolutely
continuous, distributions.

Polya tree priors were explicitly constructed by Ferguson [62] as a special case of tail
free processes discussed in the Chapter 2. A formal mathematical development using
De Finetti’s theorem is given in Mauldin et al. [133], Lavine [118, 119], indicates
the construction and discusses the choice of various components that go into the
construction of Polya tree priors. Here we briefly explore the properties of Polya tree
priors. The basic references for these are Ferguson [62], Mauldin et al. [133] and
Lavine[118, 119].

3.3.1 The Finite Case

The construction in this section is a special case of the discussion in Section 2.3.1.
To briefly recall, let X = {x1, x2, . . . , x2k}. Let B0 = {x1, x2, . . . , x2k−1} and B1 =
{x2k−1 , . . . , x2k} be a partition of X . For any j let Ej stand for all sequences of 0s and
1s of length j and E∗

j = ∪i≤jEi. For each j ≤ k, we consider a partition {Bε : ε ∈ Ej}
of X such that Bε0, Bε1 is a partition of Bε. If ε ∈ Ek, clearly Bε is a singleton.

Definition 3.3.1. A prior Π on M(X ) is said to be a Polya tree prior with pa-
rameter α = {αε : ε ∈ E∗

k} if αε ≥ 0 and

(i)
{
P (Bε0|Bε) : ε ∈ E∗

k−1

}
are all independent and
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(ii) P (Bε0|Bε) is a beta(αε0, αε1) random variable

when ε = ∅ take, P (Bε0|Bε) to be P (Bε0). (i) and (ii) uniquely determine a Π, for
if x = Bε1,ε2,...,εk

, then

P (x) = P (Bε1ε2...εk
) =

∏
i:εi=0

P
(
Bε1ε2...εi−10|Bε1ε2...εi−1

) ∏
i:εi=1

(
P
(
Bε1ε2...εi−11|Bε1ε2,...εi−1

))
(3.18)

Because

P
(
Bε1,ε2,...,εi−11|Bε1,ε2,...,εi−1

)
= 1 − P

(
Bε1,ε2,...,εi−10|Bε1,ε2,...,εi−1

)
{
P (Bε0|Bε) : ε ∈ E∗

k−1

}
determines the distribution of P (x).

Suppose Π is a Polya tree prior on M(X ) and given P , X is distributed as P . For
any x let ε1(x) = 0 if x ∈ B0 and 1 otherwise, and let εk(x) = 0 if x ∈ Bε1(x)...εk−1(x)0

and 1 otherwise. The joint density of P and X is given, up to a constant, by∏
ε∈E∗

k

[P (Bε0|Bε)]
αε0−1 [1 − P (Bε0|Bε)]

αε1−1
∏

i:εi(x)=0

P (Bε0|Bε)
∏

i:εi(x)=1

(1 − P (Bε0|Bε))

=
∏
ε∈E∗

k

[P (Bε0|Bε)]
α′

ε0−1 [1 − P (Bε0|Bε)]
α′

ε1−1

where

α′
ε =

{
1 + αε if x ∈ Bε

αε otherwise

We summarize this discussion as the following theorem

Theorem 3.3.1. If the prior on M(X ) is PT (α) where α = {αε : ε ∈ E∗
k} and if

given P , X1, X2, . . . , Xn are i.i.d. P , then

(i) the posterior distribution on M(X ) given X1, X2, . . . , Xn is a Polya tree with
parameters {αε,X1,X2,...,Xn : ε ∈ E∗

k} where

αε,X1,X2,...,Xn = αε+

n∑
1

IBε(Xi)

(ii) the marginal distribution of X1 is given by

Pr{X = x} =
k∏
1

αε1(x)ε2(x)...εi(x)

αε1(x)ε2(x)...εi−1(x)0 + αε1(x)ε2(x)...εi−1(x)1
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and the predictive distribution of Xn+1 given X1, X2, . . . , Xn is of the same form
with αε replaced by αε,X1,X2,...,Xn.

To prove (ii), Pr(X = x) =
∫

P (x)dΠ(P ) and is the integral of the terms in (3.18).
The components in the product are independent beta random variables and a direct
computation yields the result.

The distribution of X1, X2, . . . , Xn defined via Theorem 3.3.1 can be thought of as
a Polya urn scheme, though not as easy to describe as that for a Dirichlet. This is
done in Mauldin et al. (92) and we refer the interested reader to their paper.

Remark 3.3.1. The assumption that X contains 2k elements and that partitions
are into two halves is not really necessary. All we need is T

i
= {Bε : ε ∈ Ei} for

i = 1, 2, . . . , k be a nested sequence of partitions. The equal halves can be relaxed by
allowing empty sets to be in the partition and setting the corresponding parameter
to be 0.

Remark 3.3.2. The form of the posterior distribution shows that X and the vector
{P (Bε0|Bε) : ε ∈ E∗

i } are conditionally independent given {IBε : ε ∈ Ei}.

3.3.2 X = R

Motivated by the X is finite case, we define a Polya tree prior on M(R) as follows:
Recall that Ej is the set of all sequences of 0s and 1s of length j and E∗ = ∪jEj is
all sequences of 0s and 1s of finite length. Also E is the set of all infinite sequences
of 0s and 1s.

Definition 3.3.2. For each n, let T n = {Bε : ε ∈ En} be a partition of R such that
for all ε in E∗, Bε0, Bε1 is a partition of Bε.

Let α = {αε : ε ∈ E∗} be a set of nonnegative real numbers.
A prior Π on M(R) is said to be a Polya tree (with respect to the partition T =

{Tn}n≥1) with parameter α , denoted by PT (α), if under Π

1. {P (Bε0|Bε) : ε ∈ E∗} are a set of independent random variables

2. for all ε ∈ E∗, P (Bε0|Bε) is beta(αε0, αε1).

The first question, of course, is do such priors exist? We have already discussed this
in Chapter 2.

Theorem 3.3.2. A Polya tree with parameter α = {αε : ε ∈ E∗} exists if for all
ε ∈ E∗ (

αε0

αε0 + αε1

)(
αε00

αε00 + αε01

)(
αε000

αε000 + αε001

)
. . . = 0 (3.19)
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and (
α10

α10 + α11

)(
α110

α110 + α111

)
. . . = 0

Proof. This is an immediate consequence of Theorem 2.3.5 . We noted there that if
we set Y = P (B0), Yε = P (Bε0|Bε) then {Yε : ε ∈ E∗} induces a measure on M(R)- if
it satisfies the continuity condition

YεYε0Yε00 . . . = 0 almost surely

Because
∏n

1 Yε0...0 is decreasing in n and bounded by 0 and 1, this happens iff
E(

∏n
1 Yε0...0) → 0. The Yε are independent beta random variables and the condition

translates precisely to (3.19).

Marginal distribution of X Let P∼ PT (α) and given P , X be distributed as P and
let m be the marginal distribution of X. Because the finite union of sets in
∪nT n is an algebra it is enough to calculate m(Bε) for all ε in E∗.

If ε = ε1ε2 . . . εk,

m(X ∈ Bε1ε2...,εk
) = E

[ ∏
i≤k−1

P
(
Bε1ε2...εi−1εi

|Bε1ε2...εi−1

)]

=
∏

{i:εi=0,i≤k−1}
Yε1ε2...εi−1

∏
{i:εi=1,i≤k−1}

(1 − Yε1ε2...εi−1) (3.20)

The factors inside the expectation are independent beta random variables, and
hence we have

=
k∏
1

αε1ε2...εi

αε1ε2...εi0 + αε1ε2...εi1

Theorem 3.3.3. Suppose that X is distributed as P and P itself has a PT (α) prior.
Then the posterior distribution of P given X is PT (αX), where αX = α + IBε(X).

Based on the corresponding result for the finite case, it is reasonable to expect the
posterior to be PT (αX). In fact the posterior distribution of {P (Bε) : ε ∈ En} given X
is same as the posterior of {P (Bε) : ε ∈ En} given {IBε(X) : ε ∈ En}. The calculation
in the finite case done in the last section shows that this posterior distribution is a
Polya tree with parameters {αε,X = αε + IBε(X) : ε ∈ ∪n

1Ei}. The proof is completed
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by recognizing that posterior distributions of {P (Bε) : ε ∈ En : n ≥ 1} determine the
posterior distribution Π(·|X).

Repeatedly applying the last theorem we get the following.

Theorem 3.3.4. If PT (α) is the prior on M(R) and given P ; if X1, X2, . . . , Xn

are i.i.d. P , then the posterior distribution of P given X1, X2, . . . , Xn is a polya tree
with parameter αX1,X2,...,Xn

where

αε,X1,X2,...,Xn = αε +
n∑
1

IBε(Xi)

Predictive distribution and Bayes estimate

It is immediate from the last two properties that if X1, X2, . . . , Xn are i.i.d. Pgiven P ,
and P is has PT (α) prior, then the predictive distribution of Xn+1 given X1, X2, . . . , Xn

is

P {Xn+1 ∈ Bε1ε2...εk
}

αε1 +
∑n

1 IBε1
(Xi)

α0 + α1 + n

αε1ε2 +
∑n

1 IBε1ε2
(Xi)

αε10 + αε11 + nε1 . . .

αε1...εk
+

∑n
1 IBε1...εk

(Xi)
αε1...εk−10 + αε1...εk−11 + nε1...εk−1

where nε is the number of Xis falling in Bε.
In view of the calculations done so far, P̂ = E(P |X1, X2, . . . , Xn) is the measure

satisfying

P̂ (Bε1ε2...εk
) =

k∏
1

αε1...εj
+

∑n
1 IBε1...εj

(Xi)

αε1...εj0 + αε1...εj1 + nε1...εj−1

Like the Dirichlet, here also the posterior is consistent. Formally, we have the
following theorem.

Theorem 3.3.5. Let P be distributed as PT (α) and given P , let X1, X2, . . . , Xn

be i.i.d. P . Then for any P0, as n → ∞, the posterior

PT (αX1,X2,...,Xn
) → δP0 weakly a.s P0

.
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The result would follow as a particular case of a more general theorem proved later
for tail free priors. However one can give proof along the same lines as that for the
Dirichlet process and follows from the following lemmas.

Lemma 3.3.1. Let ᾱm = Eαm(P ), where Eᾱm is the expectation taken under PT (αm).
If {ᾱm : m ∈ M} is tight, then so is {PT (αm) : m ∈ M} .

Proof. Easily follows from corollary to Theorem 2.5.1

Lemma 3.3.2. If ᾱm → P0 and if for all ε ∈ E∗,

L (P (Bε)|PT (αm)) → L (P (Bε)|δP0 ))

then PT (αm) converges weakly to δP0 .

Proof. The tightness of αm ensures that PT (αm) has a limit point. This limit point
can be identified as δP0 using calculations similar to Theorem 3.2.6.

To prove the theorem, let Ω = {ω : 1/n
∑n

1 IBε(Xi) → P0(Bε) for all ε ∈ E∗}.
P0(Ω) = 1, and further for each ω ∈ Ω it is easily verified that ᾱm = αε,X1,X2,...,Xn(ω)

satisfies the assumptions of the Lemma 3.3.2.

Support of PT(α )

Our next theorem is on the topological support of PT (α). Recall that the support is
the smallest closed set of PT (α) measure 1. Here we assume that {aε : ε ∈ E∗} is a
dense set of numbers and induce a nested sequence of partitions.

Theorem 3.3.6. PT (α) has all of M(R) as support iff αε > 0 for all ε ∈ E∗.

Proof. The proof follows along the same lines as for the Dirichlet (see Theorem 3.2.4).

Mauldin et al. [133] show that, unlike the Dirichlet, we can find α which will ensure
that PT (α) sits on the space of continuous measures. Because Polya tree priors are tail
free, we can use Theorem 2.4.3 to show that by suitably choosing the partitions and
parameters the Polya tree can be made to sit on, not just continuous distributions but
even absolutely continuous distributions. The theorem is an application of Theorem
2.4.3 to Polya tree processes. The proof is just a verification of the conditions of
Theorem 2.4.3.
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Theorem 3.3.7. Let λ be a continuous probability measure on R with distribution
function λ. Define Bε1ε2...εi

= λ−1(
∑

εi

2i ,
∑

εi

2i + 1
2i ). If αε1ε2...εi

= ai, and
∑

a−1
i < ∞

then PT (α)(L(λ)) = 1.
In particular when αε1ε2...εi

= i2, the polya tree gives mass 1 to probabilities that are
absolutely continuous with respect to λ.

A few concluding remarks about Polya tree priors: The Polya tree prior depends on
the underlying partition T = {Tn}n≥1 and is tail free with respect to this partition.
In fact a prior which is tail-free with respect to every sequence of partitions is, except
for trivial cases, a Dirichlet process [ Doksum [48]].

We have seen that Polya tree priors, unlike the Dirichlet, can be made to sit on
densities. One unpleasant feature of this construction is that absolute continuity of P
is ensured by controlling the variability of P around the chosen absolutely continuous
λ. We have seen that for the Dirichlet the prior and posterior are mutually singular.
Dragichi and Ramamoorthi [56] have shown that if the parameters are as in the
Theorem 3.3.7, then the posterior given distinct observations is absolutely continuous
with respect to the prior.

Lavine suggests that, if the prior expectation is F , then the partitions of the form
F−1(

∑
εi/2i,

∑
εi/2i + 1/2i) would be appropriate. For then the ratios

αε1ε2...εi−10/(αε1ε2...εi−10 + αε1ε2...εi−11) = 1/2

and this would ensure that the marginal of X is F , which may then be treated as
a “prior guess” of the “mean” of the random P . As to the magnitude of the αεs
(as distinct from their ratios), their role is somewhat similar to that of α(R) for the
Dirichlet, except that the availability of more parameters introduces more flexibility.
It is expected that for moderate k a choice of the magnitude would be on the basis
of prior belief and for higher k, a conventional choice would be made. A conventional
choice might be to ensure that the prior sits on densities. For example, one may take
αε1,...,εk

= 1/k2. Lavine [118] has expressed well what the main considerations are; we
refer the reader to his paper.



4
Consistency Theorems

4.1 Introduction

We briefly discussed consistency of the posterior in Chapters 1, 2 and 3. To recall,
our setup consists of:
a (unknown) parameter θ that lies in a parameter space Θ;
a prior distribution Π for θ, equivalently, a probability measure on Θ; and
X1, X2, . . . , Xn, which are given θ, i.i.d. with common distribution Pθ.

Our interest centers on the consistency of the posterior distribution, and as dis-
cussed in Chapter 1, this is a requirement that if indeed θ0 is the “true ” distribution
of X1, X2, . . . , Xn then the posterior should converge to δθ0 almost surely. In other
words, as n → ∞, the posterior probability of every neighborhood of θ0 should go to
1 with Pθ0 probability 1.

We noted that posterior consistency can be viewed as

• a sort of frequentist validation of the Bayesian method;

• merging of posteriors arising from two different priors; and

• as an expression of “data eventually swamps the prior”.

In Chapter 1 we saw that when Θ is a subset of a finite-dimensional Euclidean space
and if θ �→ Pθ is smooth, then for smooth priors the posterior is consistent in the
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support of the prior. In Chapter 1 we also saw an example showing that inconsistency
cannot be ruled even when Θ = R.

The example in Chapter 1 may be dismissed as a technical pathology, but in the
nonparametric case inconsistency can scarcely be called pathological. This has led
some to question the role of consistency in Bayesian inference. The argument is that it
is well known that the prior and the posterior given by Bayes theorem are imperatives
arising out of axioms of rational behavior–and since we are already rational why
worry about one more criteria? In other words inconsistency does not warrant the
abandonment of a prior. We would argue that in the nonparametric context typically
one would have many priors that would be consistent with one’s prior beliefs, and it
does make sense to choose among these priors that are consistent at a large number
of parameter values, among which we expect the true parameter to lie.

In the nonparametric context Θ is M(R) or large subset of it. M(R) has various
kinds of convergence, namely, total variation, setwise , weak, etc. Each of these leads to
a corresponding notion of consistency. The issue of consistency has been approached
from different point of view by [143]. We begin with a formal definition of these.

4.2 Preliminaries

Definition 4.2.1. {Π(·|X1, X2, . . . , Xn)} is said to be strongly or L1-consistent at
P0 if there is a Ω0 ⊂ Ω such that P∞

0 (Ω0) = 1 and for ω ∈ Ω0

Π(U |X1, X2, . . . , Xn) → 1

for all total variation neighborhoods of P0.

Definition 4.2.2. {Π(·|X1, X2, . . . , Xn)} is said to be weakly consistent at P0 if
there is a Ω0 ⊂ Ω such that P∞

0 (Ω0) = 1 and for ω ∈ Ω0

Π(U |X1, X2, . . . , Xn) → 1

for all weak neighborhoods of P0.

Before we proceed to the study of consistency, we note that Bayes estimates inherit
the convergence property of the posterior. Recall that we denote X1, X2, . . . , Xn by
Xn.

Proposition 4.2.1. Define the Bayes estimate P̂n(·|Xn) to be the probability mea-
sure P̂n(A|Xn) =

∫
P (A) Π(dP |X1, X2, . . . , Xn) = E(P (A)|Xn). Then
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1. if {Π(·|X1, X2, . . . , Xn)} is strongly consistent at P0, then ||P̂n−P0|| → 0, almost
surely P0.

2. If {Π(·|X1, X2, . . . , Xn)} is weakly consistent at P0, then P̂n → P0 weakly, almost
surely P0.

Proof. By Jensen’s inequality

||P̂n − P0|| ≤
∫

||P − P0|| Π(dP |Xn)

=
∫

U

||P − P0|| Π(dP |Xn) +
∫

Uc

||P − P0|| Π(dP |Xn)

and if U = {P : ||P − P0|| < ε} then

≤ εΠ(U |Xn) + Π(U c|Xn) ≤ ε + ◦(1)

as n → ∞.
A similar argument works for assertion (ii) by considering |

∫
f dP̂n −

∫
f dP0|, f

bounded continuous.

It is worth pointing out that the conventional Bayes estimate considered earlier is
a Bayes estimate only for the squared error loss for P (A). The Bayes estimate P̃ (A)
for, say, the absolute deviation loss, will be the posterior median. Unfortunately, the
P̃ (·) so obtained will not be a probability measure.

As far as the prior is on M(R), weak consistency is intimately related to the con-
sistency of the Bayes estimates of F (t).

Theorem 4.2.1. Suppose Π is a prior on F , the space of distribution functions on
R, and X1, X2, . . . , Xn be given F ; i.i.d. F . Then the posterior is weakly consistent
at F0, iff there is a dense subset Q of R such that for t in Q

(i) lim
n→∞

E(F (t)|Xn) = F0(t); and

(ii) lim
n→∞

V (F (t)|Xn) = 0.

Proof. If (i) and (ii) hold, it follows from a simple use of Chebychev’s inequality that
for every t in Q,

Π((F (t) − F0(t)| < δ)|Xn) → 1 a.s F0
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and hence it follows that

Π((F (ti) − F0(ti)| < δ|Xn) for 1 ≤ i ≤ k) → 1 a.s F0

By Proposition 2.5.2, any weak neighborhood U of F0 contains a set of the above
form for a suitable δ. Hence Π(U |Xn) → 1 a.e. F0.

On the other hand, if the posterior is weakly consistent, then it is easy to see that
(i) and (ii) hold for any t that is a continuity point of F0.

Since strong consistency is desirable, it is natural to seek a prior Π for which the
posterior would be strongly consistent at all P in M(R). Such a prior can be thought
of as more diffuse than priors that do not have this property. However such a prior
does not exist. If it did, the corresponding Bayes estimates, by the last Proposition
4.2.1, would give a sequence of estimates of P that is consistent in the total variation
metric and such estimates do not exist [41]. On the other hand the Dirichlet priors
considered earlier provide an example of a prior that is weakly consistent at all P .
We note that Doob’s theorem is applicable also to strong consistency.

If U is a neighborhood of P0 with prior probability 0, then any reasonable version
of the posterior will assign mass 0 to U and consequently it is unreasonable to expect
consistency at such a P0. Thus it is appropriate to confine the search for points of
consistency to the (topological) support of the prior.

4.3 Finite and Tail free case

When X is a finite set, M(X ) is a subset of the Euclidean space, and all the topologies
coincide on M(X ) , and we have the following pleasing theorem. This theorem can
also be proved from Theorem 1.3.4. Here is a direct proof that in a way is related to
the Schwartz theorem discussed later in this chapter.

Theorem 4.3.1. Let Π be a prior on M(X ), where X = {1, 2, . . . , k}. Then the
posterior is consistent at all points in the support of Π.

Proof. Let
V = {P : ‖P − P0‖ < δ}

be a neighborhood of P0.

Π(V c|Xn) =

∫
V c e−n

∑k
1(ni/n) log(P0(i)/P (i))dΠ(p)∫

X e−n
∑k

1(ni/n) log(P0(i)/P (i))dΠ(p)
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where ni is the number of Xn equal to i. Writing it as

I1(Xn)
I2(Xn)

we will show that

(i) for all β > 0, lim infn→∞ enβI2(Xn) = ∞ a.s P0; and

(ii) there exists a β0 > 0 such that enβ0I1(Xn) → 0 a.s P0.

condition (i) follows from the strong law of large numbers.
As for (ii)

k∑
1

ni

n
log

P0(i)
P (i)

=
k∑
1

ni

n
log

ni/n

P (i)
+

k∑
1

ni

n
log

P0(i)
ni/n

which gives

lim
n→∞

k∑
1

ni

n
log

P0(i)
P (i)

= lim
n→∞

k∑
1

ni

n
log

ni/n

P (i)

If Fn stands for the empirical distribution
k∑
i

ni

n
log

ni/n

P (i)
= K(Fn, P )

and by Proposition 1.2.2

K(Fn, P ) ≥ ||Fn − P ||2
4

=
(||P − P0|| − ||Fn − P0||)2

4
If P ∈ V c and n is large so that ||Fn − P0|| < δ/2, we have

K(Fn, P ) ≥ (δ − δ/2)2

4
= δ0

In other words,
inf

P∈V c
K(Fn, P ) > δ0 a.s P0

Consequently

lim
n→∞

enβI1(Xn) ≤ lim
n→∞

enβ

∫
V c

e−nK(Fn,P )dΠ(p) ≤ en(β−δ0)

which goes to 0 if β < δ0. The proof of the theorem is easily completed by taking
β0 < δ0.
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When X is infinite, even weak consistency can fail to occur in the weak support
of Π. Freedman [69] provided dramatic examples when X = {1, 2, 3, . . . , }. Another
elegant example, due to Ferguson, is described in [65].

Theorem 4.3.2. For k = 1, 2, . . . , let T k = {Bε : ε ∈ Ek} be a partition of R into
intervals. Further assume that {T k : k ≥ 1} are nested. If Π is a prior on M(R) ,
tail free with respect to {T k : k ≥ 1} and with support all of M(R) then (there exits
a version of) the posterior which is weakly consistent at every P0.

Proof. By Theorem 2.5.2, enough to show that for each n the posterior distribution
of {P (Bε) : ε ∈ En} given Xn converges a.e. P0 to {P0(Bε) : ε ∈ En}. Proposition
2.3.6 ensures that the posterior distribution of {P (Bε) : ε ∈ En} given X1, X2, . . . , Xn

is the same as that given {nε : ε ∈ En}, where nε is the number of X1, X2, . . . , Xn

in Bε. A little reflection will show that we are now in the same situation as Theorem
4.3.1.

4.4 Posterior Consistency on Densities

4.4.1 Schwartz Theorem

In the last section we looked at priors on M(R). An important special case is when the
prior is concentrated on Lµ, the space of densities with respect to a σ-finite measure
µ on R. This case is important because of its practical relevance. In addition this
is a situation when one has a natural posterior given by the Bayes theorem. Our
(conventional) Bayes estimate is the expectation of f with respect to the posterior.

We begin the discussion with a theorem of Schwartz [145]. Our later applications
will show that Schwartz’s theorem is a powerful tool in establishing posterior consis-
tency. Barron [8] provides insight into the role of Schwartz’s theorem in consistency.

Our setup, then, is Lµ =
{
f : f is measurable, f ≥ 0,

∫
f dµ = 1

}
. We tacitly iden-

tify the µ equivalence classes in Lµ and equip Lµ with the total variation or L1-metric
||f −g|| =

∫
|f −g| dµ. Every f in Lµ corresponds to a probability measure Pf , and it

is easy to see that the Borel σ-algebra generated by the L1-metric and the σ-algebra
BM ∩ Lµ are the same.

Let Π be a prior on Lµ. Recall that K(f, g) stands for the Kullback-Leibler diver-
gence

∫
f log(f/g) dµ. Kε(f) will stand for the neighborhood {g : K(f, g) < ε} .

Definition 4.4.1. Let f0 be in Lµ. f0 is said to be in the K-L support of the prior
Π, if for all ε > 0, Π(Kε(f0)) > 0.
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As before, X1, X2, . . . are given f , i.i.d. Pf . P n
f will stand for the joint distribution

of X1, X2, . . . , Xn and P∞
f for the joint distribution of the entire sequence X1, X2, . . .

. We will, when needed, view P∞
f as a measure on Ω = R∞.

Let U be a set containing f0. In order for the posterior probability of U given Xn

to go to 1, it is necessary that f0 and U c can be separated. This idea of separation
is conveniently formalized through the existence of appropriate tests for testing H0 :
f = f0 versus H1 : f ∈ U c. Recall that a test function is a nonnegative measurable
function bounded by 1.

Let {φn(Xn) : n ≥ 1} be a sequence of test functions.

Definition 4.4.2. {φn(Xn) : n ≥ 1} is uniformly consistent for testing H0 : f = f0

versus H1 : f ∈ U c, if as n → ∞,

Ef0(φn(Xn)) → 0

inf
f∈Uc

Ef (φn(Xn)) → 1

Definition 4.4.3. A test φ(Xn) is strictly unbiased for H0 : f = f0 versus H1 :
f ∈ U c, if

Ef0(φn(Xn)) < inf
f∈Uc

Ef (φn(Xn))

Definition 4.4.4. {φn(Xn) : n ≥ 1} is uniformly exponentially consistent for test-
ing H0 : f = f0 versus H1 : f ∈ U c, if there exist C, β positive such that for all
n,

Ef0(φn(Xn)) ≤ Ce−nβ

and
inf

f∈Uc
Ef (φn(Xn)) ≥ 1 − Ce−nβ

The next proposition relates these three definitions. The proposition is itself inter-
esting, and the ideas involved in the proof surface again in later arguments.

Proposition 4.4.1. The following are equivalent

(i) There exists a uniformly consistent sequence of tests for testing H0 : f = f0

versus H1 : f ∈ U c.

(ii) for some n ≥ 1, there exists a strictly unbiased test φ(Xn) for H0 : f = f0

versus H1 : f ∈ U c.

(iii) There exists a uniformly exponentially consistent sequence of test functions for
testing H0 : f = f0 versus H1 : f ∈ U c.
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Proof. Clearly, (i) implies (ii) and (iii) implies(i). So all that needs to be established
is that (ii) implies (iii).

Consider first the simple case when m = 1, i.e., there exists φ(X) such that Ef0φ =
α < inf

f∈Uc
Efφ = γ.

Let

Ak =
{

(x1, x2, . . . , xk) :
1
k

∑
φ(Xi) >

(α + γ)
2

}
Then P k

f0
(Ak) = P k

f0
(
∑

φ(Xi) − kEf0φ > k(γ − α)/2), and by Hoeffeding’s inequal-
ity,

P k
f0

(∑
φ(Xi) − kEf0φ >

k(γ − α)
2

)
≤ e

−k2(γ−α)2

4k = e
−k(γ−α)2

4

On the other hand, for f ∈ U c

P k
f (Ak) ≥ P k

f

(∑
φ(Xi) − kEfφ >

k(α − γ)
2

)

Because α − γ < 0, by applying Hoeffeding’s inequality to −φ, we get

Pf (Ak) ≥ 1 − e
−k(γ−α)2

4

and thus φk = IAk
provides the required sequence of tests.

To move on to the general case, suppose

Ef0φm(X1, X2, . . . , Xm) = α < inf
f∈Uc

Efφm(X1, X2, . . . , Xm) = γ

From what we have just seen, if n = km, then there is a set Ak with P n
f0

(Ak) ≤
e−n(γ−α)2/4m. If km < n ≤ (k + 1)m, then

P n
f0

(Ak) ≤ e
−nkm(γ−α)2

n4m

≤ e
−nk(γ−α)2

(k+1)4m ≤ e
−n(γ−α)2

8m

Thus, setting β = (γ − α)2/8m, we have the exponential bound for φn = IAk
with

respect to Pf0 . A similar argument yields the corresponding inequality for inf
f∈Uc

Pf (Ak).

Corollary 4.4.1. Let ν be any probability measure on U c. When there is a φn(Xn)
such that Efn

0
φn(Xn) ≤ Ce−nβ and inff∈Uc Efφn(Xn) ≥ 1 − Ce−nβ, we have ||f0 −∫

fn ν(df)|| ≥ 2(1 − 2Ce−nβ), where fn is the n-fold product density
∏n

1 f(xi).
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Theorem 4.4.1 (Schwartz). Let Π be a prior on Lµ. If f0 ∈ Lµ, and U satisfy

(i) f0 is in the K-L support of Πand

(ii) there exists a uniformly consistent sequence of tests for testing H0 : f = f0

versus H1 : f ∈ U c,

then Π(U |X1, X2, . . . , Xn) → 1 a.s P∞
f0

Proof. Because

Π(U c|X1, X2, . . . , Xn) =

∫
Uc

∏n
1 f(Xi) Π(df)∫

Lµ

∏n
1 f(Xi) Π(df)

=

∫
Uc

∏n
1

f(Xi)
f0(Xi

Π(df)∫
Lµ

∏n
1

f(Xi)
f0(Xi)

Π(df)

it is enough to show that the last term in this expression goes to 0 a.s. P∞
f0

.
We will show in Lemma 4.4.1 that condition (i) implies

for every β > 0, lim inf
n→∞

enβ

∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) = ∞ a.e.P∞
fo

(4.1)

By Proposition 4.4.1, there exist exponentially consistent tests for testing f0 against
U c. Using these we invoke Lemma 4.4.2, by taking Vn = U c for all n to show that

for some β0 > 0, lim
n→∞

enβ0

∫
Uc

n∏
1

f(Xi)
f0(Xi)

Π(df) = 0 a.e.P∞
fo

(4.2)

By taking β = β0 in (4.1) it easily follows that the ratio in (4.4.1) goes to 0 a.e.

Lemma 4.4.1. If f0 is in the Kullback-Leibler support of Π then

for every β > 0, lim inf
n→∞

enβ

∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) = ∞ a.e.P∞
fo

Proof. ∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) ≥
∫

Kε(f0)
e− ∑n

1 log f0
f

(Xi)

For each f in Kε(f0), by the law of large numbers

1
n

log
f0

f
(Xi) → −K(f0, f) > −ε a.s P∞

f0
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Equivalently, for each f in Kε(f0),

en(2ε− 1
n

log f0
f

(Xi)) → ∞ a.s P∞
f0

(4.3)

Hence by Fubini, there is a Ω0 ⊂ Ω of P∞
f0

measure 1 such that, for each ω ∈ Ω0, for
all f in Kε(f0), outside a set of Π measure 0, (4.3) holds. Using Fatou’s lemma,

lim inf en2ε

∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) ≥ lim inf en2ε

∫
Kε(f0)

n∏
1

f(Xi)
f0(Xi)

Π(df)

≥
∫

Kε(f0)
en(2ε− 1

n

∑
log f0

f
(Xi)(ω)) Π(df) → ∞

We will state the next lemma in a form slightly stronger than what we need.

Lemma 4.4.2. If there exist tests φn(Xn) and sets Vn with lim infn Π(Vn) > 0,
such that for some β > 0,

Ef0φn(Xn) ≤ Ce−nβ

and
inf

f∈Vn

Efφn(Xn) ≥ 1 − Ce−nβ

then

for some β0 > 0, lim
n→∞

enβ0

∫
Vn

n∏
1

f(Xi)
f0(Xi)

Π(df) = 0 a.e. P∞
fo

Proof. Set qn(x1, x2, . . . , xn) = (1/Π(Vn)
∫

Vn

∏n
1 f(Xi) Π(df). Denoting by A(fn

0 , qn) =∫ √∏
f0(xi)

√
qn(xi) dµ, by Corollaries 4.4.1 and 1.2.1 , there is 0 < r < 1 such that

A(fn
0 , qn) ≤

√
(1 − ||P − Q||2

4
) ≤ 2Ce−nr

Thus

P n
f0

{
qn(Xn)∏

f0(Xi)
≥ e−nr

}
= P n

f0

{√
qn(Xn)∏

f0(Xi)
≥ e−n r

2

}
≤ 2Cen r

2 e−nr

An application of Borel-Cantelli yields

qn(Xn)∏
f0(Xi)

≤ e−nr a.s P∞
f0
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and we have
1

Π(Vn)
en r

2

∫
Vn

∏n
1 f(Xi)∏n
1 f0(Xi)

Π(df) → 0 a.s P∞
f0

Since lim inf Π(Vn) > 0, we have the conclusion.

Remark 4.4.1. The role of the assumption that f0 is in the Kullback-Leibler support
is to ensure that (4.1) holds. Sometimes it might be possible to verify it by direct
calculation without invoking the K-L support assumption. We will see an example of
this kind in the next chapter.

Let f0 be in the K-L support of Π. In order to apply the Schwartz theorem, we
need to identify neighborhoods of f0 for which there exists a uniformly consistent test
for H0 : f = f0 vs H1 : f ∈ U c.

Let U be a weak neighborhood of the form

U =
∫

fdP −
∫

fdP0 < ε, f bounded continuous (4.4)

Because f is bounded, by adding a constant we make it nonnegative and multiplying
by a positive constant we can make 0 ≤ f ≤ 1. Then U has the same expression in
terms of this transformed f , with perhaps a different ε. Now f is a test function and
which separates P0 and U c. Thus for neighborhoods of the form displayed we have an
unbiased test and consequently a uniformly consistent sequence of tests for

H0 : P = P0 H1 : P ∈ U c

For any test function f , |
∫

fdP −
∫

fdP0| < ε iff
∫

fdP −
∫

fdP0 < ε and∫
(1 − f)dP −

∫
(1 − f)dP0 < ε. In other words U = {P : |

∫
fdP −

∫
fdP0| < ε} can

be expressed as intersections of sets of the type in (4.4).

Theorem 4.4.2. Let Π be a prior on Lµ. If f0 is in the K-L support of Π, then
the posterior is weakly consistent at f0 .

Proof. If U = {P : |
∫

fidP −
∫

fidP0| < εi : 1 ≤ i ≤ k} then

U = ∩k
1{P : |

∫
fidP −

∫
fidP0| < εi}

Hence it is enough to show that the posterior probability of each of the sets in the
intersection goes to 1 a.s f0. By the discussion preceding the theorem, {P : |

∫
fidP −
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fidP0| < εi} is an intersection of two sets of the type displayed in (4.4). Since the

Schwartz condition is satisfied for these sets

Π(U |X1, X2, . . . , Xn) → 1 a.s P∞
f0

.

Further, using a countable base for weak neighborhoods, we can ensure that almost
surely P∞

f0
, for all U , Π(U |X1, X2, . . . , Xn) → 1.

If we have a tail free prior on densities, like a suitable Polya tree prior, then we do
not need a condition like “f0 is in the K-L support of Π” to prove weak consistency of
the posterior. On the other hand, consistency is proved for a tail free prior by using
a Schwartz like argument for finite-dimensional multinomials, which tacitly uses the
condition of f0 being in the K-L support. See also the result in the next section that
establishes posterior consistency without invoking Schwartz’s condition.

Applications of Schwartz’s theorem appear in Chapters 5, 6 and 7.

4.4.2 L1-Consistency

What if U is a total variation neighborhood of f0? LeCam [122] and Barron [7] show
that in this case, if f0 is nonatomic, then a uniformly consistent test for H0 : f = f0

versus H1 : f ∈ U c will not exist.
Barron investigated the connection between posterior consistency and existence of

uniformly consistent tests. The next two results are adapted from an unpublished
technical report of Barron. Some of these appear in [8].

Proposition 4.4.2. Suppose for some β0 > 0, Π(Wn) < Ce−nβ0. If f0 is in the
K-L support of Π then

Π(Wn|Xn) → 0 a.s.P∞
f0

Proof. By the Markov inequality

Pf0

{∫
Wn

n∏
1

f

f0
(Xi) Π(df) > e−nβ

}

≤ enβ

∫
Rn

∫
Wn

n∏
1

f

f0
(Xi) Π(df)

n∏
1

f0(Xi) µn(dx1, dx2, . . . , dxn)

= enβ

∫
Wn

Π(df)

≤ enβCe−nβ0
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and if β < β0

P∞
f0

{∫
Wn

n∏
1

f

f0
(Xi) Π(df) > e−nβ i.o

}
= 0

By Lemma 4.4.1, for all β > 0,

enβ

∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) → ∞ a.s P∞
f0

.

The argument is now easily completed.

Theorem 4.4.3 (Barron). Let Π be a prior on Lµ, f0 in Lµ and U be a neigh-
borhood of f0 . Assume that Π(Kε(f0)) > 0 for all ε > 0. Then the following are
equivalent.

(i) There exists a β0 such that

Pf0{Π(U c|X1, X2, . . . , Xn) > e−nβ0 infinitely often} = 0

(ii) There exist subsets Vn, Wn of Lµ, positive numbers c1, c2, β1, β2 and a sequence
of tests {φn(Xn)} such that

(a) U c ⊂ Vn ∪ Wn,

(b) Π(Wn) ≤ C1e
−nβ1, and

(c) Pf0{φn(Xn) > 0 infinitely often} = 0 and
inff∈Vn Efφn ≥ 1 − c2e

−nβ2 .

Proof. (i) =⇒ (ii): Set Sn =
{
(x1, x2, . . . , xn) : Π (U c|x1, x2, . . . , xn) > e−nβ0

}
and

φn = ISn . Let β < β0

Vn =
{
f : Pf (Sn) > 1 − e−nβ

}
Wn =

{
f : Pf (Sc

n) ≥ e−nβ
}

∩ U c

By assumption P∞
f0

{φn = 1 infinitely often } = 0 and by construction

inf
f∈Vn

Efφn > 1 − e−nβ
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Now,

Π(Wn) = Π
({

f : Pf (Sc
n) > e−nβ

}
∩ U c

)
≤ enβ

∫
Uc

Pf (Sc
n) Π(df)

and by Fubini

= enβ

∫
Sc

n

π (U c|xn) dλn(xn)

≤ enβe−nβ0 = e−n(β0−β)

where λn is the marginal distribution of Xn.
(ii) =⇒ (i):

Π(U c|Xn) = Π(U c ∩ Vn|Xn) + Π(U c ∩ Wn|Xn)

Since Wn has exponentially small prior probability, by Proposition 4.4.2

Π(Wn|Xn) → 0 a.s P∞
f0

The proof actually shows that for some β0 > 0, writing i.o. for ”infinitely often”

P∞
f0

{
Π (Wn|Xn) > e−nβ0 i.o

}
= 0

Because Π(U c ∩ Vn|Xn) ≤ Π(Vn|Xn), it is enough to show that, for some β > 0,

P∞
f0

{
Π(Vn|Xn) > e−nβ i.o

}
= 0

Now,

Π(Vn|Xn)
= φn(Xn)Π(Vn|Xn) + (1 − φn(Xn))Π(Vn|Xn)

Since P∞
f0

{φn > 0 i.o. } = 0, for any β > 0, P∞
f0

{φnΠ(Vn|Xn) > 0 i.o. } = 0.
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For any β an application of Markov’s inequality and Borel-Cantelli lemma shows
that

Pf0

{∫
Vn

n∏
1

f

f0
(xi) Π(df)(1 − φn(xn)) > e−nβ

}

≤ enβ

∫
Rn

∫
Vn

n∏
1

f

f0
(xi)(1 − φn(xn)) Π(df)

n∏
1

f0(xi)µn(dxn)

= enβ

∫
Vn

Ef (1 − φn) Π(df)

≤ enβC2e
−nβ2

and if β < β2

Pf0

{∫
Vn

n∏
1

f

f0
(xi) Π(df)(1 − φn(xn)) > e−nβ i.o

}
= 0.

As before by Lemma 4.4.1 for any β,

enβ

∫
Lµ

n∏
1

f(Xi)
f0(Xi)

Π(df) → ∞ a.s P∞
f0

.

The argument is now easily completed.

This last theorem can be used to develop sufficient conditions for posterior con-
sistency on L1-neighborhoods. Barron, Schervish and Wasserman [5] provide such a
condition using bracketing metric entropy. Motivated by their result, we prove the
following.

Definition 4.4.5. Let G ⊂ Lµ. For δ > 0, the L1-metric entropy J(δ,G) is defined
as the logarithm of the minimum of all n such that there exist f1, f2, . . . , fn in Lµ

with the property G ⊂ ∪n
1{f : ‖f − fi‖ < δ}.

Theorem 4.4.4. Let Π be a prior on Lµ. Suppose f0 ∈Lµ and Π(Kε(f0)) > 0 for
all ε > 0. If for each ε > 0, there is a δ < ε, c1, c2 > 0, β < ε2/2, and Fn ⊂ Lµ such
that, for all n large,

1. Π(F c
n) < C1e

−nβ1,

2. J(δ,Fn) < nβ,
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then the posterior is strongly consistent at f0.

Proof. Let U = {f : ‖f−f0‖ < ε}, Vn = Fn∩U c, and Wn = F c
n. We will argue that the

pair (Vn, Wn) satisfy (ii) of Theorem 4.4.3. Here U c ⊂ Vn ∪Wn and Π(Wn) < c1e
−nβ1 .

Let g1, g2, . . . , gk in Lµ be such that Vn ⊂ ∪k
1Gi where Gi = {f : ‖f − gi‖ < δ}.

Let fi ∈ Vn ∩ Gi. Then for each i = 1, 2, . . . , k, ‖f0 − fi‖ > ε and if f ∈ Gi, then
‖f0 − f‖ > ε− δ. Consequently for each i = 1, 2, . . . , k, there exists a set Ai such that

Pf0(Ai) = α and Pfi
(Ai) = γ > α + ε

Hence if f ∈ Gi, then Pf (Ai) > γ − δ > α + ε − δ.
Let

Bi =

{
(x1, x2, . . . , xn) :

1
n

n∑
j=1

IAi
(xj) ≥ (γ + α)/2

}

A straightforward application of Hoeffeding’s inequality shows that

Pf0(Bi) ≤ exp[−nε2/2]

On the other hand, if f ∈ Gi,

Pf (Bi) ≥ Pf

{
1
n

n∑
j=1

IAi
(xj) − Pf (Ai) ≥ (α − γ)

2
+ δ

}

≥ Pf

{
n−1

n∑
j=1

IAi
(xj) − Pf (Ai) ≥ −ε

2
+ δ

}
(4.5)

Applying Hoeffeding’s inequality to −n−1 ∑n
j=1 IAi

(xj), the preceding probability
is greater than or equal to

1 − exp[−(n/2)(ε/2 − δ)2]

If we set
φn(X1, X2, . . . , Xn) = max

1≤i≤k
IBi

(X1, X2, . . . , Xn)

then
Ef0φn ≤ k exp[−nε2/2]

and
inf

f∈Vn

Efφn ≥ 1 − exp[−(n/2)(ε/2 − δ)2]
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By choosing log k ≤ J(δ,Fn) < nβ, we have Ef0φn ≤ exp[−n(ε2/2 − β)]. Since
β < ε2/2, all that is left to show is

Pf0{φn > 0 infinitely often} = 0

This follows easily from an application of the Borel Cantelli lemma and from the fact
that φn takes only values 0 or 1.

This last theorem is very much in the spirit of Barron et al. [5]. Their theorem is in
terms of bracketing entropy. If G ⊂ Lµ, for δ > 0, the L1-bracketing entropy J1(δ,G)
is defined as (here we use a weaker notion that suffices for our purpose) the logarithm
of the minimum of all n such that there exist g1, g2, . . . , gn satisfying

1.
∫

gi ≤ 1 + δ,

2. for every g ∈ G there exists an i such that g ≤ gi.

We feel that in many examples the L1 entropy is easier to apply than bracketing
entropy.

4.5 Consistency via LeCam’s inequality

It is of technical interest that one can prove posterior consistency without assuming
that the prior is tail free or satisfies the condition of f0 being in the K-L support. An
inequality of LeCam [121] is useful to do this.

Let Π be a prior on M(X ). For any measurable subset U of M(X ), let λU be the
probability measure on X given by

λU(B) =
1

Π(U)

∫
U

P (B)dΠ(P )

We will let λ stand for the marginal on X .
If given P , X ∼ P , and Π(U |Xn) is the posterior probability of U , then

Π(U |·) =Π(U)
dλU

dλ
(·) =

Π(U)dλU

Π(U)dλU + Π(U c)dλUc

(·)

≤ Π(U)
Π(V )

dλU

dλV

(·) if V ⊂ U c
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Also recall that the L1-distance satisfies

‖P − Q‖ = 2 sup
B

|P (B) − Q(B)| = 2 sup
0≤f≤1

∣∣∣∣
∫

fdP −
∫

fdQ

∣∣∣∣
where of course Bs and fs are measurable.

Lemma 4.5.1 (LeCam). Let U, V be disjoint subsets of X . For any P0 and any
test function φ

∫
Π(V |x)dP0(x) ≤ ‖P0 − λU‖ +

∫
φdP0 +

Π(V )
Π(U)

∫
(1 − φ)dλV (4.6)

Proof.

∫
Π(V |x)dP0(x) =

∫
φ(x)Π(V |x)dP0(x) +

∫
(1 − φ(x))Π(V |x)dP0(x)

adding and subtracting
∫

(1 − φ(x))Π(V |x)dλU(x)

≤
∫

φ(x)dP0(x) +
[∫

(1 − φ(x))Π(V |x)dP0(x) −
∫

(1 − φ(x))Π(V |x)dλU(x)
]

+
∫

(1 − φ(x))Π(V |x)dλU(x)

≤
∫

φ(x)Π(V |x)dP0(x) + ‖P0 − λU‖ +
Π(V )
Π(U)

∫
(1 − φ)dλV

where the first term comes from observing

0 ≤ Π(V |x) ≤ 1

and the second from
0 ≤ (1 − φ)(x)Π(V |x) ≤ 1

The third term follows by noting that

Π(V |x) ≤ (Π(V )/Π(U))(dλV /dλU)
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Our interest is when V is the complement of a neighborhood of P0 and we have
X1, X2, . . . , Xn which are given P , i.i.d. P . If Un ∩ V = ∅ and φn are test functions,
then we can write LeCam’s inequality as

Π(V |Xn) ≤ ‖P n
0 − λn

Un
‖ +

∫
φndP n

0 +
Π(V )
Π(Un)

∫
(1 − φn)dλV

where of course P n is the n-fold product of P and λn
U = (

∫
U

P ndΠ(P ))/Π(U).

Theorem 4.5.1. Let U δ
n = {P : ‖P0 − P‖ < δ/n}. If for every δ, {Π(U δ

n) : n ≥ 1}
is not exponentially small, i.e.,

for all β > 0, enβΠ(U δ
n) → ∞ (4.7)

then the posterior is weakly consistent at P0

Proof. It is not hard to see that

‖P0 − P‖ < δ/n ⇒ ‖P n
0 − P n‖ < δ

Consequently the first term goes to δ. Since for any weak neighborhood we can choose
an exponentially consistent test φn for testing H0 : f = f0 against H1 : f ∈ V c

n , and
by assumption for all β > 0, enβΠ(U δ

n) → ∞, it is not hard to see that the third term
goes to 0. Because δ is arbitrary, the result follows.

Remark 4.5.1. By Proposition 1.2.1, ‖P − Q‖ ≤ 2H(P, Q). Hence Theorem 4.5.1
holds if we take U δ

n = {P : H(P0, P ) < δ/n}
Suppose (4.7) holds and Vn are sets such that for some β0 > 0, Π(Vn)enβ0 → 0; then

choosing φn ≡ 0 it follows easily that Π(Vn|X1, X2, . . . , Xn) → 0. In other words, we
have an analog of Proposition 4.4.2. Consequently, we also have an analog of Theorem
4.4.4.

Theorem 4.5.2. Let Π be a prior on Lµ. If for each ε > 0, there is a δ < ε,
c1, c2 > 0, β < ε2/2, and Fn ⊂ Lµ such that for all n large,

1. Π(F c
n) < C1e

−nβ1 and

2. J(δ,Fn) < nβ

Further if with U δ
n = {P : ‖P0 − P‖ < δ/n},

for every δ, for all β > 0, enβΠ(U δ
n) → ∞

then the posterior is strongly consistent at f0.



5
Density Estimation

5.1 Introduction

As the name suggests, density estimation is the problem of estimating the density of a
random variable X using observations of X. In this chapter we discuss some Bayesian
approaches to density estimation.

Density estimation has been extensively studied from the non-Bayesian point of
view. These include many methods of estimation starting from simple histogram
estimates to more sophisticated kernel estimates, estimates through Fourier series
expansions, and more recently wavelet-based methods. In addition, the asymptotics
of many of these methods, including minimax rates of convergence are available. There
are many good references; Silverman [151] and Van der Vaart [160] provide a good
starting point.

Consider the simple case when the density is to be estimated through a histogram.
Important features of the histogram are number of bins, their location and their width.
In order to reflect the true density, these features of the histogram estimate need to be
dependent not just on the number of observations but on the observations themselves.
The need for such a dynamic choice has been recognized and there have been many
reasonable, ad hoc, prescriptions. This issue persists in one form or another with the
other methods of estimation such as kernel estimates. The Bayesian approach, via
the posterior provides a rational method for choosing these features.
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In this chapter we discuss histogram priors of Gasperini and mixtures of nor-
mal densities which were introduced by Lo [130] and further developed by Escobar,
Mueller and West [ [168],[59] and [170]]. Gaussian process priors developed by Leonard
[[126],[127]] and studied by Lenk [125] are some what different in sprit and are also
discussed. See also Hjort [98] and Hartigan [94].

Consistency is dealt with at some length for the histogram and the mixture of nor-
mal kernel priors. These partly demonstrate different techniques to show consistency.
For the priors on histograms direct calculation is easier than invoking the Schwartz
theorem whereas for the mixture of normal kernels Schwartz’s theorem is a conve-
nient tool. This chapter is beset with long computations. To an extent they are both
natural and necessary.

5.2 Polya Tree Priors

A prerequisite for Bayesian density estimation is, of course, a prior on densities.
Since the Dirichlet process and their mixtures sit on discrete measures, these are
clearly unsuitable. On the other hand we have saw in Chapter 3 that by choosing
the parameters appropriately we can get Polya tree priors that are supported by
densities. Since the posterior for these priors involves simple updating rules, it is
natural to consider Polya trees as a candidate in density estimation.

Recall that if we have a Polya tree with partitions {Bε : ε ∈ Ej : j ≥ 1} and pa-
rameters {αε : ε ∈ E∗

k} : k ≥ 1}, the predictive density at x is given by

α(x) = lim
k→∞

k∏
1

1
λ(Bε1(x)ε2(x)...εi(x))

αε1(x)ε2(x)...εi(x)

αε1(x)ε2(x)...εi(x)0 + αε1(x)ε2(x)...εi(x)1

where εi(x) = 1 if x ∈ Bε1(x)ε2(x)...εi(x) and 0 otherwise.
If X1 = x1 is observed and x1 ∈ Bε′

1,ε′
2,...ε′

k
for a sequence (ε′

1, ε
′
2, . . .) of 0s and 1s,

and if ε and ε′ differ for the first time at the (j + 1)th coordinate, then the predictive
density α(x|X1 = x1) is

[
α(x|X1 = x1) =

j∏
1

1
λ(Bε1(x)ε2(x)...εi(x))

αε1(x)ε2(x)...εi(x) + 1
αε1(x)ε2(x)...εi(x)0 + αε1(x)ε2(x)...εi(x)1

]
[ ∞∏

j+1

1
λ(Bε1(x)ε2(x)...εi(x))

αε1(x)ε2(x)...εi(x)

αε1(x)ε2(x)...εi(x)0 + αε1(x)ε2(x)...εi(x)1

]
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As is to be expected the predictive density depends on the partition. While a
general expression for the predictive density given X1, X2, . . . , Xn is cumbersome to
write down, it is clear that sequential updating is possible.

The density estimates from Polya tree priors have no obvious relation with classical
density estimates. Further, the priors lead to estimates that lack smoothness at the
endpoints of the defining partition. Lavine [118] observes that this disadvantage can
be overcome by considering a mixture of {PT (Π(θ), α(θ))} processes, where the par-
titions themselves depend on the hyperparameter θ. One advantage of the Polya tree
priors is the relative ease with which one can conduct robustness studies; see Lavine
[119].

If we have a prior on densities, as discussed in Chapter 4 the consistency of interest
is L1-consistency. It is shown in Barron et al. [5] that if αn = 8n, the posterior is L1-
consistent. Such a high value of αn implies that the random P s are highly concentrated
around the prior guess E(P ), so that posterior consistency will be an extremely slow
process. Hjort and Walker [165] have used a some what curious argument and show
that with αn = n2+δ the Bayes estimate is L1-consistent.

5.3 Mixtures of Kernels

While Polya tree priors can be made to sit on densities, it is not possible to constrain
the support to have smoothness properties. Much before Polya tree priors became
popular, Lo [131] had developed a useful construction of priors on densities. Much of
this section is based on Lo [131] and Ferguson [63].

Let Θ be a parameter set, typically R or R2. Let K(x, τ) be a kernel, i.e.,for each
τ, K(·, τ) is a probability density on X with respect to some σ-finite measure. For any
probability P on Θ, let

K(x, P ) =
∫

K(x, τ)dP (τ)

For each P , K(·, P ) is a density on X and Lo’s method consists of choosing a
mixture K(·, P ) at random by choosing P according to a Dirichlet process. These
would be referred to as Dirichlet mixtures of K(·, P ).

Formally the model consists of P ∼ Dα, given P ; X1, X2, . . . , Xn are i.i.d. K(·, P ).
If α = Mᾱ, where ᾱ is a probability measure, then the prior expected density is

f0 =
∫

K(·, P )Dα(dP ) =
∫

K(·, τ)ᾱ(dτ)
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It is convenient to view the X1, X2, . . . , Xn as arising in the following way: P ∼
Dα given P ; τ1, τ2, . . . , τn are i.i.d P and given P , τ1, τ2, . . . , τn; X1, X2, . . . , Xn are
independent with Xi ∼ K(·, τi).

The latent variables τ1, τ2, . . . , τn although unobservable, provide insight into the
structure of the posterior and are useful in describing and simulating the posterior.

A simple kernel would be to take τ = (i, h) : h > 0

K(x, (i, h)) =
I(ih,(i+1)h]

h
(x)

With this kernel one gets random histograms.
Another very useful kernel is the normal kernel. Here τ = (θ, σ) and K(x, θ, σ) =

(1/σ)φ((x−θ)/σ) where φ is the standard normal density. In this case the prior picks
a random density that is a mixture of normal densities. The weak closure of such
mixtures is all of M(R).

The prior is a probability measure on the space of densities {K(·, P ) : P ∈ M(R)}
and so is the posterior given X1, X2, . . . , Xn. For the normal kernel P is in general
not identifiable. It is known from [156] that if P1 and P2 are discrete measures with
finite support, then K(·, P1) = K(·, P2) iff P1 = P2. It is easy to see that if P1 =
N(0, 1) × δ(0,σ0) and P2 = δ(0,

√
1+σ2

0), then K(·, P1) = K(·, P2) = N(0,
√

1 + σ2
0).

Thus in general, P is not identifiable. Identifiability of P when restricted to discrete
measures is still unresolved [63].

If we denote by Π(·|X1, X2, . . . , Xn) the posterior distribution of P given X1, . . . , Xn

and by H(·|X1, X2, . . . , Xn) the posterior distribution of τ1, . . . , τn given X1, . . . , Xn

then

Π(·|X1, X2, . . . , Xn) =
∫

Π(·|(τ1, X1), . . . , (τn, Xn))H(dτ |X1, X2, . . . , Xn)

Since P and X1, X2, . . . , Xn are conditionally independent given τ1, τ2, . . . , τn,

Π(·|(τ1, X1), . . . , (τn, Xn)) = Π(·|(τ1, τ2, . . . , τn)) = Dα +
∑

δτi

and

Π(·|X1, X2, . . . , Xn) =
∫

Dα+
∑

δτi
H(dτ |X1, X2, . . . , Xn)

The evaluation of these quantities depend on H(·|X1, X2, . . . , Xn). If α has a den-
sity, the joint density α̃(τ1, τ2, . . . , τn) is discussed in Chapter 3 (see equation 3.15).
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Recall that if C1, C2, . . . , CN(P ) is a partition of {1, 2, . . . , n} then the density (with
respect to the Lebesgue measure on Rk) at

τ = (τ1, τ2, . . . , τn) : τi = τi′ , i, i
′ ∈ Cj, j = 1, 2, . . . N(P )

is
N(P )∏

1

α(τj)(ej − 1)!∏n
1 (M + i)

(5.1)

where ej = #Cj and hence the joint density of the xs and τs at

τ = (τ1, τ2, . . . , τn) : τi = τi′ , i, i
′ ∈ Cj, j = 1, 2, . . . N(P )

is
N(P )∏

1

α(τj)(ej − 1)!
∏

l∈Cj
K(xl, τj)∏n

1 (M + i)

Consequently, the posterior density of τ is

∏N(P )
1 α(τj)(ej − 1)!

∏
l∈Cj

K(xl, τj)∑
P

∫ ∏N(P )
1 α(τj)(ej − 1)!

∏
l∈Cj

K(xl, τj)d(τj)

Thus∫ (
1
n

∑
K(x, τi)

)
H(dτ |X1, X2, . . . , Xn) (5.2)

=
1
n

∑
P

∑N(P )
1 (ej − 1)!

∫
K(x, τj)

∏
l∈Ci

K(xl, τj)α(τj)dτj∑
P

∫ ∑N(P )
1 (ej − 1)!

∫ ∏
l∈Ci

K(xl, τj)α(τj)dτj

(5.3)

Since the Bayes estimatef̂ of f is, by 5.2, this reduces to

M

M + n
f0(x) +

n

M + n

∫ (∑
K(x, τi)

)
H(dτ |X1, X2, . . . , Xn)

Hence, we have that the Bayes estimate of f is

M

M + n

∫
K(x, τ)ᾱ(dτ)

+
n

M + n

∑
P

W (P )
ei

n

∫
K(x, τ)

∏
l∈Ci

K(xl, τ)α(τ)dτ∫ ∏
l∈Ci

K(xl, τ)α(τ)dτ
(5.4)
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where P = {C1, C2, . . . , CN(P )} is a partition of {1, 2, . . . , n}, ei is the number of
elements in Ci, and

W (P ) =
Φ(P )∑
Φ(P )

, Φ(P ) =
N(P )∏

1

{(ei − 1)!
∏
l∈Ci

K(xl, τ)α(τ)dτ}

The Bayes estimate is thus composed of a part attributable to the prior and a
part attributable to the observations. Since for the Dirichlet, M → 0 corresponds to
removing the influence of the prior, it is tempting to consider the estimate∫ (

1
n

∑
K(x, τi)

)
H(dτ |X1, X2, . . . , Xn)

as a partially Bayesian estimate with the influence of the prior removed. Unfortu-
nately, this interpretation is quite misleading. As M → 0 the Bayes estimate (5.4)
goes to ∫

K(x, τ1)α̃(τ1)
∏n

1 K(xi, τ1)dτ1∫
α̃(τ1)

∏n
1 K(xi, τ1)dτ1

(5.5)

corresponding to a partition in which all τi are equal to τ1. All other terms have a
power of M and tend to 0. The term (5.5) corresponds to assuming that all the Xis
came from a single parametrized population with density K(x, τ) and so is highly
parametrized.

The apparent paradox is resolved by the fact that role of the hyperparameters
depends on the context. Here M decides the likelihood of different clusters and in fact
relatively large values of M help bring the Bayes estimate close to a data-dependent
kernel density estimate. For a penetrating discussion of the role of M , see discussion
by Escobar [66] and West et al. [170].

Clearly to calculate quantities like
∫

K(x, τ)α(dτ) it would be convenient if α is
conjugate to K(., .). Thus if K is the normal kernel a convenient choice for ᾱ is a
prior conjugate to N(τ, σ). Hence an appropriate choice for ᾱ is the inverse normal-
gamma prior, i.e., the precision ρ = 1/σ2 has a gamma distribution and given ρ, τ is
N(µ, 1/ρ). Ferguson [63] has interesting guidelines for choosing the parameters of ᾱ
and M .

The expression for the Bayes estimate, even though it has an explicit expression, in-
volves enormous computation. The posterior for Dirichlet mixtures of normal densities
is amenable to MCMC methods. Gibbs methods are based on successive simulations
from one-dimensional conditional distributions of τi given τj, j �= i, X1, X2, . . . , Xn.
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For a good exposition see Schervish [144] and Chen et al. [32]. The MCMC methods
were developed in the present context by Escobar, Mueller and West ([59], [169],[170]).
A good survey of the issues underlying MCMC issues is given by Escobar and West
in [60].

To implement MCMC one essentially works with the conditional distributions of
τi given τj, j �= i, X1, X2, . . . , Xn, which may be written explicitly from the posterior
distribution of the τs given earlier or directly [32]. In practice, α has a location and
scale parameter (µ, σ), which leads to some complications. In the joint distribution
of τs one replaces α̃ by αµ,σ and multiplies by the prior Π(µ, σ). Starting from this,
one can calculate all the relevant posterior distributions needed in MCMC. See also
Neal [135].

Since no explicit expressions are available for the Bayes estimate of f(x), it would
be worth exploring whether approximations like Newton [137] can be developed.

The next issue would be to do the asymptotics. In Section 5.4 we do this for a
slightly modified version of the mixture model. While formal asymptotics is yet to be
done for the priors discussed in this section, we expect that the results and techniques
of the next section will go through with minor modifications.

5.4 Hierarchical Mixtures

This method is a slight variation of the method discussed in the last section.
Let K(x) be a density on R. For each h > 0 consider the kernel Kh(x, θ) =

(1/h)K((x − θ)/h). For any P ∈ M(R), let

Kh,P =
∫

Kh(x, θ)dP (θ)

Note that Kh,P is just the convolution Kh ∗ P . If P ∼ Dα, then we get a prior on

Fh = {Kh,P : P ∈ M(R)}

We now view h as the smoothing “window” and think of h as a hyperparameter
and put a prior µ for h. The calculations are very similar to those of the last section
except that we need to incorporate the hyperparameter h.

As before, the observations can be thought of as arising from: h ∼ µ, given
h; P ∼ Dα; given h, P ; θ1, θ2, . . . , θn are i.i.d. P and given h, P ,and θ1, θ2, . . . , θn;
X1, X2, . . . , Xn are independent with Xi ∼ Kh(·, θi).
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The posterior distribution of P given X1, X2, . . . , Xn is

Π(·|X1, X2, . . . , Xn)

=
∫

Π(·|(h, θ1, θ2, . . . , θn, X1, . . . , Xn))H(d(h, θ)|X1, X2, . . . , Xn) (5.6)

Because P and X1, X2, . . . , Xn are conditionally independent given h, θ1, θ2, . . . , θn,

Π(·|(h, θ1, θ2, . . . , θn, X1, . . . , Xn)) = Dα +
∑

δθi

and
Π(·|X1, X2, . . . , Xn) =

∫
Dα+

∑
δθi

H(d(h, θ)|X1, X2, . . . , Xn)

As before, if µ and αh are densities with respect to Lebesgue measure then the
posterior density of (h, θ1, θ2, . . . , θn) is given by

µ(h)α̃(θ1, θ2, . . . , θn)
∏n

1 Kh(Xi − θi)∫
µ(h)α̃(θ1, θ2, . . . , θn)

∏n
1 Kh(Xi − θi)dhdθ

where α̃ is given by 3.15.
An expression analogous to (5.4) for the Bayes estimate can be written. In the

next two sections we look at consistency problems in the case when K gives rise to
histograms and when K is the standard normal density.

Ishwaran [103] has used a general polya urn scheme to model θis and used these to
construct measures analogous to a prior and established consistency of the posterior.
These are then applied to a variety of interesting problems.

5.5 Random Histograms

In this section we consider priors that choose at random first a bin of width h and
then a histogram with bins (ih, (i+1)h : h ∈ N ) where N = {0±1±2 . . .}. Formally,
in the hierarchical model we take Θ = N and the kernel K(x) = I(0,1](x).

Thus the model consists of, h ∼ µ; given h; choose P on integers with P ∼ Dαh

and X1, X2, . . . , Xn are, given h, P , i.i.d. fh,P where

fh,P (x) =
∞∑

i=−∞

P{i}
h

I(ih,(i+1)h](x)
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One could introduce intermediate latent variables θ1, θ2, . . . , θn which are given h, P ;
i.i.d. P . However, they are not of much use here because Xi completely determines
θi, namely, θi = j iff Xi ∈ (jh, (j + 1)h].

For each h, let njh be the number of Xis in the bin (jh, (j + 1)h] and Jh = {j :
njh > 0}.

A bit of reflection shows that the posterior distribution of P given h, X1, X2, . . . , Xn

is Dαh+
∑

njhδj
, where δj is the point mass at j.

If µ is a density on (0, ∞) then the joint density of h and X1, X2, . . . , Xn is

µ(h)
∏∞

1 [αh(i)][nhi−1]h−n

M
[n]
h

where Mh = αh(N) for any positive real x and positive integer k, x[k] = x(x +
1) . . . (x + k − 1). Hence the posterior density Π(h|X1, X2, . . . , Xn) is

µ(h)
∏∞

1 [αh(i)][nhi−1]h−n∫ ∞
0 µ(h)

∏∞
1 [αh(i)][nhi−1]h−ndh

(5.7)

Thus the posterior is of the same form as the prior, with µ updated to (5.7) and
αh updated to αh +

∑
nhjδj.

Since each Dαh
leads to the expected density

fᾱh
(x) =

∑ ᾱh(j)
h

I(jh, (j + 1)h](x)

the prior expectation is given by

f0(x) =
∫

fᾱh
(x)µ(h)dh

Using the conjugacy of the prior, an expression for the Bayes estimate given the
sample can be written.

A choice of µ which is positive in a neighborhood of 0 will allow for wide variability
in the choice of histograms and will ensure that the prior has all densities as its
support. If the prior belief leads to the density f0 then an appropriate choice of ᾱh

would be

ᾱh(j) =
∫ (j+1)h

jh

f0(x)dx

Of course, this choice would lead to a prior expected density, which may not be
equal to f0, but it can be viewed as an approximation to f0.



150 5. DENSITY ESTIMATION

5.5.1 Weak Consistency

Gasperini introduced these priors in his thesis and under some assumptions on αh

showed that if the true f0 is not constant on any interval then under the posterior
distribution given X1, X2, . . . , Xn, h goes to 0, as n → ∞. Thus the posterior stays
away from densities that are far from f0. Under additional assumptions on f0, he also
showed that the Bayes estimate of f converges in L1 to f0. In the spirit of Chapter
4 we investigate the consistency properties of the posterior. We confine ourselves to
the case when the random histograms all have support on (0, ∞], that is, the case
when P is a probability on N + = {0, 1, 2, . . .}. This restriction is not required but
simplifies the proof of Lemma 5.5.2. Some of the following calculations are taken from
Gasperini’s thesis, but the main ideas of the proof and the main results are different.

The consistency results in this chapter typically describe a large class of densities
where consistency obtains. We saw in Chapter 4 that when we have a prior Π on
densities, the Schwartz condition Π(Kf0(ε)) > 0 for all ε > 0 (recall Kf0(ε) is the ε
Kullback-Leibler neighborhood of f0) ensures weak consistency at f0. Thus it seems
appropriate, in the context of histogram priors, that we should attempt to describe f0s
which would satisfy Schwartz’s condition. This would entail relating the tail behavior
of f0 to the tail behavior of αhs. This is to be expected but leads to somewhat
cumbrous and restrictive conditions. It turns out that histogram priors are amenable
to direct calculations that lead to consistency results.

To be more specific, recall that Schwartz’s condition (Lemma 4.4.1) was used to
show that for all β > 0,

enβ

∫
F

∏ f(xi)
f0(xi)

dΠ(f) → ∞ a.s. P∞
f0

Under some assumptions we will establish this result directly. The following propo-
sition indicates the steps involved.

Proposition 5.5.1. Let F be a family of densities. For each h ∈ H, Πh is a prior
on F ; µ is a prior on H, i.e., h ∼ µ; given h; f ∼ Πh and given h, f ; X1, X2, . . . , Xn

are i.i.d. f . If for a density f0,

for every β > 0

µ

{
h : enβ

∫
F

∏ f(xi)
f0(xi)

dΠh(f) → ∞ a.s. P∞
f0

}
> 0 (5.8)

then the posterior is weakly consistent at f0.
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Proof. Let U be a weak neighborhood of f0 and let Π be the prior on the space of
densities induced by µ, Πh. Since we have exponentially consistent tests for testing f0

against U c, it follows from Lemma 4.4.2 that for some β0

enβ0

∫
Uc

n∏
1

f(xi)
f0(xi)

dΠ(f) → 0 a.s. P∞
f0

To establish consistency it is enough to show that

lim inf
n→∞

enβ0

∫
F

n∏
1

f(xi)
f0(xi)

dΠ(f) = lim inf
n→∞

enβ0

∫
F

n∏
1

f(xi)
f0(xi)

dΠh(f)dµ(h)

→∞ a.s. P∞
f0

Consider {
(h, x) : x ∈ R∞, h ∈ H : enβ0

∫
F

n∏
1

f(xi)
f0(xi)

dΠh(f) → ∞
}

By assumption for h in a set of positive µ measure, the h– section of E has measure
1 under P∞

f0
. By Fubini there is a F ⊂ R∞, P∞

f0
(F ) = 1 and for x ∈ F , the x− section

of E has positive µ measure and for each x ∈ F by Fatou

lim inf
n→∞

∫
H

[
enβ0

∫
F

n∏
1

f(xi)
f0(xi)

dΠh(f)

]
dµ(h) = ∞

Assumptions on the Prior (Gasperini)

(i) µ is a prior for h with support (0, ∞).

(ii) For each h, αh is a probability measure on N +, and for all h, αh(1) > 0.

(iii) For each h, there is a constant Kh > 0 such that

αh(j)
αh(j + 1)

< Kh for j = 0, 1, 2 . . .
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Theorem 5.5.1. Suppose that the prior satisfies the assumptions just listed. If f0

is a density such that

(a)
∫

x2f0(x)dx < ∞ and

(b) limh→0
∫

f0 log(f0,h/f0) = 0,

then the posterior is weakly consistent at f0.

Proof. Let Inh =
∫

Fh

∏n
1 (f(xi)/f0(xi))Dαh

(df)
To apply the last proposition it is enough to show that for any β > 0 there exists

h0 such that for each h in (0, h0),

exp[n(β +
log Inh

n
)] → ∞ a.s. P∞

f0
(5.9)

and this follows if for any ε > 0,there exists h0 such that for h ∈ (0, h0),

lim
n

log Inh

n
> −ε a.s. P∞

f0

Then by taking ε = β/2, (5.9) would be achieved.

log Inh

n
=

1
n

log
∫

Fh

n∏
1

f(xi)
f0h(xi)

Dαh
(df) +

1
n

n∑
1

log
f0h(xi)
f0(xi)

where f0h(x) = (1/h)
∫

ih
(i + 1)hf0(y)dy for x ∈ (ih, (i + 1)h].

By assumption b and SLLN for some h0, whenever h < h0,

lim
n

1
n

n∑
1

log
f0h(xi)
f0(xi)

>
−ε

2
a.s. P∞

f0

Note that whenever f ∈ Fh, f is a constant on (ih, (i + 1)h] : i ≥ 0. Consequently
for f ∈ Fh,

n∏
1

f(xi)
f0h(xi)

=
∏
i∈Jh

(f ∗
h(i))nih

(f ∗
0h(i))

nih

where nih = #{xi ∈ (ih, (i + 1)h]}, Jh = {i : nih > 0}, and for any density f , f∗
h

denotes the probability on N given by f ∗
h(j) =

∫ (j+1)h
jh

f(x)dx. Also let fh denote the
histogram fh(x) = f ∗(i)/h for x ∈ (ih, (i + 1)h].
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Since Dαh
is Dirichlet and αh(N ) = 1,

1
n

∫
Fh

∏
i∈Jh

(f ∗
h(i))nih

hn
Dαh

(df) =
1
n

1
Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

Therefore

1
n

log
∫

Fh

n∏
1

f(xi)
f0h(xi)

Dαh
(df) =

1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

− log
∏
i∈Jh

f ∗
0h(i)
hn

It is shown in Lemma 5.5.2 that

1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

−
∑
i∈Jh

nih log
nih

n
→ 0 a.s.P∞

f0
(5.10)

Using (5.10) we have

lim
n→∞

1
n

∫
Fh

∏
i∈Jh

(f ∗
h(i))nih

hn
Dαh

(df)

= lim
n→∞

[
1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

− log h −
∑
i∈Jh

log f ∗
0h(i) + log h

]

= lim
n→∞

∑
i∈Jh

nih

n
log

nih

n
− log h − 1

n
log

∏
i∈Jh

(f ∗
0h(i))

nih

hn

= −
∑
i∈Jh

nih

n
log

nih

n
− log h −

∑
i∈Jh

nih

n
log f ∗

0h(i) + log h

→ 0 a.s. P∞
f0

(5.11)

Lemma 5.5.1. Under the assumptions of the theorem,

max
i∈Jh

i
√

n
→ 0 a.s P∞

f0

Consequently
#Jh√

n
≤

max
i∈Jh

i
√

n
→ 0 a.s P∞

f0
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Proof.

max
i∈Jh

i ≤ {max(X1, X2, . . . , Xn)
h

} + 1

Now max(X1, X2, . . . , Xn)/
√

n → 0. This follows from: If Y1, Y2, . . . , Yn are i.i.d.
(X2

i = Yi in our case) then max(Y1, Y2, . . . , Yn)/n → 0 iff EY1 < ∞. Recall as-
sumption (a) of Theorem 5.5.1.

Lemma 5.5.2. Under the assumptions of the theorem

1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

−
∑
i∈Jh

nih log
nih

n
→ 0 a.s. P∞

f0
(5.12)

Proof. Let ln(h) stand for the first term on the left-hand side. Then

ln(h) =
1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

ln(h) =
1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

1
n

∑
i∈Jh

log Γ(αh(i) + nih)

− 1
n

∑
i∈Jh

log Γ(αh(i)) − log h − 1
n

log Γ(n + 1)

We first show that

1
n

∑
i∈Jh

log Γ(αh(i)) → 0 a.s. P∞
f0

Since Γ(x) ≤ 1/x for 0 ≤ x ≤ 1, for h < ε,

0 ≤ 1
n

∑
i∈Jh

log Γ(αh(i)) ≤ 1
n

n∑
1

log
1

αh(i)
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By using a telescoping argument, the right-hand side of the expression becomes

1
n

N∑
i=2

k∑
j=2

[
log

1
αh(i)

− log
1

αh(i − 1)

]
+

N

n
log 1αh(1)

=
1
n

N∑
2

(N − j + 1) log
αh(j − 1)

αh(j)
+

N

n
log 1αh(1)

≤ (N + 1)(N + 2)
2n

Kh +
N

n
log

1
αh(1)

→ 0 a.s. P∞
f0

(5.13)

By Stirling’s approximation for all x ≥ 1,

log Γ(x) = (x − 1
2
) log x − x + log

√
2π + R(x) 0 < R(x) < 1

and we can write

1
n

log
1

Γ(n + 1)

∏
i∈Jh

1
hn

Γ(αh(i) + nih)
Γ(αh(i))

1
n

∑
i∈Jh

log Γ(αh(i) + nih) − 1
n

∑
i∈Jh

log Γ(αh(i))

=
1
n

∑
i∈Jh

{(αh(i) + nih − 1
2
) log(αh(i) + nih)}

− 1
n

∑
i∈Jh

[
αh(i) − nih − log

√
2π + R(αh(i) + nih)

]
− log h

− 1
n

{(n +
1
2
) log(n + 1) − (n + 1) + log

√
2π + R(n)} (5.14)

Since
∑

i∈Jh
nih = n and

1
n

∑
i∈Jh

[
−αh(i) + log

√
2π + R(αh(i)) + nih − log h

]

≤ (maxi∈Jh
i)(2 + log

√
2π)

n
→ 0 a.s. P∞

f0
(5.15)
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we get

lim
n→∞

|ln(h) −
∑
i∈Jh

nih

nh
log

nih

nh
|

≤ 1
n

∑
i∈Jh

{(αh(i) + nih − 1
2
) log(αh(i) + nih)}

−
∑
i∈Jh

nih

nh
log nih + log n + log h (5.16)

By adding and subtracting 1/n
∑

i∈Jh
nih − 1/2 log nih we have

| 1
n

∑
i∈Jh

{(αh(i) + nih − 1
2
) log(αh(i) + nih) −

∑
i∈Jh

nih

nh
log nih|

≤ |1
n

∑
i∈Jh

αh(i) log(αh(i) + nih)|

+
1
n

∑
i∈Jh

(nih − 1
2
) log(1 +

αh(i)
nih

| +
1
n

∑
i∈Jh

1
2

log nih (5.17)

Using log(1 + x) ≤ x

≤ log(n + 1)
n

+
1
n

+
log n

2n
#Jh

The last term in this expression goes to 0 by Lemma 5.5.2.

The condition α(j−1)/α(j) < K essentially requires that the prior does not vanish
too rapidly in the tails. If our prior expectation f0 is unimodal then it is easy to see
that the condition holds with K =

∫ m+h

m−h
f0(x)ds, where m is the mode of f0.

5.5.2 L1-Consistency

We next turn to L1-consistency. We will use Theorem 4.4.4. Recall that Theorem 4.4.4
required two sets of conditions—one being the Schwartz condition and the other was
construction of a sieve Fn with metric entropy nβ and such that Π(F c

n) is exponen-
tially small. A look at the proof of Theorem 4.4.4 shows that the Schwartz condition
can be replaced by

for all β > 0, lim inf
n→∞

enβ

∫ n∏
1

f(Xi)
f0(Xi)

Π(df) = ∞ a.s P∞
f0
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Since we have already discussed this aspect in the last section, here we shall con-
centrate on the construction of a sieve.

To look ahead our sieve will be Fn = ∪h>hnFan,h
where Fan,h

is the set of histograms
with support [−an, an]. We will compute the metric entropy of Fn and show that for
a suitable choice of hn, an it is of the order nβ. What is then left is to ensure that the
prior gives exponentially small mass to F c

n

Proposition 5.5.2.

Let Pδ
k = {(P1, P2, . . . , Pk) : Pi ≥ 0,

k∑
1

Pi ≥ 1 − δ}

Then
J(Pδ

k, 2δ) ≤ (
k

δ
+

1
2
) log(1 + δ) + k log(1 + δ) − 1

2
log K + 1

Proof. Let K∗ be the largest integer less than or equal to k/δ and consider

P∗ = {P ∈ Pδ
k : Pi = j

δ

k
for some integer j}

We will show that given any P ∈ Pδ
k there is P ∗ ∈ P∗ with ‖P − P ∗‖ < 2δ. The

logarithm of the cardinality of P∗ then gives an upper bound for J(Pδ
k, 2δ).

Let P ∈ Pδ
k. Then since

| Pi∑
Pj

− Pi| =
Pi∑
Pj

(1 −
∑

Pj) ≤ Pi∑
Pj

δ,

we have ‖(Pi/
∑

Pj) − Pi‖ < δ.
Given P ∈ Pδ

k with
∑

Pi = 1, let P ∗ be such that

P ∗
i = j

δ

k
for some integer j and Pi − P ∗

i <
δ

k

Then P ∗ = (P ∗
1 , P ∗

2 , . . . , P ∗
k ) ∈ P∗ and also ‖P − P ∗‖ < δ. Thus we have shown that

P∗ is a 2δ net in Pδ
k.

To compute the number of elements in P∗, consider k∗ points a1, a2, . . . , ak∗ , each
endowed with a weight of δ/k. If we place (k−1) sticks among these points, then these
divide a1, a2, . . . , ak∗ into k parts, those to the left of the first stick, those between
the first and second, and so on, the last part being all those a′

is to the right of the
last stick. Adding the weight of each of these parts gives a (P ∗

1 , P ∗
2 , . . . , P ∗

k ) ∈ P∗ and
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any element of P∗ corresponds to a k partition of a1, a2, . . . , ak∗ . The number of ways
of partitioning k∗ elements into k parts (some may be empty) is

(
k∗+k−1

k−1

)
.

Recall Stirling’s approximation

x! =
√

2πxx+ 1
2 e−x+ θ

12x 0 < θ < 1

so that (
k∗ + k − 1

k − 1

)
=

(k∗ + k − 1)!
(k − 1)!k∗!

≤ (k∗ + k)!
k!k∗!

≤
√

2π(k∗ + k)!(k∗+k)!+ 1
2 e−(k∗+k)!+ θ

12(k∗+k)!

√
2πkk+ 1

2 e−k+ θ
12k

√
2π(k∗)k∗+ 1

2 e−k∗+ θ
12k∗

and therefore

log
(

k∗ + k − 1
k − 1

)
≤ log

(k∗ + k)k∗+ 1
2

(k∗)k∗+ 1
2

+ log
(k∗ + k)k

kk∗+ 1
2

+ ε

where

ε = log
1√
2π

+
θ

12(k + k∗)
− θ

k∗ − θ

k
< 1

so that,

J(Pδ
k, 2δ) ≤ (k∗ +

1
2
) log(1 +

k

k∗ )+k log(1 +
k∗

k
)

− 1
2

log k + 1

substituting k∗ ≤ k/δ we get the proposition.

Lemma 5.5.3. Suppose

P ∈ Pδ
k = {(P1, P2, . . . , Pk) : 1 ≥ Pi ≥ 0,

k∑
1

Pi ≥ 1 − δ}

δ < 1, h0 < h < 1 and h − h0 = ε < δh0/2(K + 1). If fh is the histogram fh(x) =∑
(Pi/h)I(ih,(i+1)h](x) and fh0 is the histogram fh0(x) =

∑
(Pi)h)I(ih0,(i+1)h0](x), then

‖fh − fh0‖ < 3δ.
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Proof. Let
I1 = (0, h], I2 = (h, 2h], . . . Ik = ((k − 1)h, kh]

and
J1 = (0, h0], J2 = (h0, 2h0], . . . Jk = ((k − 1)h0, kh0]

Because kε < h, for i < k,

Ii = (Ii ∩ Ji) ∪ (Ii ∩ Ji+1

Further,
Ii ∩ Ji+1 = ((i + 1)h0, (i + 1)h)

Since fh = fh0 on Ii ∩ Ji, we have∫
Ii

|fh − fh0 |dx = |Pi

h
− P(i+1)

h
|(i + 1)(h − h0)

and because
∑

Pi ≤ 1 and h < h0,

∫ kh

0
|fh − fh0|dx =

k−1∑
1

|Pi − P(i+1)|
(i + 1)(h − h0)

h
+ Pk

(i + 1)(h − h0)
h

≤
k∑
1

Pi
(i + 1)(h − h0)

h

≤ 2(k + 1)
ε

h0
≤ δ

(5.18)

A bit of notational clarification: For every h, an/h will not be an integer and hence
when we write Fan,h what we mean is the set of all histograms from 0 to [an/h] where
[an/h]is the largest integer less than or equal to an/h. In our calculations, to avoid
notational mess, we pretend that an/h is an integer.

Lemma 5.5.4. For a > 0, let Fa,h be all histograms from [0, a] with bin width h.
Then

∪h>h0Fa,h = ∪2h0>h>h0Fa,h
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Proof. For any h > h0, for some integer m, (h/m) ∈ (h0, 2h0). The conclusion follows
because any histogram with bin width h can also be viewed as a histogram with bin
width h/m.

We put all the previous steps together in the next proposition Let F δ
a,h be all

histograms fh in Fa,h such that Pfh
[0, a] > 1 − δ.

Proposition 5.5.3.

J
(
∪h′>hF δ

a,h′ , 5δ
)

≤ log(
2a
h

+ 1) + (
a

hδ
log(1 + δ) +

a

n
log(1 +

1
δ
) + 1

Proof. By Lemma 5.5.4
∪h′>hFa,h′ = ∪2h>h′>hFa,h′

Set k = 2a/h and ε = δh2/(2a + 1)

Let N∗ = [hε]+1 where for any a, [a] is the largest integer less than or equal to a, and
hi = h + iε, i = 1, 2, · · · , N∗. Then by Proposition 5.5.2, given any f ∈ ∪2h>h′>hFa,h′ ,
there is some hi such that ‖f − fhi

‖ < 3δ. Use of Proposition 5.5.1 at each of Fa,hi
,

and a bit of algebra gives the result.

Theorem 5.5.2. Let µ be a probability measure on (0, ∞) such that 0 is in the
support of µ. α is a probability measure on R. Our setup is h ∼ µ, the prior on Fh is
Dαh

where αh(i) = α(ih, (i + 1)h]. Let an → ∞, hn → 0 such that (an/nhn) → 0.
If

(i) for some β0, β1, C1, C2 > 0,

α(−an, an] > 1 − C1e
−nβ0

(ii) µ(0, hn) < C2e
−nβ1

then the posterior is strongly consistent at any f0 satisfying (5.8).

Proof. If an

nhn
→ 0, it follows from Proposition 5.5.3 that J(Fn, δ) < nβ for large

enough n. An easy application of Markov inequality with condition (i), and using (ii)
gives Π(F c

n) < Ce−nγ for some C and γ. Theorem 4.4.4 gives the conclusion.

Thus if an = na and hn = n−b then what we need is a + b < 1. For example if
α is normal then one can take an = n−1/2. The condition would then be satisfied if
hn = n−b with b < 1/2.
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5.6 Mixtures of Normal Kernel

Another case of special interest is when K is the normal These priors were introduced
by Lo [131], (see also Ghorai and Rubin[72] and West [168] who obtained expressions
for the resulting posterior and predictive distributions. These can be further general-
ized by eliciting the base measure α = Mα0 of the Dirichlet up to some parameters
and then considering hierarchical priors for these hyperparameters.

5.6.1 Dirichlet Mixtures: Weak Consistency

Returning to the mixture model, let φ and φh denote, respectively the standard normal
density and the normal density with mean 0 and standard deviation h. Let Θ = R

and M be the set of probability measures on Θ. If P is in M, then fh,P will stand
for the density

fh,P (x) =
∫

φh(x − θ)dP (θ)

Note that fh,P is just the convolution φh ∗ P .
To get a feeling for the developments, we first look at the case where h = h0 is

fixed and our model is P ∼ Π and given P , X1, X2, . . . , Xn are i.i.d. fp. In this case,
the induced prior is supported by Fh0 = {fh0,P : P ∈ M}, and the following facts are
easy to establish from Scheffe’s theorem:

(i) The map P �→ fh0,P is one-to-one, onto Fh0 . Further Pn → P0 weakly if and
only if ‖fh0,Pn − fh0,P ‖ → 0.

(ii) Fh0 is a closed subset of F .

Fact (ii) shows that Fh0 is the support of Π, and hence consistency is to be sought
only for densities of the form fh0,P . Theorem 5.6.1 implies consistency for such densi-
ties. Fact (i) shows that if the interest is in the posterior distribution of P , then weak
consistency at P0 is equivalent to strong consistency of the posterior of the density
at fh0,P .

In order to establish weak consistency of the posterior distribution of f we need to
verify the Schwartz condition. Following is a proposition that though not useful when
Π is Dα is useful in other contexts.

Proposition 5.6.1.
K(fP , fQ) ≤ K(P, Q)
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Proof. A bit of change of variables and order of integration would show that

K(fP , fQ) = K(
∫

Pxφ(x)dx,

∫
Qxφ(x)dx)

where Px is the measure P shifted by x. Using the convexity of the K-L divergence
and observing K(Px, Qx) = K(P, Q) for all x, we have

K(fP , fQ) = K(
∫

Pxφ(x)dx,

∫
Qxφ(x)dx) ≤

∫
K(Px, Qx)φ(x)dx = K(P, Q)

Thus if we have a prior Π such that every P is in K-L support then the posterior
is weakly consistent at fP . In fact the earlier remark shows that we have weak con-
sistency at P and hence strong consistency at fP . The Dirichlet does not have this
property. However, we will show in Chapter 6 that for a suitable choice of parameters
the Polya tree satisfies this property. Fixing h severely restricts the class of densities
and is thus not of much interest.

We turn next to the model with a prior for h. Our model consists of a prior µ for h
and a prior Π on M. The prior µ×Π through the map (h, P ) �→ fh,P induces a prior
on F . We continue to denote this prior also by Π. Thus (h, P ) ∼ µ × Π and given
(h, P ), X1, X2, . . . , Xn are i.i.d. fh,P . This section describes a class of densities in the
K-L support of Π. By Schwartz’s theorem the posterior will be weakly consistent at
these densities. The results in this section are largely from [74]. The next two results
look at two simple cases and hold for general priors, but Theorem 5.6.3 makes use of
special properties of the Dirichlet.

Theorem 5.6.1. Let the true density f0 be of the form f0(x) = fh0,P0(x) =∫
φh0(x − θ) dP0(θ). If P0 is compactly supported and belongs to the support of Π,

and h0 is in the support of µ, then Π(Kε(f0)) > 0 for all ε > 0.

Proof. Suppose P0[−k, k] = 1. Since P0 is in the weak support of Π, it follows that
Π{P : P [−k, k] > 1/2} > 0. It is easy to see that f0 has moments of all orders.

For η > 0, choose k′ such that
∫

|x|>k′ max(1, |x|)f0(x)dx < η. For h > 0, we write∫ ∞
−∞ f0 log (fh,P0/fh,P ) as the sum

∫ −k′

−∞
f0 log

fh,P0

fh,P

+
∫ k′

−k′
f0 log

fh,P0

fh,P

+
∫ ∞

k′
f0 log

fh,P0

fh,P

(5.19)
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Now ∫ −k′

−∞
f0(x) log

(
fh,P0(x)
fh,P (x)

)
dx

≤
∫ −k′

−∞
f0(x) log

(∫ k

−k
φh(x − θ)dP0(θ)∫ k

−k
φh(x − θ) dP (θ)

)
dx

≤
∫ −k′

−∞
f0(x) log

(
φh(x + k)

φh(x − k)P [−k, k]

)
dx

=
∫ −k′

−∞
f0(x)

2k|x|
h2 dx − log(P [−k, k])

∫ −k′

−∞
f0(x)dx

<

(
2k
h2 + log 2

)
η

provided P [−k, k] > 1/2. Similarly, we get a bound for the third term in (5.19).
Clearly,

c := inf
|x|≤k′

inf
|θ|≤k

φh(x − θ) > 0

The family of functions {φh(x − θ) : x ∈ [−k′, k′]}, viewed as a set of functions of θ
in [−k, k], is uniformly equicontinuous. By the Arzela-Ascoli theorem, given δ > 0,
there exist finitely many points x1, x2, . . . , xm such that for any x ∈ [−k′, k′], there
exists an i with

sup
θ∈[−k,k]

|φh(x − θ) − φh(xi − θ)| < cδ (5.20)

Let

E =
{

P :
∣∣∣∣
∫

φh(xi − θ)dP0(θ) −
∫

φh(xi − θ)dP (θ)
∣∣∣∣ < cδ; i = 1, 2, . . . , m

}

Since E is a weak neighborhood of P0, Π(E) > 0. Let P ∈ E. Then for any
x ∈ [−k′, k′], choosing the appropriate xi from (5.20), using a simple triangulation
argument we get ∣∣∣∣

∫
φh(x − θ)dP (θ)∫
φh(x − θ)dP0(θ)

− 1
∣∣∣∣ < 3δ

and so ∣∣∣∣
∫

φh(x − θ)dP0(θ)∫
φh(x − θ)dP (θ)

− 1
∣∣∣∣ <

3δ
1 − 3δ
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(provided δ < 1/3).
Thus for any fixed h > 0, for P in a set of positive Π-probability, we have∫

f0 log (fh,P0/fh,P ) < 2
(

2k
h2 + log 2

)
η +

3δ
1 − 3δ

(5.21)

Now for any h,∫
f0 log (f0/fh,P ) =

∫
f0 log (f0/fh,P0) +

∫
f0 log (fh,P0/fh,P ) (5.22)

The first term on the right-hand side of (5.22) converges to 0 as h → h0. To see this,
observe that ∫

φh0(x − θ)dP0(θ)∫
φh(x − θ)dP0(θ)

≤ sup
|θ|≤k

φh0(x − θ)
φh(x − θ)

The rest follows by an application of the dominated convergence theorem.
Given any ε > 0, choose a neighborhood N of h0 (not containing 0) such that if

h ∈ N , the first term on the right-hand side of (5.22) is less than ε/2. Next choose η
and δ so that for any h ∈ N , the right-hand side of (5.21) is less than ε/2. Because
h0 is in the support of µ, the result follows.

Remark 5.6.1. In Theorem 5.6.1, the true density is a compact location mixture of
normals with a fixed scale. It is also possible to obtain consistency at true densities
which are (compact) location-scale mixtures of the normal, provided we use a mixture
prior for h as well. More precisely, if we modify the prior so that (θ, h) ∼ P (a
probability on R × (0, ∞)) and P ∼ Π, then consistency holds at f0 =

∫
φh(x −

θ)P0(dθ, dh) provided P0 has compact support and belongs to the support of Π. The
proof is similar to that of Theorem 3.

Theorem 5.6.1 covers the case when the true density is normal or a mixture of
normal over a compact set of locations. This theorem, however, does not cover the
case when the true density itself has compact support, like, say, the uniform. The
next theorem takes care of such densities.

Theorem 5.6.2. Let 0 be in the support of µ and f0 be a density in the support of
Π. Let f0,h= φh ∗ f0. If

1. lim
h→0

∫
f0 log(f0/f0,h) = 0,

2. f0 has compact support,
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then Π(Kε(f0)) > 0 for all ε > 0.

Proof. Note that, for each h,∫
f0 log(f0/fh,P ) =

∫
f0 log(f0/f0,h) +

∫
f0 log(f0,h/fh,P )

Choose h0 such that for h < h0,
∫

f0 log(f0/f0,h) < ε/2 so all that is required is to
show that for all h > 0,

Π
{

P :
∫

f0 log (f0,h/fh,P ) < ε/2
}

> 0

If f0 has support in [−k, k]. Then

∫
f0 log(f0,h/fh,P ) ≤

∫ k

−k

f0(x) log

(∫ k

−k
φh(x − θ)f0(θ)dθ∫ k

−k
φh(x − θ)dP (θ)

)
dx

The rest of the argument proceeds in the same lines as in Theorem 5.6.1.

While the last two theorems are valid for general priors on M, the next theorem
makes strong use of the properties of the Dirichlet process. For any P in M, set
P (x) = P (x, ∞) and P (x) = P (−∞, x).

Theorem 5.6.3. Let Dα be a Dirichlet process on M. Let l1, l2, u1, u2 be functions
such that for some k > 0 for all P in a set of Dα-probability 1, there exists x0

(depending on P ) such that

P (x) ≥ l1(x), P̄ (x + k log x) ≤ u1(x) ∀x > x0

and
P (x) ≥ l2(x), P (x − k log |x|) ≤ u2(x) ∀x < −x0

(5.23)

For any h > 0, define

Lh(x) =
{

φh(k log x)(l1(x) − u1(x)), if x > 0
φh(k log |x|)(l2(x) − u2(x)), if x < 0

and assume that Lh(x) is positive for sufficiently large |x|. Let f0 be the “true” density
and f0,h = φh ∗ f0. Assume that 0 is in the support of the prior on h. If f0 is in the
support of Dα (equivalently, supp(f0) ⊂ supp(α)) and satisfies
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1. lim
h↓0

∫
f0 log(f0/f0,h) = 0;,

2. for all h, lim
a↑∞

∫ ∞

−∞
f0(x) log

(
f0,h(x)∫ a

−a
φh(x − θ)f0(θ)dθ

)
dx = 0; and

3. for all h, lim
M→∞

∫
|x|>M

f0(x) log
(

f0,h(x)
Lh(x)

)
dx = 0,

then Π(Kε(f0)) > 0 for all ε > 0.

Remark 5.6.2. It follows from Doss and Sellke [55] that if α = Mα0, where α0 is a
probability measure, then

l1(x) = exp[−2 log | log α0(x)|/α0(x)]
l2(x) = exp[−2 log | log α0(x)|/α0(x)]

u1(x) = exp
[
− 1

α0(x + k log x)| log α0(x − k log x)|2
]

u2(x) = exp
[
− 1

α0(x − k log |x|)| log α0(x − k log |x|)|2
]

satisfy the requirements of (5.23). For example, when α0 is double exponential, we
may choose any k > 2 and the requirements of the theorem are satisfied if f0 has
finite moment-generating function in an open interval containing [−1, 1].

Remark 5.6.3. The following argument provides a method for the verification of
Condition 1 of Theorems 5.6.1 and 5.6.2 for many densities. Suppose that f0 is con-
tinuous a.e.,

∫
f0 log f0 < ∞, and further assume that, as for unimodal densities,

there exists an interval [a, b] such that inf{f(x) : x ∈ [a, b]} = c > 0 and f0 is increas-
ing in (−∞, a) and is decreasing in (b, ∞). Note that {x : f0(x) ≥ c} is an interval
containing [a, b]. Replacing the original [a, b] by this new interval, we may assume
that f0(x) ≤ c outside [a, b]. Choose h0 such that N(0, h0) gives probability 1/3 to
(0, b − a). Let h < h0. Let Φ denote the cumulative distribution function of N(0, 1).
If x ∈ [a, b] then

f0,h(θ) ≥
∫ b

a

f0(θ)φh(x − θ) dθ ≥ c(Φ((b − x)/h) + Φ((x − a)/h) ≥ c/3

If x > b then

f0,h(θ) ≥
∫ x

a

f0(θ)φh(x − θ) dθ ≥ f0(x)
(

1
2

+ Φ((b − a)/h) − 1
)

≥ f0(x)/3
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Using a similar argument when x < a, we have that the function

g(x) =

{
log (3f0(x)/c) , if x ∈ [a, b]
log 3, otherwise

dominates log(f0/f0,h) for h < h0 and is Pf0-integrable. Since f0(x)/f0,h(x) → 1 as
h → 0 whenever x is a continuity point of f0 and

∫
f0 log(f0/f0,h) ≥ 0, an application

of (a version of) Fatou’s lemma shows that
∫

f0 log(f0/f0,h) → 0 as h → 0.

Proof. Let ε > 0 be given and δ > 0, to be chosen later. First find h0 so that∫
f0 log(f0/f0,h) < ε/2 for all h < h0. Fix h < h0. Choose k1 such that

∫ ∞

−∞
f0(x) log

(
f0,h(x)∫ k1

−k1
φh(x − θ)f0(θ)dθ

)
dx < δ

Let p = P [−k1, k1] and let p0 denote the corresponding value under P0. We may
assume that p0 > 0. Let P ∗ denote the conditional probability under P given [−k1, k1],
i.e., P ∗(A) = P (A∩ [−k1, k1])/p (if p > 0) and P ∗

0 denoting the corresponding objects
for P0. Let E be the event {P : |p/p0 − 1| < δ}. Because P0 is in the support of Dα,
Dα(E) > 0. Now choose x0 > k1 such that

(i)
∫

|x|>x0

f0(x) log (f0,h(x)/Lh(x)) dx < δ

(ii) Dα(E ∩ F ) > 0, where

F =

⎧⎨
⎩P :

P (x) ≥ l1(x), P (x + k log x) ≤ u1(x) ∀x > x0

and
P (x) ≥ l2(x), P (x − k log |x|) ≤ u2(x) ∀x < −x0

⎫⎬
⎭

By Egoroff’s theorem, it is indeed possible to meet condition (ii).
Consider the event

G =

{
P : sup

−x0<x<x0

log

(∫ k1

−k1
φh(x − θ)dP ∗

0 (θ)∫ k1

−k1
φh(x − θ)dP ∗(θ)

)
< 2δ

}
.

We shall argue that Dα(E∩F∩G) > 0 and if P ∈ (E∩F∩G) then
∫

f0 log(f0/fh,P ) <
ε for a suitable choice of δ.
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The events E ∩ F and G are independent under Dα, and hence, to prove the first
statement, it is enough to show that Dα(G) > 0. By intersecting G with E and
using the fact that {φh(x − θ) : −x0 ≤ x ≤ x0} is uniformly equicontinuous when
θ ∈ [−k1, k1], we can conclude that Dα(G) ≥ Dα(G ∩ E) > 0 (see the proof of
Theorem 5.6.1).

Now, ∫
f0 log(f0/fh,P )

≤
∫ ∞

−∞
f0(x) log(f0(x)/f0,h(x))dx

+
∫

|x|≤x0

f0(x) log

(
f0,h(x)∫ k1

−k1
φh(x − θ)f0(θ)dθ

)
dx

+
∫

|x|≤x0

f0(x) log

(∫ k1

−k1
φh(x − θ)f0(θ)dθ∫ k1

−k1
φh(x − θ)dP (θ)

)
dx

+
∫

|x|>x0

f0(x) log
(

f0,h(x)∫
φh(x − θ)dP (θ)

)
dx

If P ∈ E ∩ F ∩ G, then for x > x0,∫ ∞

−∞
φh(x − θ)dP (θ) ≥

∫ x+k log x

x

φh(x − θ)dP (θ)

≥ φh(k log x)[P (x) − P (x + k log x)]

and because P ∈ F , the expression is further greater than or equal to

φh(k log x)[l1(x) − u1(x)] = Lh(x)

Using a similar argument for x < −x0, we get∫
|x|>x0

f0(x) log
(

f0,h(x)
fh,P (x)

)
dx ≤

∫
|x|>x0

f0(x) log
(

f0,h(x)
Lh(x)

)
dx < δ

Since P ∈ E ∩ G, for each x in [−x0, x0],

log

(∫ k1

−k1
φh(x − θ)f0(θ)dθ∫ k1

−k1
φh(x − θ)dP (θ)

)
= log

(
p0

p

∫ k1

−k1
φh(x − θ)dP ∗

0 (θ)∫ k1

−k1
φh(x − θ)dP ∗(θ)

)
< 3δ

All these imply that if δ is sufficiently small, then P ∈ E ∩ F ∩ G implies that∫
f0 log(f0,h/fh,P ) < ε.
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5.6.2 Dirichlet Mixtures: L1-Consistency

As before, we consider the prior which picks a random density φh ∗ P , where h is
distributed according to µ and P is chosen independently of h according to Dα. Since
we view h as corresponding to window length, it is only the small values of h that are
relevant, and hence we assume that the support of µ is [0, M ] for some finite M .

In this model the prior is concentrated on

F = ∪0<h<MFh

where Fh = {φh ∗ P : P ∈M}.
In order to apply Theorem 4.4.4, given U = {f : ‖f − f0‖ < ε}, for some δ < ε/4,

we need to construct sieves {Fn : n ≥ 1} such that J(δ,Fn) ≤ nβ and F c
n has

exponentially small prior probability. Because, as an → ∞, Dα{P : P [−an, an] >
1 − δ} → 1, a natural candidate for Fn is

Fn = ∪hn<h<MFan
h

where hn ↓ 0 , an increases, and Fan
h = {φh ∗ P : P [−an, an] > 1 − δ}. What is then

needed is an estimate of J(δ,Fn). The next theorem provides such an estimate.
The next lemma shows that the restriction h < M simplifies things a bit.

Lemma 5.6.1. Let M > 0 and let FM
h,a,δ = ∪h<h′<MFh′,a,δ. If a > M/

√
δ, then

FM
h,a,δ ⊂ Fh,2a,2δ.

Proof. By Chebyshev’s inequality, if h′ < M then the probability of (−a, a] under
N(0, h′) is greater than 1−δ. If f = φh′ ∗P , then since φh′ = φh ∗φh∗ , where h∗ < M ,
f = φh ∗ φh∗ ∗ P and (φh∗ ∗ P )(−a, a] > 1 − 2δ.

Theorem 5.6.4. Let FM
h,a,δ = ∪h<h′<M{fh,P : P [−a, a] ≥ 1 − δ}. Then

J(δ,FM
h,a,δ) ≤ K

a

h
,

where K is a constant that does depend on δ and M , but not on a or h.

We prove Theorem 5.6.4 through a sequence of lemmas. Let Fh,a = {fh,P : P (−a, a] =
1}. Without loss of generality, we shall assume that a ≥ 1

Lemma 5.6.2. J(2δ,Fh,a) ≤
(√

8
π

a

hδ
+ 1

)(
1 + log

(
1 + δ

δ

)
.

)
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Proof. For any θ1 < θ2,

‖φθ1,h − φθ2,h‖

=
1√
2πh

∫
x>(θ1+θ2)/2

exp[−(x − θ2)2/(2h2)]dx

− 1√
2πh

∫
x>(θ1+θ2)/2

exp[−(x − θ1)2)/(2h2)]dx

+
1√
2πh

∫
x<(θ1+θ2)/2

exp[−(x − θ1)2/(2h2)]dx

− 1√
2πh

∫
x<(θ1+θ2)/2

exp[−(x − θ2)2/(2h2)]dx

= 4
1√
2π

∫ (θ2−θ1)/(2h)

0
exp[−x2/2]dx

≤
√

2
π

(θ2 − θ1)
h

Given δ, let N be the smallest integer greater than
√

8a/(
√

πhδ). Divide (−a, a]
into N intervals. Let

Ei =
(

−a +
2a(i − 1)

N
,−a +

2ai

N

]
: i = 1, 2, . . . , N

and let θi be the midpoint of Ei. Note that if θ, θ′ ∈ Ei, then |θ − θ′| < 2a/N , and
consequently ‖φθ,h − φθ′,h‖ < δ.

Let PN = {(P1, P2, . . . , PN) : Pi ≥ 0,
∑N

i=1 Pi = 1} be the N -dimensional prob-
ability simplex and let P∗

N be a δ-net in PN , i.e., given P ∈ PN , there is P ∗ =
(P ∗

1 , P ∗
2 , . . . , P ∗

N) ∈ P∗
N such that

∑N
i=1 |Pi − P ∗

i | < δ.
Let F∗ = {

∑N
i=1 P ∗

i φθi,h : P ∗ ∈ P∗
N}. We shall show that F∗ is a 2δ net in Fh,a. If

fh,P = φh∗P ∈ Fh,a, set Pi = P (Ei) and let P ∗ ∈ P∗
N be such that

∑N
i=1 |Pi−P ∗

i | < δ.
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Then∥∥∥∥∥
∫

φθ,hdP (θ) −
N∑

i=1

P ∗
i φθi,h

∥∥∥∥∥
≤

∥∥∥∥∥
∫

φθ,hdP (θ) −
N∑

i=1

∫
IEi

(θ)φθi,hdP (θ)

∥∥∥∥∥ +

∥∥∥∥∥
N∑

i=1

Piφθi,h −
N∑

i=1

P ∗
i φθi,h

∥∥∥∥∥
≤

∫ N∑
i=1

IEi
(θ)‖φθ,h − φθi,h‖dP (θ) +

N∑
i=1

|Pi − P ∗
i |

≤ 2δ

This shows that J(2δ,Fh,a) ≤ J(δ,PN), and we calculate J(δ,PN) along the lines
of Barron, Schervish and Wasserman as follows: Since |Pi − P ∗

i | < δ/N for all i
implies that

∑N
i=1 |Pi − P ∗

i | < δ, an upper bound for the cardinality of the minimal
δ-net of PN is given by

number of cubes of length δ/N covering [0, 1]N

× volume of

{
(P1, P2, . . . , PN) : Pi ≥ 0,

N∑
i=1

Pi ≤ 1 + δ

}

= (N/δ)N(1 + δ)N 1
N !

So,

J(δ,PN) ≤ N log N − N log δ + N log(1 + δ) − log N !
≤ N log N − N log δ + N log(1 + δ) − N log N + N

= N

(
1 + log

1 + δ

δ

)

≤
(√

8
π

a

hδ
+ 1

)(
1 + log

1 + δ

δ

)

Lemma 5.6.3. Let Fh,a,δ = {fh,P : P (−a, a] ≥ 1 − δ}. Then J(3δ,Fh,a,δ) ≤
J(δ,Fh,a).
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Proof. Let f = φh ∗ P ∈ Fh,a,δ. Consider the probability measure P ∗ defined by
P ∗(A) = P (A ∩ (−a, a])/P (−a, a]. Then the density f ∗ = φh ∗ P ∗ clearly belongs to
Fh,a and further satisfies ‖f − f ∗‖ < 2δ.

Proof. Putting Lemmas 5.6.2 , 5.6.3 and 5.6.1 together, we have Theorem 5.6.4.

The next theorem formulates the result in terms of strong consistency for Dirichlet-
normal mixtures.

Theorem 5.6.5. Suppose that the prior µ has support in [0, M ]. If for each δ > 0,
β > 0, there exist sequences an,hn ↓ 0 and constants β0, β1 (all depending on δ, β and
M) such that

1. for some β0, Dα{P : P [−an, an] < 1 − δ} < e−nβ0 ,

2. µ{h < hn} ≤ e−nβ1, and

3. an/hn < nβ

then f0 is in the K-L support of the prior implies that the posterior is strongly con-
sistent at f0.

Remark 5.6.4. What was involved in the preceding is a balance between an and hn.
Since δ and M are fixed, the constant K obtained in Theorem 5.6.4 does not play
any role. If α has compact support, say [−a, a], then we may trivially choose an = a
and so hn may be allowed to take values of the order of n−1 or larger. If α is chosen as
a normal distribution and h2 is given a (right truncated) inverse gamma prior, then
the conditions of the theorem are satisfied if an is of the order

√
n and hn = C/

√
n

for a suitable (large) C (depending on δ and β).

5.6.3 Extensions

The methods developed in this chapter toward the simple mixture models can be used
to study many of the variations used in practice. Some of these are discussed in this
section.

1. It is often sensible to let the prior depend on the sample size; see for instance
Roeder and Wasserman [141]. A case in point, in our context would be when
the precision parameter M = α(R) is allowed to depend on the sample size.

If Πn is the prior at stage n, then the results goes through if the assumption
Π(Kε(f0)) > 0 is replaced by lim infn→∞ Πn(Kε(f0)) > 0. This follows from the
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fact the Barron’s Theorem (see Chapter 4) goes through with a similar change.
The only stage that needs some care is an argument which involves Fubini, but
it can be handled easily.

2. Another way the Dirichlet mixtures can be extended is by including a further
mixing. Formally, Let X1, X2, . . . be observations from a density f where f =
φh ∗ P , P ∼ Dατ , h ∼ π, τ is a finite-dimensional mixing parameter, which is
also endowed with some prior ρ. Let f0 be the true density. We are interested
in verifying the Schwartz condition at f0 and conditions for strong consistency.
By Fubini’s theorem, Schwartz’s condition is satisfied for the mixture if

ρ{τ : Schwartz condition is satisfied with ατ} > 0 (5.24)

(a) In particular, if f0 has compact support, then (5.24) reduces to

ρ{τ : supp(f0) ⊂ supp(ατ )} > 0 (5.25)

(b) Suppose f0 is not of compact support and τ = (µ, σ) gives a location-scale
mixture. So we have to seek the condition so that the Schwartz condition
holds with the base measure α((· − µ)/σ). We report results only for α0 =
α/α(R) double exponential or normal.
When α0 is double exponential, a sufficient condition is that f0(µ+σx) has
finite moment-generating function on an open interval containing [−1, 1].
When α is normal, we need the integrability of x log |x| exp[x2/2] with re-
spect to the density f0(µ+σx). For example, if the true density is N(µ0, σ0),
then the required condition will be σ < σ0, so we need

ρ{(µ, σ) : σ < σ0} > 0

We omit proof of these statements. Simulation shows inclusion of location,
and scale parameters in the base measure improves convergence of the the
Bayes estimates to f0.

(c) For strong consistency, we further assume that the support of the prior ρ
(for (µ, σ)) is compact. For each (µ, τ), find the corresponding an(µ, σ) of
Theorem 5.6.5, i.e., satisfying

Dα(µ,τ){P : P [−an(µ, τ), an(µ, τ)] < 1 − δ} < e−nβ0

for some β0 > 0. Now choose an = supµ,σ an(µ, σ). The order of an will
then be the same as the individual an(µ, σ)s.
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(d) In some special cases, it is also possible to allow unbounded location mix-
tures. For example, when the base measure is normal, a normal prior for
the location parameter is both natural and convenient. Strong consistency
continues to hold in this case as long as σ has a compactly supported
prior. To see this, observe that ρ{|µ| >

√
n} is exponentially small and

sup|µ|≤√
n,σ an(µ, σ) is again of the order of

√
n.

(e) West et al. put a random prior P ′ on h, independent of P and a Dirichlet
prior for P ′. This allows different amounts of smoothing near different
sets of Xis. Our methods should apply here also. Such techniques, i.e.,
dependence of h on Xis or on x in the range of Xis have been introduced in
the frequentist literature recently and are also known to improve estimates.

5.7 Gaussian Process Priors

Consider the probabilities p1, p2, . . . pk associated with a multinomial with k- cells.
Often, for example, when the cells correspond to the bins of a histogram, it would
be evident that a priori that the probabilities of adjacent cells would be highly pos-
itively correlated and the correlation would drop off for cells are farther apart. The
Dirichlet prior for p1, p2, . . . pk results in negative covariance whereas we want pos-
itive covariance. It is thus necessary to model other covariance structures. The dif-
ficulty is one of specifying covariances which would ensure that the prior sits on
Sk = {(p1, p2, . . . pk), pi ≥ 0

∑
pi = 1}. Leonard([126],[127]) suggested choosing real

variables Y1, Y2, . . . Yk and setting pi = exp(Yi)/
∑

exp(Yi). This ensures that pi ≥ 0
and

∑
pi = 1. Further if the distribution of Y1, Y2, . . . Yk is tractable, say N(µ, Σ),

then Leonard shows that one can obtain tractable approximations to the posterior.
The situation is even more striking in the case of smooth random densities where

smoothness already implies that the value of the density at two points x, y would be
close if x and y are close. If we use the method of Section 5.5 calculations indicate
that one gets positive covariance (for fixed h) only for very small values of h. In the
spirit of Leonard one could choose a stochastic process {Y (x) : x ∈ R} with smooth
sample paths and for any sample path define f = exp(y)/(

∫
(exp y(t))dt). Leonard

[127] suggested using a Gaussian process {Y (x) : x ∈ R}. In this section we present
these Gaussian process priors along the lines of Lenk [125]. Lenk considers a larger
class of priors which gives a unified appearance to the results. An alternative method
is to consider f = exp Y conditioned on

∫
exp Y (t)dt = 1. Thorburn[157] has taken
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this approach. While this method is not discussed here, it would be interesting to see
how this method relates to those developed by Leonard and Lenk.

Let µ : R �→ R and σ : R × R �→ R+ be a symmetric function. σ is said to be
positive definite if for any x1, x2, . . . , xk, the k × k matrix with σ(xi, xj) as its entries
is positive definite.

Definition 5.7.1. Let µ : R �→ R and σ be a positive definite function on R×R. A
process {Y (x) : x ∈ R} is said to be a Gaussian process with mean µ and covariance
kernel σ if for any x1, x2, . . . , xk, Y (x1), Y (x2), . . . , Y (xk) has a k-dimensional normal
distribution with mean µ(x1), µ(x2), . . . , µ(xk) and covariance matrix whose (i, j)th
entry is σ(xi, xj).

The smoothness of the sample paths of a stochastic process is governed by moment
conditions. Extensive results of this kind can be found in [36]. Following are a few
that we use.

Theorem 5.7.1. Let {ξ(x) : x ∈ R} be a stochastic process. Suppose that for
positive constants p ≥ r,

E|ξ(t + h) − ξ(t)|p ≤ K|h|1+r for all t, h

Let 0 < a < r/p. Then there is a process {η(x) : x ∈ R} equivalent to {ξ(x) : x ∈ R}
(i.e. a process with the same finite-dimensional distributions as {ξ(x) : x ∈ R}) such
that

|η(t + h) − η(t)| ≤ A|h|a whenever |h| < δ

As an example consider the standard Brownian motion. A Gaussian process with
µ = 0 and σ(x, y) = x ∧ y. Let h > 0 then

E|ξ(t + h) − ξ(t)|4 = 3{V ar(ξ(t + h) − ξ(t))}2 = 3h2

So we can take p = 4, r = 1 to conclude that the sample paths are Lipschitz of order
at least a, where 0 < a < 1/4.

More generally, since ξ(t+h)−ξ(t)
h

is N(0, 1),

E|ξ(t + h) − ξ(t)|2k = Akh
k

and we can choose p = 2k, r = k − 1, 0 < a < (k − 1)/2k. Letting k → ∞, we see that
the sample functions are Lipshitz of order a for any 0 < a < 1/2.
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Theorem 5.7.2. If for positive constants p < r and K,

E|ξ(t + h) − ξ(t)|p ≤ K|h|
| log |h||1+r

and

E|ξ(t + h) + ξ(t − h) − 2ξ(t)|p ≤ K|h|1+p

| log |h||1+r

Then there is a process η(t) equivalent to ξ(t) such that η′(t) exists and is continuous
almost surely.

To return to Lenk, we consider a Gaussian process Y (x) with mean µ and covariance
kernel σ. Lenk appears to assume that

(i) µ is continuous;

(ii) σ is continuous on R × R and positive definite; and

(iii) there exist positive constants c, β, ε and nonnegative integer r such that

E|Y (x) − Y (y)|β = C|x − y|1+r+ε

Condition (iii) guarantees that if r ≥ 1 then with probability 1, the sample paths
are r times continuously differentiable. A useful case is when σ is of the form σ(x, y) =
ρ(|x − y|) for some function ρ on R. In this case, the process is stationary, and easier
sufficient conditions are available for the sample paths to be smooth.

Theorem 5.7.3. Let σ(x, y) = ρ(|x − y|). If

1. for some a > 3
ρ(h) = 1 − O{| log |h||−a} as h → 0

then there is an equivalent process with continuous sample paths

2. for some a > 3 and λ2 > 0,

ρ(h) = 1 − λh2

2
+ O(

h2

| log |h||a ) as h → 0

then there is an equivalent process whose sample paths are continuously differ-
entiable
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Cramér and Leadbetter [36] remark that a > 3 may be replaced by a > 1 but the
proof requires lot more work. Here are some examples used in Lenk [125].

(i) ρ(x) = e−|x| = 1 − |x| + O(x2) as x → 0;

(ii) ρ(x) = (1 − |x|)I|x|≤1 = 1 − |x| as x → 0;

(iii) ρ(x) = e−x2 = 1 − x2 + O(x4) as x → 0; and

(iv) ρ(x) = 1
1+x2 = 1 − x2 + O(x4) as x → 0.

Cases (i) and (ii) satisfy condition (1) of the theorem and (iii) and (iv) satisfy
condition (2).

Let I be a bounded interval and let {Z(x) : x ∈ R} be a Gaussian process with
mean µ and covariance kernel σ. The log-normal process, denoted by LN(µ, σ), is the
process W (x) = exp(Z(x)). We will denote the associated measure on R+ by Λ(µ, σ).

Following is a proposition which will be used later.

Proposition 5.7.1. Fix x1, x2, . . . , xk in I and constants a1, a2, . . . , ak.

Let µ∗(x) = µ(x) +
k∑
1

aiσ(x, xi)

Then
dΛ(µ∗, σ)
dΛ(µ, σ)

=
∏k

1 W (xi)ai

E
∏k

1 W (xi)ai

=
∏k

1 W (xi)ai

eaµ′
x+a

σx
2 a′

Here W ∈ (R+)I and the expectation in the right-hand side is with respect to
Λ(µ, σ);µx = (µ(x1), µ(x2), . . . , µ(xk)) and [σx]i,j = σ(xi, xj), a = a1, a2, . . . , ak.

We will prove the proposition through a series of simple lemmas.

Lemma 5.7.1. Let (Z1, Z2, . . . , Zk) be multivariate normal with mean vector µ =
(µ1, µ2, . . . , µk) and covariance Σ. If µ∗ = (µ∗

1, µ
∗
2, . . . , µ

∗
k) = µ + aΣ , where a is the

vector (a1, · · · , ak) then

dN(µ∗, Σ)
dN(µ, Σ)

(Z1, Z2, . . . , Zk) = Ke
∑

i aiZi

where K = 1/Ee
∑

aiZi = 1/eaµ′+aΣ
2 a′

.
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Proof. For any µ
1

and µ
2
,

((x−µ
1
)Σ−1(x − µ

1
)′ − (x − µ

2
)Σ−1(x − µ

2
)′)

=2(µ
2
− µ

1
)Σ−1x′ + µ

1
Σ−1µ′

1
− µ

2
Σ−1µ′

2

Only the first term depends on x. Absorbing the other two terms in the constant
and taking µ

1
= µ∗ and µ

2
= µ the lemma follows.

Lemma 5.7.2. Let G(µ, σ) stand for the Gaussian measure with mean µ and co-
variance σ. If µ∗ is as in Proposition 5.7.1, then

dG(µ∗, σ)
dG(µ, σ)

(Z) = Ke
∑k

1 aiZ(xi) (5.26)

Proof. It is enough to show that the finite-dimensional distributions of the measure
defined by (5.26) are those arising from dG(µ∗, σ). But that is precisely the conclusion
of the lemma 5.7.2.

Next we state a simple measure theoretic lemma whose proof is routine.

Lemma 5.7.3. Suppose P, Q are probability measures on (Ω, A) and T is a 1-1
measurable function from (Ω′, B). If P � Q then PT−1 � QT−1 and

dPT−1

dQT−1 (ω′) =
dP

dQ
(T−1(ω′))

Proof. To return to the proposition, it easily follows from Lemma 5.7.2 and by taking
T (Z) = eZ in Lemma 5.7.3.

We next add another real parameter ξ, and following Lenk we define a generalized
log-normal process LN(µ, σ, ξ). When ξ = 0 the generalized log-normal process is
defined to be LN(µ, σ), i.e., LN(µ, σ, 0) = LN(µ, σ).

For any real ξ, LN(µ, σ, ξ) is defined by

dLN(µ, σ, ξ)
dLN(µ, σ, 0)

(W ) =
[
∫

I
W (x)dx]ξ

C(ξ, µ)
(5.27)

where C(ξ, µ) = E
∫

I
W (x)dx]ξ the expectation being taken under LN(µ, σ, 0). Lenk

shows that this expectation exists for all real ξ.

We are now ready to define the random density.
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Definition 5.7.2. Let {W (x).x ∈ R} be a generalized log normal process LN(µ, σ, ξ)
on R+. The distribution of

f(x) =
W (x)∫

I
W (x)dx

is called a logistic normal process and denoted by LNS(µ, σ, ξ).

Clearly f is a random density. We next show that if f has logistic normal distribu-
tion then so does the posterior given X1, X2, . . . , Xn.

Theorem 5.7.4. If f ∼ LNS(µ, σ, ξ) then the posterior given X1, X2, . . . , Xn is
LNS(µ∗, σ, ξ∗) where µ∗(x) = µ(x) +

∑n
1 σ(x,Xi) and ξ∗ = ξ − n.

Proof. If W ∼ LN(µ, σ, ξ) then by the Bayes theorem (for densities) the posterior Λ∗

of W given X1, X2, . . . , Xn is

dΛ∗

dΛ(µ, σ, 0)
(W ) = K

∫
I

[W (x)dx]ξ
∏n

1 W (xi)
[
∫

I
[W (x)dx]n]

(5.28)

= K

∫
I

[W (x)dx]ξ−n

n∏
1

W (xi) (5.29)

and comparison with (5.26) and (5.27) shows that this is LNS(µ∗, σ, ξ∗). The theorem
follows because the distribution of f is just the posterior distribution of W/

∫
I
W (x)dx.

Even though the transformations µ �→ µ∗, σ �→ σ, ξ �→ ξ∗ look simple, any interpre-
tation needs to be tempered. First note that µ, σ, ξ do not identify the prior because
if µ1 −µ2 ≡ C then both µ1, σξ and µ2, σξ will lead to the same prior for f . Second µ
and σ do not translate separately to E(f) and cov(f(x), f(y)). A change in either µ or
σ will affect both E(f) and cov(f(x), f(y)). As n → ∞ both µ∗ → ∞ and ξ∗ → −∞
indicating that these cannot be used to do simple minded asymptotics.

Since the prior is on densities, the natural tool to study consistency is the Schwartz
theorem and Theorem 4.4.4. When the Gaussian process is a standard Brownian
motion, with some work it can be shown that if the true distribution f0 satisfies
log f0 is bounded then the Schwartz condition holds at f0. Toward L1-consistency a
natural sieve to consider would be to divide [a, b] into O(

√
n) intervals and to look at

the class of functions that have oscillation less than δ in all the intervals. These are
just preliminary observations; more careful study needs to be done.
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It also appears, that in analogy with Dirichlet mixtures, one should introduce a
window h in the covariance and have ρh(x) = (1/h)ρ(x/h).

In any case a lot of further work is needed to develop this promising method.
It would also be good to have some theoretical or numerical evidence justifying the

numerical calculation of the posterior given in Lenk. For instance, one could compare
Lenk’s algorithms with approximations based on discretization.



6
Inference for Location Parameter

6.1 Introduction

We begin our discussion of semiparametric problems with inference about location
parameters. The related problem of regression is taken up in a later chapter.

Our starting point is an important counterexample of Diaconis and Freedman
[46, 45]. Since the Dirichlet process is a very flexible and popular prior for many
infinite-dimensional examples, it seems natural to use it for estimating a location
parameter. Diaconis and Freedman showed that it leads to posterior inconsistency.
Barron suggests that the pathology is more fundamental. We present some of their re-
sults in Section 2. Doss [50], [51] and [52], showed the existence of similar phenomena
when one wants to estimate a parameter θ that is a median.

A common explanation is that inconsistency is due to the Dirichlet sitting on
discrete distributions. It is indeed true that the semiparametric likelihood is difficult
to handle when a prior sits on discrete distributions. But Diaconis and Freedman [46]
argue in their rejoinder to such comments that they expect the same phenomenon
for Polya tree priors that sit on densities. We take up this problem in Sections 6.3
and 6.4 and show that under certain conditions symmetrized Polya tree priors have a
rich Kullback-Leibler support so that by Schwartz’s theorem, one can show posterior
consistency for the location parameter for a large class of true densities.
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One lesson that emerges from all this is that the tail free property, which is a
natural tool for consistency, is destroyed by the addition of a parameter. Hence the
Schwartz criterion is an appropriate tool for proving consistency. In particular, if one
wants posterior consistency for certain true P0s, then it is desirable to have a prior
whose Kullback-Leibler support contains them.

Another natural prior to consider is the Dirichlet mixture of normals, which has
emerged as the currently most popular prior for Bayesian density estimation. We will
explore its properties in the next chapter and return briefly to the location parameter
in Chapter 7.

Much of this chapter is based on Diaconis and Freedman [46] and Ghosal et.al. [78].

6.2 The Diaconis-Freedman Example

Suppose we have the model

Xi = Yi + θ, i = 1, 2, . . . , n

where given P and θ, Yis are i.i.d. P . Finally P and θ are independent with Dirichlet
process prior Dα for P and a prior density µ(θ) for θ. The probability measure ᾱ has
a density g.

Suppose the true value of θ is θ0 and the true distribution of the Y s is P0 with den-
sity f0. The densities µ, g, f0 are all with respect to Lebesgue measure on appropriate
spaces.

The main interest is in the location parameter θ and the behavior of the posterior
for θ under P0. Since the random distributions P are not symmetrized around 0, the
location parameter has an identifiability problem. For the time being, we ignore this.
We will rectify this later by symmetrizing P .

To calculate the posterior, note that the random distribution P ′ of Xs is a mixture
of Dirichlet, i.e., given θ, P ′ ∼ Dαθ

, where αθ(·) = α(R)ᾱ(· − θ). Because P0 has a
density Xis may be assumed to be distinct. Hence by expression (3.17) the posterior
density Π(θ|X1, X2, . . . , Xn) is proportional to

µ(θ)
n∏
1

g(Xi − θ)

As Barron pointed out in his discussion of [46] the Dirichlet is a pathological prior
for a parameter in a semiparametric problem. The posterior is the same as if one
assumed that Xis are i.i.d. with the parametrized density g(Xi − θ).
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Diaconis and Freedman point out that consequences of choosing g can be serious.
If g is a normal density, then one gets consistency, but not when g is Cauchy. An
intuitive interpretation of this is that a normal likelihood for θ provides a robust
model. For example, the MLE is X̄, which is consistent for E(X) = θ even without
normality. On the other hand, a Cauchy likelihood for θ, unlike a Cauchy prior,
does not provide robustness. In fact, Diaconis and Freedman provide the following
counterexample. They construct an f0, which has compact support, is symmetric
around 0, and infinitely differentiable. Under θ0 and P0, nearly half the samples the
posterior concentrates around θ0+δ and for nearly another half it concentrates around
θ0 − δ. The true model P0 can be chosen to make δ as large as we please. Because
we are now essentially dealing with a misspecified model g, when actually f0 is true,
some insight into this phenomenon as well as the argument in [46] can be achieved
by studying the asymptotic behavior of the posterior under misspecified models; see
[17] and Bunke and Milhaud [28].

We now indicate why the same phenomenon holds even if we symmetrize P to
P s(A) = (1/2)(P (A) + P (−A)).

Given P we first generate Z1, Z2, . . . , Zn, i.i.d. P . Then define Yi = |Zi|δi, where δi

are i.i.d. and δi = ±1 with probability 1/2. Then Y1, Y2, . . . , Yn are i.i.d. P s. Given
Y ′s and θ; Xi = Yi + θ as before. We will provide a heuristic computation of the
posterior distribution of θ.

Assume without loss generality that X1, X2, . . . , Xn and (Xi+Xj)/2, 1 ≤ i < j ≤ n
are all distinct. The variables (θ, X), (θ, Z, δ), and (θ, Y ) may be related in two ways.
If θ �= (Xi + Xj)/2 for all pairs i, j then

Yi = |Zi|δi = Xi − θ

are all distinct. Moreover, all the |Zi|s are also distinct. For, if |Zi| = |Zj|, then δi and
δj must be of opposite sign and θ must be (Xi + Xj)/2, a case we have excluded for
the time being. Hence, given θ, |Z1|, |Z2|, . . . , |Zn| are n distinct values in a sample of
size n from the distribution P |Z| = P s,|Z|, where P is Dαθ

. Hence one can write down
the joint density of |Z1|, |Z2|, . . . , |Zn| by equation (3.17). Finally, δis are independent
given θ and |Zi|. Since there is a 1-1 correspondence between Yi and (Zi, δi), the
density of Yis given θ is

C

n∏
1

(
g|z|(|yi|)

1
2

)
= C

n∏
1

g(yi) = C
n∏
1

g(Xi − θ) (6.1)

where C = {α(R)[n]}−1{α(R)}n.
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There is a second way in which the Yis can be related to Xis. Suppose θ = (Xi +
Xj)/2. Then |Zi| = |Zj| and δi and δj are of opposite sign. The remaining |Z|s—all
(n−2) of them—are all distinct and different from the common value of |Zi| and |Zj|.
Hence, given θ = (Xi + Xj)/2, the density of Zs (with respect to (n − 1)-dimensional
Lebesgue measure) is

D

(∏
k 
=i,j

g|Z|(|Yk|)
)

g|Z|(|Yi|) = C

∏n
1 g|Z|(|Yk|)
g|Z|(|Yj|)

where D = C/α(R). Finally, given θ = (Xi + Xj)/2, the density of Y1, Y2, . . . , Yn is

C

∏n
1 g|Z|(|Yk)
g|Z|(|Yj|)

1
2n

=
∏ g(Xi − θ)

2g(Xi − Xj)
(6.2)

because |Yi| = |Yj| = |Xi − Xj| and g(|Xi − Xj|) = g(Xi − Xj).
The density (6.1) multiplied by µ(θ) leads to the absolutely continuous part of the

posterior for θ, while (6.2) leads to its discrete part. Formally, the discrete part is

Πd(θ|X1, X2, . . . , Xn) =
∑
i<j

µ

(
Xi + Xj

2

)∏ g(Xi − θ)
2g(Xi − Xj)

and the absolutely continuous part has the density

Πc(θ|X1, X2, . . . , Xn) = µ(θ)C
n∏
1

g(yi) = Cµ(θ)
n∏
1

g(Xi − θ)

Hence the posterior is

Π(θ|X1, X2, . . . , Xn) =
Cµc(θ, X) + Dµd(θ, X)

CN

where CN is the norming constant

CN = C

∫
µc(θ, X)dθ +

∑
θ=(Xi+Xj)/2:i<j

µd(θ, X)

A detailed, rigorous proof appears in lemma 3.1 of and Freedman[45]. The posterior
is still pathological and leads to inconsistency.

Diaconis and Freedman give examples of P0 where one of the two terms in the
posterior dominate. In case the first term dominates, the posterior for the symmetrized
Dirichlet is similar to the posterior for the Dirichlet, and the proof for consistency in
that case applies here.
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6.3 Consistency of the Posterior

When P has a symmetrized Dirichlet prior distribution and g is log concave, as for
normal, then Diaconis and Freedman [45] show that the posterior is consistent for all θ0

for essentially “all” true P0. On the other hand without such assumptions consistency
fails, as indicated in the previous section. One explanation is the pathological form of
the posterior. A somewhat deeper explanation is the fact that the Dirichlet and the
symmetrized Dirichlet live on discrete distributions.

Diaconis and Freedman reacted to this as follows. They argued that discreteness is
not the main issue. They construct a class of Polya tree priors, supported by densities
and remark “Now consider the location problem; we guess this prior is consistent
when expectation is the normal and and inconsistent when it is Cauchy. The real
mathematical issue, it seems to us, is to find computable Bayes procedures and figure
out when they are consistent.”

We believe that Diaconis and Freedman are correct in thinking that existence of
density for random P is not enough. What one needs is a stronger notion of support
and a prior that has a support rich enough to contain one’s favorite P0s. the weak
support is not good enough except for tail free priors. Since addition of a parameter
destroys the tail free property, neither tail free priors nor the assumption that P0 is
in the weak support of the prior helps in ensuring consistency. Schwartz’s theorem
shows that a sufficient condition for consistency is that P0 is in the Kulback-Leibler
support of the prior. Schwartz’s theorem is stated next in the form in which we need
it.

Our parameter space is Θ × Fs where Θ is the real line and F s is the set of
all symmetric densities on R. On Θ × F s, we consider a prior µ × P and given
(θ, f), X1, X2, . . . , Xn are independent identically distributed as Pθ,f , where Pθ,f is
the probability measure corresponding to the density f(x − θ). We denote by fθ

the density f(x − θ). Given X1, X2, . . . , Xn, we consider the posterior distribution
(µ×P)(· · · |X1, X2, . . . , Xn) on Θ×Fs given by the density

∏
fθ(Xi)/

∫ ∏
fθ(Xi)d(µ×

P)(θ, f). The posterior (µ×P)(· · · |X1, X2, . . . , Xn) is said to be consistent at (θ0, f0)
if, as n → ∞, (µ×P)(· · · |X1, X2, . . . , Xn) converges weakly to the degenerate measure
δθ0,f0 almost surely Pθ0,f0 . Clearly, if the posterior is consistent at (θ0, f0), the marginal
distribution of (µ×P)(· · · |X1, X2, . . . , Xn) on Θ converges to δθ0 almost surely Pθ0,f0 .

Theorem 6.3.1. If for all δ > 0,

(µ × P){(θ, f) : K(fθ0 , fθ) < δ} > 0, (6.3)

then the posterior (µ × P)(· · · |X1, X2, . . . , Xn) is consistent at (θ0, f0).
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A naive way to ensure (6.3) is to require that θ0 and f0 belong respectively, to the
Euclidean and Kullback-Leibler supports of µ and P. The flaw in this argument is
that the Kullback-Leibler divergence is not a metric. So even if θ is close to θ0 and
K(f0, f) is small, we cannot draw any conclusion about K(f0θ0 , fθ) or K(f, fθ). A
way out is indicated below.

Definition 6.3.1. The map (θ, f) �→ fθ is said to be KL-continuous at (0, f0) if

K(f0, f0,θ) =
∫ ∞

−∞
f0(x) log(f0(x)/f0(x − θ))dx → 0 as θ → 0.

We would then call (0, f0) a KL-continuity point.

Let f ∗
0,θ be the density defined by f ∗

0,θ(x) = (f0,θ(x) + f0,θ(−x)) /2, the symmetriza-
tion of f0,θ where f0,θ stands for f0(. − θ). For later convenience we write P∗ instead
of P for a prior on F s.

Assumption A: Support of µ is R and for all θ sufficiently small, f∗
0,θ is in the

K-L support of P ∗.
It is easy to check that this condition holds for many common densities, e.g., for

normal or Cauchy. However, it fails for densities like uniform on an interval. For such
cases a different method is discussed later.

Theorem 6.3.2. If µ and P∗ satisfy Assumption A and if (0, f0) is a KL-continuity
point, then the posterior (µ × P∗)(· · · |X1, X2, . . . , Xn) is consistent at (0, f0).

Proof. We first prove it when θ = 0. By Theorem 6.3.1, it is enough to verify that
µ × P∗ satisfies the Schwartz condition (6.3). For any θ,

K(f0, fθ) =
∫ ∞

−∞
f0 log(f0/f−θ) (6.4)

=
∫ ∞

−∞
f0,θ log f0,θ −

∫ ∞

−∞
f0,θ log f

Since ∫ ∞

−∞
f0,θ log f ∗

0,θ =
∫ ∞

−∞
f ∗

0,θ log f ∗
0,θ (6.5)

and ∫ ∞

−∞
f0,θ log f =

∫ ∞

−∞
f ∗

0,θ log f, (6.6)



6.3. CONSISTENCY OF THE POSTERIOR 187

we have, by the concavity of log x

K(f0, fθ) =
∫ ∞

−∞
f0,θ log(f0,θ/f

∗
0,θ) +

∫ ∞

−∞
f ∗

0,θ log(f ∗
0,θ/f)

≤ 1
2

∫ ∞

−∞
f0,θ log

(
f0,θ

f0,θ

)
+

1
2

∫ ∞

−∞
f0,θ log

(
f0,θ

f0,−θ

)
+ K(f ∗

0,θ, f)

=
1
2
K(f0, f0,−2θ) + K(f ∗

0,θ, f)

(6.7)

By the KL-continuity assumption there is an ε such that for |θ| < ε, the first term
is less than δ/2. For any θ, by Assumption A, {f : K(f ∗

0,θ, f) < δ/2} has positive P∗

measure. Thus we have, for each θ ∈ [−ε, ε], {f : K(f ∗
0,θ, f) < δ/2} is contained in

{f : K(f0, fθ) < δ}. Since µ[−ε, ε] > 0 this completes the proof for θ = 0.
For a general θ0, K(f0,θ0 , fθ0+θ) = K(f0, fθ) which by the previous argument is less

than δ with positive probability, if f is chosen as before and θ is in [θ0 − ε, θ0 + ε].

Assumption A of Theorem 6.3.2 can be verified if P∗ arises as follows. Let P ∗ be a
symmetrization of P obtained by one of the following two methods.

Method 1. Let P be a prior on F . The map f �→ (f(x) + f(−x))/2 from F to F s

induces a measure on F s.
Method 2. Let P be a prior on F(R+)—the space of densities on R+. The map

f �→ f ∗, where, f ∗(x) = f ∗(−x) = f(x)/2, gives rise to a measure on F s.

Lemma 6.3.1. Let P be a prior on F or on F(R+) with a given symmetric f0

in its K-L support. Let P∗ be the prior obtained on F s by Method 1 or Method 2. If
f0 ∈ Fs, then

P∗{f ∈ Fs : K(f0, f) < δ} > 0 (6.8)

Proof. For Method 1, the result follows from Jensen’s inequality; the conclusion is
immediate for method 2 because, setting g0(x) = 2f0(x) and g(x) = 2f(x) for x in
R+, both g0, g belong to F(R+) and K(f0, f) = K(g0, g).

The K-L continuity assumptions fails if f0 has support in a finite interval. However,
our next result in this section shows that consistency continues to hold even when
f0 has support in a finite interval, provided f0 is continuous. The proof consists in
approximating f0 by an f1 satisfying conditions of Theorem 6.3.2. We first need a
lemma to bound a K-L number. It is a slight improvement over a lemma in [78].

Lemma 6.3.2. Let f0 and f1 be densities so that f0 ≤ Cf1. Then for any f ,

K(f0, f) ≤ C log C + [K(f1, f) +
√

K(f1, f)]
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Proof. First note that C ≥ 1. Also

K(f0, f) ≤
∫

f0[log(f0/f1)]+ ≤
∫

Cf1[log(Cf1/f)]+

≤ C log C + C

∫
f1[log(f1/f)]+

(6.9)

But ∫
f1[log(f1/f)]+ ≤ K(f1, f) +

∫
f1[log(f1/f)]− (6.10)

f1[log(f1/f)]− =
∫

f1[log(f/f1)]+ ≤
∫

f1

(
f

f1
− 1

)+

=
‖f − f1‖

2
≤

√
K(f1, f)

(6.11)

The last inequality follows from Proposition 1.2.2. Combining (6.9), (6.10) and (6.11),
one gets the lemma.

Theorem 6.3.3. If µ and P∗ satisfy Assumption A, f0 is continuous and has
support in a finite interval [−a, a], and log α(x) is integrable with respect to N(µ, σ2)
for all (µ, σ), then the posterior P(· · · |X1, X2, . . . , Xn) is consistent at (θ, f0) for all
θ.

Proof. We consider two cases.
Case 1. inf

[−a,a]
f0(x) = α > 0.

Let

f1(x) =

⎧⎨
⎩

(1 − η)f0(x), for − a < x < a
(η/2)φ−a,σ2 , for x ≤ −a
(η/2)φa,σ2 , for x ≥ a

(6.12)

where φ−a,σ2 and φa,σ2 are, respectively, the densities of N(−a, σ2) and N(a, σ2) and
σ2 is chosen to ensure that f1 is continuous at a.

We first show that f1 is KL-continuous, i.e.,

lim
θ→0

∫ ∞

−∞
f1 log(f1/f1,θ) =

∫ ∞

−∞
lim
θ→0

f1 log(f1/f1,θ) = 0 (6.13)

It is enough to establish that for some ε > 0, the family {log(f1/f1,θ) : |θ| < ε} is
uniformly integrable with respect to f1. This follows because for any M ,

sup
|θ|<ε

sup
|x|<M

| log(f1(x)/f1,θ(x))| < CM
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and when M is large, for |x| > M , f1,θ(x) = (η/2)(σ
√

2π)−1 exp[−(x − a − θ)2/(2σ2)]
for all |θ| < ε, implying

sup
|θ|<ε

∫
|x|>M

f1(x) log(f1(x)/f1,θ(x))dx → 0 as M → ∞

It now follows from Lemma 6.3.2 that, by setting C = (1−η)−1 and choosing η close
to 1 so that (C + 1) log C < δ/2, we can choose a δ∗ such that K(f1, f) < δ∗ implies
K(f0, f) < δ; consequently {(θ, f) : K(f1, fθ) < δ∗} ⊂ {(θ, f) : K(f0, fθ) < δ}.
Theorem 6.3.2 shows that the set on the left hand side has positive µ × P∗ measure.

Case 2. inf
[−a,a]

f0(x) = 0.

By the continuity of f0, we can, given any η > 0, choose a C such that
∫ a

−a
(f0∨C) =

1 + η, where a ∨ b = max(a, b). Set f1 = (1 + η)−1(f0 ∨ C). Then f0 ≤ (1 + η)f1 and
using Lemma 6.3.2, we can choose η and δ∗ small such that {f : K(f1, f) < δ∗} ⊂
{f : K(f0, f) < δ}. Since f1 is covered by Case 1, the theorem follows.

In the remaining section we concentrate on constructing Polya tree priors which
satisfy conditions of Theorem 6.3.2 for many f0s.

6.4 Polya Tree Priors

The main result in this section is Theorem 6.4.1. It implies that Assumption A is true
if P ∗ is a symmetrization of the Polya tree prior in this theorem and K(f0,θ0 , α) <
∞ for all θ0.

We already discussed the basic properties of Polya trees in Chapter 3. They are
recalled below. Let E = {0, 1} and Em be the m-fold Cartesian product E × · · · × E
where E0 = ∅. Further, set E∗ = ∪∞

m=0E
m. Let π0 = {R} and for each m = 1, 2, . . .,

let πm = {Bε : ε ∈ Em} be a partition of R so that sets of πm+1 are obtained from a
binary split of the sets of πm and ∪∞

m=0πm is a generator for the Borel σ-field on R.
Let Π = {πm : m = 0, 1, . . .}.

A random probability measure P on R is said to possess a Polya tree distribution
with parameters (Π, A); we write P ∼ PT(Π, A), if there exist a collection of non-
negative numbers A = {αε : ε ∈ E∗} and a collection Y = {Yε : ε ∈ E∗} of random
variables such that the following hold:

(i) the collection Y consists of mutually independent random variables;

(ii) for each ε ∈ E∗, Yε has a beta distribution with parameters αε0 and αε1;
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(iii) the random probability measure P is related to Y through the relations

P(Bε1···εm) =

⎛
⎝ m∏

j=1;εj=0

Yε1···εj−1

⎞
⎠

⎛
⎝ m∏

j=1;εj=1

(1 − Yε1···εj−1)

⎞
⎠ m = 1, 2, . . . ,

where the factors are Y0 or 1 − Y0 if j = 1.

We restrict ourselves to partitions Π = {πm : m = 0, 1, . . .} that are determined by
a strictly positive continuous density α on R in the following manner: The sets in πm

are intervals of the form {x : (k − 1)/2m <
∫ x

−∞ α(t)dt ≤ k/2m}, k = 1, 2, . . . , 2m. We
term the measure (corresponding to) α as the base measure because its role is similar
to the base measure of Dirichlet process.

Our next theorem refines theorem 2 of Lavine [119] by providing an explicit condi-
tion on the parameters.

Theorem 6.4.1. Let f0 be a density and P denote the prior PT(Π, A), where
αε = rm for all ε ∈ Em and

∑∞
m=1 r

−1/2
m < ∞. Further assume that K(f0, α) < ∞.

Then for every δ > 0,
P{P : K(f0, f) < δ} > 0 (6.14)

Proof. By Theorem 3.3.7, the weaker condition
∑∞

m=0 r−1
m < ∞ implies the existence

of a density of the random probability measure. Considering the transformation x �→∫ x

−∞ α(t)dt, assume that f and f0 are densities on [0, 1]. Moreover, Π is then the
canonical binary partition. By the martingale convergence theorem, there exists a
collection of numbers {yε : ε ∈ E∗} from [0, 1] such that, with probability one

f0(x) = lim
m→∞

⎛
⎝ m∏

j=1;εj=0

2yε1···εj−1

⎞
⎠

⎛
⎝ m∏

j=1;εj=1

2(1 − yε1···εj−1)

⎞
⎠ . (6.15)

where the limit is taken through a sequence ε1ε2 · · · which corresponds to the dyadic
expansion of x. It similarly follows that

f(x) = lim
m→∞

⎛
⎝ m∏

j=1;εj=0

2Yε1···εj−1

⎞
⎠

⎛
⎝ m∏

j=1;εj=1

2(1 − Yε1···εj−1)

⎞
⎠ (6.16)

for almost every realization of f . Now for any N ≥ 1,

K(f0, f) = MN + R1N − R2N (6.17)
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where

MN = E

⎡
⎣log

⎛
⎝ N∏

j=1;εj=0

(
yε1···εj−1

Yε1···εj−1

) N∏
j=1;εj=1

(
1 − yε1···εj−1

1 − Yε1···εj−1

)⎞
⎠
⎤
⎦ (6.18)

R1N = E[log(
∞∏

j=N+1;εj=0

2yε1···εj−1

∞∏
j=N+1;εj=1

2(1 − yε1···εj−1))] (6.19)

and

R2N = E[log(
∞∏

j=N+1;εj=0

2Yε1···εj−1

∞∏
j=N+1;εj=1

2(1 − Yε1···εj−1))] (6.20)

with E standing for the expectation with respect to the distribution of (ε1, ε2, . . .) for
a fixed realization of the Y s. The εs come from the binary expansion of x, and x is
distributed according to the density f0.

By the definition of a Polya tree, MN and R2N are independent for all N ≥ 1. To
prove (6.14), we show that for any δ > 0, there is some N ≥ 1 such that

P{MN < δ} > 0 (6.21)

|R1N | < δ (6.22)

and
P{|R2N | < δ} > 0 (6.23)

The set {(Yε : ε ∈ Em, m = 0, . . . , N − 1) : MN < δ} is a nonempty open
set in R2N−1; it is open by the continuity of the relevant map and it is nonempty
as (yε : ε ∈ Em, m = 0, . . . , N − 1) belongs to this set. Thus (6.21) follows by
the nonsingularity of the beta distribution. Relation (6.22) follows from lemma 2 of
Barron [6]. To complete the proof, it remains to show (6.23) for some N ≥ 1. We
actually prove the stronger fact

lim
N→∞

P{|R2N | ≥ δ} = 0 (6.24)

Let E stand for the expectation with respect to the prior distribution.i.e., the distri-
bution of the Y s and E, as before, the expectation with respect to the distribution of
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(ε1, ε2, . . .). Now

P{|R2N | ≥ δ}
≤ δ−1E|R2N |

≤ δ−1EE[
∞∑

j=N+1;εj=0

| log(2Yε1···εj−1)| +
∞∑

j=N+1;εj=1

| log(2(1 − Yε1···εj−1))|]

= δ−1E[
∞∑

j=N+1;εj=0

E| log(2Yε1···εj−1)| +
∞∑

j=N+1;εj=1

E| log(2(1 − Yε1···εj−1))|](6.25)

≤ δ−1E[
∞∑

j=N+1

max{E| log(2Yε1···εj−1)|,E| log(2(1 − Yε1···εj−1))|]

≤ δ−1
∞∑

j=N+1

max
(ε1···εj−1)∈Ej−1

max{E| log(2Yε1···εj−1)|,E| log(2(1 − Yε1···εj−1))|]

= δ−1
∞∑

j=N+1

η(rj−1)

where η(k) = E| log(2Uk)| with Uk ∼Beta(k, k). By Lemma 6.4.1, η(k) = O(k−1/2)
as k → ∞. Since

∑∞
m=1 r

−1/2
m < ∞ by assumption, the right-hand side of (6.25) is

the tail of a convergent series. This completes the proof of (6.24) and hence of the
theorem as well.

Remark 6.4.1. Essentially the same proof shows that the Kullback-Leibler neighbor-
hoods would continue to have positive measure when the prior is modified as follows:
Divide R into k + 1 intervals I1, . . . , Ik+1 and assume that (P (I1), . . . , P (Ik)) have
a joint density which is positive everywhere on the k-dimensional set {(a1, . . . , ak) :
ai > 0, j = 1, . . . , k,

∑k
j=1 ai < 1}. For each Ij, the conditional distribution given

P (Ij) has a Polya tree prior satisfying the assumptions of the theorem. These priors
are special cases of the priors constructed by Diaconis and Freedman. Moreover, it
follows from theorem 1 of Lavine [119] that such priors can approximate any prior
belief up to any desired degree of accuracy in a strong sense.

Remark 6.4.2. It is not necessary that for each m, αε1···εm be the same for all
(ε1, . . . , εm) ∈ Em. The proof goes through even when only αε1···εm−10 = αε1···εm−11

for all (ε1, . . . , εm−1) ∈ Em−1, m ≥ 1, and rm := min{αε1···εm : (ε1, . . . , εm) ∈ Em}
satisfies the condition

∑∞
m=1 r

−1/2
m < ∞.
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Lemma 6.4.1. If Uk ∼beta(k, k), then E| log(2Uk)| = O(k−1/2) as k → ∞.

Proof. The proof uses Laplace’s method with a rigorous control of the error term. Let
ηk = E| log(2Uk)|, i.e.,

ηk =
1

B(k, k)

∫ 1

0
| log(2u)|uk−1(1 − u)k−1du (6.26)

=
1

B(k, k)

∫ 1

0
| log(2(1 − u))|uk−1(1 − u)k−1du (6.27)

Adding (6.26) and (6.27) and observing that log(2u) and log(2(1 − u)) are always of
the opposite sign,

2ηk =
1

B(k, k)

∫ 1

0
| log(u/(1 − u))|uk−1(1 − u)k−1du (6.28)

This implies by Jensen’s inequality that

4η2
k ≤ 1

B(k, k)

∫ 1

0
(log(u/(1 − u)))2uk−1(1 − u)k−1du

=
1

B(k, k)

∫ 1

0
{1 + (log(u/(1 − u)))2}uk−1(1 − u)k−1du − 1

(6.29)

We approximate the integral by Laplace’s method. Let

{1 + (log(u/(1 − u)))2}uk−1(1 − u)k−1 = exp(gk(u)) (6.30)

where
gk(u) = (k − 1) log u + (k − 1) log(1 − u) + h(u)

and
h(u) = log{1 + (log(u/(1 − u)))2}

Clearly, gk(1/2) = −2(k − 1) log 2, g′
k(1/2) = 0 and g′

k(u) is decreasing in u so that
gk(u) has a unique maximum at 1/2. Fix δ > 0 and let λ = sup{h′′(u) : |u−1/2| < δ}.
Then on u ∈ (1/2 − δ, 1/2 + δ), we have

gk(u) ≤ −2(k − 1) log 2 − (u − 1
2)

2

2
(8(k − 1) − λ) (6.31)
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Thus

4η2
k

≤ 1
B(k, k)

∫ 1/2+δ

1/2−δ

exp[−2(k − 1) log 2 − 4(k − 1)
(

1 − λ

8(k − 1)

)
(u − 1

2
)2]du

+
1

B(k, k)

∫
|u− 1

2 |>δ

{1 + (log(u/(1 − u)))2}uk−1(1 − u)k−1du − 1 (6.32)

≤ Γ(2k)
(Γ(k))2 2−2(k−1)

∫ ∞

−∞
exp[−4(k − 1)

(
1 − λ

8(k − 1)

)
(u − 1

2
)2]du

+
1

B(k, k)

∫
|u− 1

2 |>δ

{1 + (log(u/(1 − u)))2}uk−1(1 − u)k−1du − 1

Since the function u(1−u){1+ (log(u/(1−u))2} is bounded on (0, 1) by, say, M , the
second term on the right-hand side of (6.32) is dominated by

M

B(k, k)

∫
|u−1/2|>δ

uk−2(1 − u)k−2du

= M
(2k − 1)(2k − 2)

(k − 1)2 P{|Uk−1 − 1
2
| > δ}

≤ M
(2k − 1)(2k − 2)

(k − 1)2 E|Uk−1 − 1
2
|2/δ2

= O(k−1)

(6.33)

The first term on the right-hand side of (6.32) is

Γ(2k)
(Γ(k))2 2−2k+2(2π)1/2(8(k − 1) − λ)−1/2 (6.34)

which, by an application of Stirling’s inequalities [[171] p. 253], is less than

(2k)2k−1/2e−2k(2π)1/2 exp[(24k)−1]
(kk−1/2e−k(2π)1/2)2 2−2k+2(2π)1/2

× 2−3/2(k − 1)−1/2
(

1 − λ

8(k − 1)

)−1/2

=
(

k

k − 1

)1/2

exp[(24k)−1]
(

1 − λ

8(k − 1)

)−1/2

= 1 + O(k−1)

(6.35)

Thus η2
k = O(k−1), completing the proof.
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Remark 6.4.3. While we have discussed consistency issues, it would be interesting
to explore how the robustness calculations in Section 4 of Lavine [119] can be made
in the context of a location parameter.

We have argued that the Schwartz theorem is the best available tool for handling
consistency issues in semiparametric problems. We have also exhibited a Polya tree
priors which have a rich K-L support. However, there are caveats. The consistency
theorem notwithstanding, computation of the posterior for θ for a density f0 of the
kind used by Diaconis-Freedman shows that convergence for Cauchy base measure is
very slow. Even for n = 500, one notices the tendency to converge to a wrong value,
as in the case of the Dirichlet prior with Cauchy base measure. Rapid convergence
does take place if we replace the Cauchy by the normal.

A second fact is that the condition
∑

r
−1/2
m < ∞ implies that the tail of the

random P ∗ is close in some sense to the tail of the prior expected density. This in
turn implies that the posterior for f converges to δf0 rather slowly, which might imply
relatively slow convergence also of the posterior for θ. Both these questions can be
better understood if one can get rates of convergence of the posterior and see how
they depend on the base measure and the rms. These are delicate issues.

What happens if
∑

r
−1/2
m = ∞? We have conjectured earlier that then, the Schwartz

condition would not hold. If so, it seems likely that in all such cases consistency would
depend dramatically on the base measure.



7
Regression Problems

7.1 Introduction

An important semiparametric problem is to make inference about the constants in
the regression equation when the error in the regression model

Yi = α + βxi + εi, i = 1, 2, . . . (7.1)

has an unknown, symmetric distribution. This is similar to the location parameter
problem, so it is natural to try a symmetrized Polya tree prior for the error distribu-
tion. Another prior that suggests itself is a symmetrized version of Dirichlet mixtures
of normals of Chapter 5. We explore both priors in this chapter with a focus on pos-
terior consistency. The covariate may arise as fixed nonrandom constants or as i.i.d.
observations of a random variable.

Because this is a semiparametric problem, it is natural to try to use Schwartz’s the-
orem. However since the observations are not identically distributed, major changes
are needed. We begin with a variant of Schwartz’s theorem in Section 7.2. In two of
the subsequent sections we discuss how the conditions of the theorem can be verified.
Lack of i.i.d. structure for the Yis necessitates assumptions on the xis to ensure that
the exponentially consistent tests required by Schwartz’s theorem exist in the cur-
rent context. Also certain conditions have to be imposed on f0 to verify conditions
relating to K-L support and variance in the Schwartz theorem. Among other things
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it is shown that Polya tree priors of the sort considered in the Chapter 6 fulfill the
required conditions on the prior.

We then turn to the Dirichlet mixtures of normal. It turns out that the random
densities are sufficiently well behaved that the proof for results similar to that outlined
in the previous paragraph can be simplified to some extent.

It may be observed that as in the Chapter 6 it may be tempting to use a Dirichlet
prior on F . It is easy to show that the posterior for α, β would be pathological in
exactly the same way, namely, it would be identical with the posterior arising from
assigning a parametric prior on F . The proof is quite similar.

In the literature, the regression problem has been handled by putting a Dirichlet
mixture of normals but without symmetrization. This means that there is an identi-
fiability problem for the constant but not for the regression coefficient β. Of course,
the posterior for α cannot be consistent, but one can show posterior consistency for β.
In many examples, one would want consistency for both α and β, so symmetrization
seems desirable. See , Burr et al.[29] for an interesting application.

The final section discusses binary response regression with nonparametric link func-
tions. This chapter is based heavily on [134] and unpublished work of Messan.

7.2 Schwartz Theorem

Fix f0, α0, β0. Let
fα,β,i = fα+βxi

(y) = f(y − (α + βxi)) (7.2)

and put f0i = f0,α0,β0,i.
For any two densities f and g, let

K(f, g) =
∫

f log
f

g
, V (f, g) =

∫
f

(
log

f

g

)2

(7.3)

and put
Ki(f, α, β) = K(f0i, fα,β,i), Vi(f, α, β) = V (f0i, fα,β,i) (7.4)

As mentioned in the introduction, the main tool we use is a variant of Schwartz’s
theorem. The following theorem is an adaptation to the case when the Yis are inde-
pendent but not identically distributed. Here the xis are nonrandom.

Definition 7.2.1. Let W ⊂ F ×R×R. A sequence of test functions Φn(Y1, . . . , Yn)
is said to be exponentially consistent for testing

H0 : (f, α, β) = (f0, α0, β0) against H1 : (f, α, β) ∈ W (7.5)
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if there exist constants C1, C2, C > 0 such that

(a) E n∏

1
f0i

Φn ≤ C1e
−nC , and

(b) inf
(f,α,β)∈W

E n∏

1
fα,β,i

(Φn) ≥ 1 − C2e
−nC .

Theorem 7.2.1. Suppose Π̃ is a prior on F and µ is a prior for (α, β). Let W ⊂
F × R × R. If

(i) there is an exponentially consistent sequence of tests for

H0 : (f, α, β) = (f0, α0, β0) against H1 : (f, α, β) ⊂ W

(ii) for all δ > 0,

Π

{
(f, α, β) : Ki(f, α, β) < δ for all i,

∞∑
i=1

Vi(f, α, β)
i2

< ∞
}

> 0

then with
∏∞

i=1 Pf0i
probability 1, the posterior probability

Π(W|Y1, . . . , Yn) =

∫
W

∏n
i=1

fα,β i(Yi)
f0i(Yi)

dΠ(f, α, β)∫
F×R×R

∏n
i=1

fα,β i(Yi)
f0i(Yi)

dΠ(f, α, β)
→ 0 (7.6)

Note that Vi(f, α, β) bounded above in i is sufficient to ensure the summability of∑∞
i=1 Vi(f, α, β)/i2.

Proof. The proof is similar to the proof of Schwartz’s theorem. If we write (7.6) as

Π(W|Y1, . . . , Yn) =
I1n(Y1, . . . , Yn)
I2n(Y1, . . . , Yn)

(7.7)

it can be shown, as in the proof of Schwartz’s theorem (Chapter 4), that condition
(i) implies that “ there exists a d > 0 such that endI1n(Y1, . . . , Yn) → 0 a.s. ”

The denominator can be handled similarly, using Kolomogorov’s strong law of large
numbers for independent but not identically distributed random variables. Yet, with



200 7. REGRESSION PROBLEMS

a later application in mind, we give an argument here with a somewhat weaker as-
sumption than (ii). For any two densities f and g, let

V+(f, g) =
∫

f

(
log+

f

g

)2

(7.8)

and put
V+i(f, α, β) = V+(f0i, fα,β,i) (7.9)

We will show that “ for all d > 0, endI2n(Y1, ..., Yn) → ∞ a.s.” under the assumption,
(ii)′ For all δ > 0,

Π

{
(f, α, β) : Ki(f, α, β) < δ for all i,

∞∑
i=1

V+i(f, α, β)
i2

< ∞
}

> 0

Because V+(f, g) ≤ V (f, g) it is easy to see that (ii) implies (ii)′.
Let V be the set{

(f, α, β) : Ki(f, α, β) < δ for all i,
∞∑
i=1

V+i(f, α, β)
i2

< ∞
}

and Wi = log+(f0i/fα,β,i)(Yi). Applying Kolmogorov’s strong law of large numbers
for independent non-identical variables to the sequence Wi − E(Wi), it follows that
for each f ∈ V, a.s.

∏∞
i=1 Pf0i

,

lim inf
n→∞

(
1
n

n∑
i=1

log
fα,β,i(Yi)
f0i(Yi)

)

≥ − lim sup
n→∞

(
1
n

n∑
i=1

log+
f0i(Yi)

fα,β,i(Yi)

)

= − lim sup
n→∞

1
n

n∑
i=1

K+
i (f, α, β) (7.10)

≥ − lim sup
n→∞

(
1
n

n∑
i=1

Ki(f, α, β) +
1
n

n∑
i=1

√
Ki(f, α, β)/2

)

≥ − lim sup
n→∞

⎛
⎝ 1

n

n∑
i=1

Ki(f, α, β) +

√√√√ 1
n

n∑
i=1

Ki(f, α, β)/2

⎞
⎠
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Since for f ∈ V, n−1 ∑n
i=1 Ki(f, α, β) < δ, we have for each f ∈ V,

lim inf
n→∞

1
n

n∑
i=1

log
fα,β,i(Yi)
f0i(Yi)

≥ −(δ +
√

δ/2) (7.11)

Choosing C so that δ +
√

δ/2 ≤ C/8 and noting that

I2n ≥
∫

V

n∏
i=1

fα,β,i(Yi)
f0i(Yi)

dΠ(f, α, β)

it follows from Fatou’s lemma that

enC/4I2n → ∞ (7.12)

a.s.
∏∞

i=1 Pf0i
.

Remark 7.2.1. Condition (ii) of the theorem can be weakened. It can be seen from
the proof that if the prior assigns positive probability to the following set

1
n

n∑
i=1

Ki(f, α, β) < δ for all n,
∞∑
i=1

Vi(f, α, β) + K2
i (f, α, β)

i2
< ∞

then also the posterior is consistent.

7.3 Exponentially Consistent Tests

Our goal is to establish consistency for (f, α, β) or for (α, β) at (f0, α0, β0), and thus
the sets W of interest to us are of the type W = U c, where U is a neighborhood of β0

or α0 alone or of (f0, α0, β0). In the first case we write W of this type as a finite union
of Wis and show that condition (i) of Theorem 7.2.1 holds for each of these Wis.

We begin with a couple of lemmas.

Lemma 7.3.1. For i = 1, 2, let g0i and gi be densities on R. If for each i there
exists a function Φi, 0 ≤ Φi ≤ 1 such that

Eg0i
(Φi) = αi ≤ γi = Egi

(Φi) (7.13)

and if

lim inf
n→∞

1
n

n∑
i=1

(γi − αi) > 0 (7.14)

then there exists a constant C, sets Bn ⊂ Rn, n = 1, 2, . . ., and n0— all depending
only on (γi, αi), such that for n > n0
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[
∏n

i=1 Pg0i
] (Bn) < e−nC, and

[
∏n

i=1 Pgi
] (Bn) > 1 − e−nC.

We refer to [134] for a proof. For a density g and θ ∈ R, let gθ stand for the density
gθ(y) = g(y − θ).

Lemma 7.3.2. Let g0 be a continuous symmetric density on R, with g0(0) > 0.
Let η be such that inf |y|<η g0(y) = C > 0.

(i) For any ∆ > 0, there exists a set B∆ such that

Pg0(B∆) ≤ 1
2

− C(∆ ∧ η)

and for any symmetric density g

Pgθ
(B∆) ≥ 1

2
for all θ ≥ ∆

(ii) For any ∆ < 0, there exists a set B̃∆ such that

Pg0(B̃∆) ≤ 1
2

− C(∆ ∧ η)

and for any symmetric density g

Pgθ
(B̃∆) ≥ 1

2
for all θ ≤ ∆

Proof. (i) Take B∆ = (∆, ∞). Since θ ≥ ∆ and gθ is symmetric around θ, Pgθ
(B∆) ≥

1
2 . On the other hand

Pg0(B∆) =
1
2

−
∫ ∆

0
g0(y)dy ≤ 1

2
−

∫ ∆∧η

0
g0(y)dy ≤ 1

2
− C(∆ ∧ η) (7.15)

Similarly B̃∆ = (−∞, ∆) would satisfy condition (ii).

Remark 7.3.1. By considering IB∆(y − θ0), it is easy to see that Lemma 7.3.2 holds
if we replace g0 by g0,θ0 and require θ − θ0 > ∆ or θ − θ0 < ∆.
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Assumption A. There exists ε0 > 0 such that the covariate values xi satisfy

lim inf
n→∞

1
n

n∑
i=1

I{xi < −ε0} > 0, lim inf
n→∞

1
n

n∑
i=1

I{xi > ε0} > 0

Remark 7.3.2. Assumption A forces the covariate x to take both positive and neg-
ative values, i.e., values on both sides of 0. If the condition is satisfied around any
point, then by a simple location shift, we can bring it to the present form.

Proposition 7.3.1. If Assumption A holds, f0 is continuous at 0 and f0(0) > 0,
then there is an exponentially consistent sequence of tests for

H0 : (f, α, β) = (f0, α0, β0) against H1 : (f, α, β) ∈ W

in each of the following cases:

(i) W = {(f, α, β) : α > α0, β − β0 > ∆};

(ii) W = {(f, α, β) : α < α0, β − β0 > ∆};

(iii) W = {(f, α, β) : α > α0, β − β0 < −∆}; and

(iv) W = {(f, α, β) : α < α0, β − β0 < −∆}.

Proof. (i) Let Kn = {i : 1 ≤ i ≤ n, xi > ε0} and #Kn stand for the cardinality of
Kn. We will construct a test using only those Yis for which the corresponding i is in
Kn.

If i ∈ Kn, then (α+βxi)− (α0 +β0xi) > ∆xi, and by Lemma 7.3.2 for each i ∈ Kn,
there exists a set Ai such that

αi := Pf0i
(Ai) <

1
2

− C(η ∧ ∆xi)

and

γi := inf
(f,α,β)∈W

Pfα,β,i
(Ai) ≥ 1

2

where “:=” stands for equality by definition.
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If i ≤ n and i /∈ Kn, set Ai = R, so that αi = γi = 1. Thus

lim inf
n→∞

(
n−1

n∑
i=1

(γi − αi)

)

≥ lim inf
n→∞

(
n−1

∑
i∈Kn

C(η ∧ ∆xi)

)
(7.16)

≥ C(η ∧ ∆ε) lim inf
n→∞

#Kn/n > 0

With Φi = IAi
, the result follows from Lemma 7.3.1.

(ii) In this case we construct tests using Yi such that i ∈ Mn := {1 ≤ i ≤ n : xi <
−ε0}. If i ∈ Mn, then

(α + βxi) − (α0 + β0xi) < ∆xi < −∆ε0

Now using condition (ii) of Lemma 7.3.2, we get sets B̃i and then obtain exponentially
consistent tests using Lemma 7.3.1 as in part (i). The other two cases follow similarly.

The union of the W ’s in Proposition 7.3.1 is the set {(f, α, β) : |β − β0| > ∆}.
The case for α alone can be proved in exactly the same way. Combining all eight
exponentially consistent tests for α and β one can get an exponentially consistent
test for α = α0, β = β0.

If random fs are not symmetrized around zero, α is not identifiable. So the posterior
distribution for α will not be consistent. Consistency for β will continue to hold under
appropriate conditions. To prove the existence of uniformly consistent tests for β in
the nonsymmetric case, we pair Yis and consider the difference Yi − Yj, which has
a density that is symmetric around β(xi − xj). We can now handle the problem in
essentially the same way as in Proposition 7.3.1 to construct strictly unbiased tests.
The verification of the other conditions in Sections 7.4, 7.5 and 7.6 is along similar
lines.

The next proposition considers neighborhoods of f0 to get posterior consistency
for the true density rather than only the parametric part. We need an additional
assumption.

Assumption B. For some L, |xi| < L for all i.

Proposition 7.3.2. Suppose that Assumption B holds. Let U be a weak neighbor-
hood of f0 and let W = U c ×{(α, β) : |α − α0| < ∆, |β − β0| < ∆}. Then there exists
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an exponentially consistent sequence of tests for testing

H0 : (f, α, β) = (f0, α0, β0) against H1 : (f, α, β) ∈ W
Proof. Without loss of generality take

U =
{

f :
∫

Φ(y)f(y) −
∫

Φ(y)f0(y) < ε

}
(7.17)

where 0 ≤ Φ ≤ 1 and Φ is uniformly continuous.
Since Φ is uniformly continuous, given ε > 0, there exists δ > 0 such that |y1−y2| <

δ implies |Φ(y1) − Φ(y2)| < ε/2.
Let ∆ be such that

|(α − α0) + (β − β0)xi| < δ

for α, β ∈ W and all xi. Set Φ̃i(y) = Φ(y − (α0 + β0xi)). Then

Ef0i
Φ̃i = Ef0Φi, Efα,β,i

Φ̃i = Ef(α−α0),(β−β0),iΦ (7.18)

Noting that ∫
Φ(y − ((α − α0) + (β − β0)xi))f(α−α0)+(β−β0)xi

(y)dy

=
∫

Φ(y)f(y)dy

we have ∫
Φ̃i(y)fα,β,i(y)dy

≥
∫

Φ(y)f(y)dy −
∫

|Φ(y) − Φ(y − ((α − α0) + (β − β0)xi))|

× f(α−α0)+(β−β0)xi
(y)dy

≥
∫

Φ(y)f(y)dy − ε

2

in the last step, we used the uniform continuity of Φ. An application of Lemma 7.3.1
completes the proof.

If one is interested in showing posterior probability of f ∈ U, |α−α0| < ∆, |β−β0| <
δ goes to 1 a.s. (f0, α0, β0), then it is necessary to get an exponential sequence of tests
for H0 : (f, α, β) = (f0, α0, β0) against H1 : f ∈ U c or |α−α0| > A or |β−β0| > δ. For
this, one has only to combine Propositions 7.3.1, its analogoue for α, and Proposition
7.3.2.
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7.4 Prior Positivity of Neighborhoods

In this section we develop sufficient conditions to verify condition (ii) of Theorem
7.2.1. A similar problem in the context of location parameter was studied in Chapter
6. There, we managed with Kullback-Leibler continuity of f0 at θ0—the true value
of the location parameter, and the requirement that Π{K(f ∗

0,θ, f) < δ} > 0 for all θ
in a neighborhood of θ0 and where f ∗

0,θ is close to but different from f0,θ. However,
this approach does not carry over to the regression context because, even though
the true parameter remains (α0, β0), for each i we encounter different parameters
θi = α0 + β0xi. Here we take a different approach. Since we have no assumptions on
the structure of the random density f , the assumption on f0 is somewhat strong. This
condition is weakened in Section 7.7, where we consider Dirichlet mixture of normals.
In that case, the random f is better behaved.

Lemma 7.4.1. Suppose f0 ∈ F satisfies the following condition: There exists η > 0,
Cη and a symmetric density gη such that, for |η′| < η,

f0(y − η
′
) < Cηgη(y) for all y (7.19)

Then

(a) for any f ∈ F and |θ| < η

K(f0, fθ) ≤ Cη log Cη +
[
K(gη, f) +

√
K(gη, f)

]

(b) if, in addition, vargη(log(gη/f)) < ∞, then

sup
|θ|<η

varf0

(
log+

f0

fθ

)
< ∞

Proof. Part (a) is an immediate consequence of Lemma 6.3.2 and the fact that
K(f0,θ, f) = K(f0, fθ), which follows from the symmetry of f0 and f .

For (b), note that∫
f0

[
log+

f0

fθ

]2

=
∫

f0,θ

[
log+

f0,θ

f

]2

≤ Cη

∫
gη

[
log+

Cηgη

f

]2

(7.20)

A remark here: We work with varf0

(
log+ f0/fθ

)
rather than varf0 (log f0/fθ) be-

cause the condition fθ < Cηgη does not imply [log f0,θ/f ]2 ≤ Cηgη [log Cηgη/f ]2.
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We write the assumption of Lemma 7.4.1 as follows:
Assumption C. For η > 0, sufficiently small, there is gη ∈ F and constant Cη > 0

such that for |η′| < η,
f0(y − η

′
) < Cηgη(y) for all y

and
Cη → 1 as η → 0

Proposition 7.4.1. Suppose Assumptions B and C hold. Let Π̃ be a prior for f
and µ be a prior for (α, β). If (α0, β0) is in the support of µ and if for all η sufficiently
small and for all δ > 0

Π̃
{

K(gη, f) < δ, vargη

(
log

gη

f

)
< ∞

}
> 0 (7.21)

then for all δ > 0 and some M > 0,

(Π̃ × µ) {(f, α, β) : Ki(f, α, β) < δ, Vi(f, α, β) < M for all i} > 0 (7.22)

Proof. Choose η, δ0 such that (7.21) holds with δ = δ0 and

(Cη + 1) log Cη + Cη

[
δ0 +

√
δ0

]
< δ

Let
V =

{
(α, β) : |α − α0| <

η

2
, |β − β0| <

η

2L

}
Note that

Ki(f0, α, β) = K(f0, f(α−α0)+(β−β0)xi
)

and
Vi(f0, α, β) = V (f0, f(α−α0)+(β−β0)xi

)

and (α, β) ∈ V implies that |(α − α0) + (β − β0)xi| < η for all xi. An application of
Lemma 7.19 immediately gives the result.

Theorem 7.4.1. Suppose that

(i) the covariates x1, x2, . . . satisfy Assumptions A and B;

(ii) f0 is continuous, f0(0) > 0, and f0 satisfies Assumption C;
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(iii) for all sufficiently small η and for all δ > 0,

Π̃ {K(gη, f) < δ, V (gη, f) < ∞} > 0

where gη is as in Assumption C.

Then for any neighborhood U of f0,

Π {(f, α, β) : f ∈ U , |α − α0| < δ, |β − β0| < δ|Y1, Y2, . . . , Yn} → 1 (7.23)

a.s.
∏∞

i=1 Pf0i
.

In other words, the posterior distribution is weakly consistent at (f0, α0, β0).

Proof. The proof follows from the remarks after Proposition 7.3.2.

Remark 7.4.1. Assumption (ii) of Theorem 7.4.1 is satisfied if f0 is Cauchy or
normal. If f0 is Cauchy, then gη = f0 satisfies Assumption C. If f0 is normal, then
Assumption C holds with gη = f s

0,η, where

f s
0,η =

1
2

{f0(y − η) + f0(−y − η)} (7.24)

Remark 7.4.2. Assumption B is used in two places: Propositions 7.3.2 and 7.4.1.
For specific f0s one may be able to obtain the conclusion of Proposition 7.4.1 without
Assumption B. In such cases one would be able to get consistency at (α0, β0) without
having to establish consistency at (f0, α0, β0).

7.5 Polya Tree Priors

In this section we note that Polya tree priors, with a suitable choice of parameters,
satisfy condition (iii) of Theorem 7.19 and hence the posterior distribution is weakly
consistent. To obtain a prior on symmetric densities, we consider Polya tree priors on
densities f on the positive half-line and then considering the symmetrization f s(y) =
1
2f(|y|). Since K(f, g) = K(f s, gs) and V (f, g) = V (f s, gs), this symmetrization
presents no problems.

We briefly recall Polya tree priors from Chapter 3. Let E = {0, 1}, Em = {0, 1}m

and E∗ =
⋃∞

m=1 Em. For each m, {Bε : ε ∈ Em} is a partition of R+ and for each ε,
{Bε0, Bε1} is a partition of Bε. Further {Bε : ε ∈ E∗} generates the Borel σ-algebra.
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A random probability measure P on R+ is said to be distributed as a Polya tree
with parameters (Π, A), where Π is a sequence of partitions as described in the last
paragraph, and A = {αε : ε ∈ E∗} is a collection of nonnegative numbers, if there
exists a collection {Yε : ε ∈ E∗} of mutually independent random variables such that

(i) each Yε has a beta distribution with parameters αε0; and αε1

(ii) the random measure P is given by

P (Bε1···εm) =

⎡
⎣ m∏

j=1, εj=0

Yε1···εj−1

⎤
⎦
⎡
⎣ m∏

j=1, εj=1

(1 − Yε1···εj
)

⎤
⎦

We restrict ourselves to partitions Π = {Πm : m = 0, 1, . . .} that are determined
by a strictly positive, continuous density α on R+ in the following sense: The sets in
Πm are intervals of the form{

y :
k − 1
2m

<

∫ y

−∞
α(t)dt ≤ k

2m

}

Theorem 7.5.1. Let Π̃ be a Polya tree prior on densities on R+ with αε = rm for
all ε ∈ Em. If

∑∞
m=1 r

−1/2
m < ∞, then for any density g such that K(g, α) < ∞ and

varg(log g) < ∞ for all δ > 0,

lim
M→∞

Π̃ {f : K(g, f) < δ, V (g, f) < M} > 0 (7.25)

The proof is along similar lines as that of Theorem 6.4.1. We refer to [134] for
details.

Although Polya trees give rise to naturally interpretable priors on densities and
leads to consistent posterior, sample paths of Polya trees are, however, very rough
and have discontinuities everywhere. Such a drawback can be easily overcome by
considering a mixture of Polya trees. Posterior consistency continues to hold this case,
because by Fubini’s theorem, prior positivity holds under mild uniformity conditions.
Such priors are worth further study.

7.6 Dirichlet Mixture of Normals

In this section, we look at random densities that arise as mixtures of normal densities.
Let φh denote the normal density with mean 0 and standard deviation h. For any
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probability P on R, fh,P will stand for the density

fh,P (y) =
∫

φh(y − t)dP (t) (7.26)

Our model consists of prior µ for h and a prior Π̃ for P . Consistency issues related
to these priors, in the context of density estimation, based on [74], were discussed in
Chapter 5. Here we look at similar issues when the error density f in the regression
model is endowed with these priors.

To ensure that the prior sits on symmetric densities, we let P be a random proba-
bility on R+ and set

fh,P (y) =
1
2

∫
φh(y − t)dP (t) +

1
2

∫
φh(y + t)dP (t) (7.27)

We will denote by Π̃ both the prior for P and the prior for fh,P .
The following lemma shows that the random f generated by the prior under con-

sideration is more regular than those generated by Polya tree priors, and hence the
conditions on f0 are more transparent than those in Section 7.5 or those in Ghosal,
Ghosh, and Ramamoorthi [78].

Lemma 7.6.1. Let f0 be a density such that∫
y2f0(y)dy < ∞ and

∫
f0(y) log f0(y)dy < ∞ (7.28)

If f(y) =
∫

φh(y − t)dP (t) and
∫

t2dP (t) < ∞, then

(i) lim
θ→0

∫
f0(y) log

f0(y)
fθ(y)

dy =
∫

f0(y) log
f0(y)
f(y)

dy, and

(ii) lim
θ→0

∫
f0(y)

[
log

f0(y)
fθ(y)

]2

dy =
∫

f0(y)
[
log

f0(y)
f(y)

]2

dy.

Proof. We have

log fθ(y) = log
∫

φh(y − (t + θ))dP (t)

and hence

| log fθ(y)| ≤ | log
√

2πh| +
∣∣∣∣log

∫
e−(y−θ−t)2/(2h2)dP (t)

∣∣∣∣ (7.29)
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Since log
∫

e−(y−θ−t)2/(2h2)dP (t) < 0, by Jensen’s inequality applied to − log x, the last
expression is bounded by

| log
√

2πh| +
∫

(y − θ − t)2

h2 dP (t)

Hence ∣∣∣∣f0(y) log
f0(y)
fθ(y)

∣∣∣∣
≤ |f0(y) log f0(y)| + f0(y)| log fθ(y)|

≤ |f0(y) log f0(y)| + | log
√

2πh| + f0(y)
∫

(y − θ − t)2

h2 dP (t)

The dominated Convergence Theorem now yields the result.

We now return to the regression model.

Theorem 7.6.1. Suppose Π̃ is a normal mixture prior for f . If

(i) Assumptions A and B hold,

(ii) Π̃ {f : K(f0, f) < δ, V (f0, f) < ∞} > 0 for all δ > 0,

(iii) Ef0(log f0)2 < ∞, and

(iv)
∫ ∫

t2dP (t)dΠ̃(P ) < ∞,

then the posterior Π(·|Y1, . . . , Yn) is weakly consistent for (f, α, β) at (f0, α0, β0) pro-
vided (α0, β0) is in the support of the prior for (α, β).

Proof. By condition (iv),
{
P :

∫
t2dP (t) < ∞

}
has Π̃ probability 1. So we may assume

that

Π̃
{

f : f = fP , (ii) holds,
∫

t2dP (t) < ∞
}

> 0 (7.30)

Let U =
{
f : f = fP , (ii) holds,

∫
t2dP (t) < ∞

}
.

For every f ∈ U , using Lemma 7.6.1, choose δf such that, for θ < δf∣∣∣∣
∫

f0 log
f0

f
−

∫
f0 log

f0

fθ

∣∣∣∣ < δ (7.31)
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Now choose εf such that |α−α0+(β−β0)xi| < δf whenever |α−α0| < εf , |β−β0| <
εf/L.

Clearly, if f ∈ U and |α − α0| < εf and |β − β0| < εf/L, we have

Ki(f, α, β) < 2δ and Vi(f, α, β) < V (f0, f) + δ (7.32)

Since
Π̃ {(f, α, β) : f ∈ U , |α − α0| < εf , |β − β0| < εf/L} > 0 (7.33)

we have

Π

{
(f, α, β) : Ki(f0, α, β) < δ for all i,

∞∑
i=1

Vi(f, α, β)
i2

< ∞
}

> 0 (7.34)

An application of Theorem 7.2.1 completes the proof.

It was shown in Chapter 5 that if f0 has compact support or if f0 = fP with P
having compact support, then Π̃ {f : K(f0, f) < δ} > 0 for all δ > 0. The argument
given there also shows that in these cases, (ii) of Theorem 7.6.1 holds when Π̃ is
Dirichlet with base measure γ. In Chapter 5 we also described f0s whose tail behavior
is related to that of γ such that Π̃ {f : K(f0, f) < δ} > 0. In the case when the prior
is Dirichlet, the double-integral in (iv) is finite if and only if

∫
t2dγ(t) < ∞. While

normal f0 is covered by these results, the case of Cauchy f0 cannot be resolved by
the methods in that chapter. However, Dirichlet mixtures of both location and scale
parameters of normal may be able to handle Cauchy, which is a scale mixture of
normal. Results of Chapter 5 may need to be generalized to prove posterior consistency
for these priors. .

7.7 Binary Response Regression with Unknown Link

One of the most popular models in bioassay involves regression of the probability of
some event on a covariate x. The regression is taken to be linear in logit or probit
scale. In this section we consider the same problem with a nonparametric link func-
tion, instead of a logit or probit model. We indicate, without going into details, how
posterior consistency can be established.

Consider k levels of a drug on a suitable scale, say, x1, . . . , xk, with probability of
a response (which may be death or some other specified event) pi, i = 1, . . . , k. The
ith level of the drug is given to ni subjects and the number of responses ri noted.
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We thus get k independent binomial variables B(ni, pi). The object is often to find x
such that p = 0.5. Often, pi is modeled as

pi = F (α + βxi) = H(xi) (7.35)

where F is a response distribution and α+βxi is a linear representation of F−1(pi) =
yi. Here pi may be estimated by ri/ni, but if the nis are small, the estimates will
have large variances, so the model provides a way of combining all the data. In a
logit model, F is taken as a logistic distribution function. In a probit model the link
function is the normal distribution function. The choice of the functional form of
the link function is somewhat arbitrary, and this may substantially affect inference,
particularly at the two ends where data are sparse. In recent years, there has been
a lot of interest in link functions with unknown functional form. In nonparametric
problems of this kind, one puts a prior on F or H. Such an approach was taken by
Albert and Chib ([1]) , Chen and Dey ([31]), Basu and Mukhopadhyay ([11, 12])
and some other authors. If one puts a prior on F , one has to put conditions on F
like specifying two values of two quantiles to make (F, α, β) identifiable. In this case,
one can develop sufficient conditions for posterior consistency at (F0, α0, β0) using
our variant of Schwartz’s theorem. However, in practice, one often puts a Dirichlet
process or some other prior on F and independently of this, a prior on (α, β). Due
to the discreteness of Dirichlet selections, many authors actually prefer the use of
other priors such as Dirichlet scale mixtures of normals, see Basu and Mukhopadhyay
([11, 12]) and the references therein. Because of the lack of identifiability, the posterior
for (α, β) is not consistent. On the other hand, a Dirichlet process prior and a prior
on (α, β) provides a prior on H and one can ask for posterior consistency of H−1(1/2)
at, say, H−1

0 (1/2). This problem can be solved by the methods developed earlier in
this chapter.

Without loss of generality, one may take ni = 1 for all i. To verify condition (ii) of
Theorem 7.2.1, consider

Zi = log
(H0(xi))ri(1 − H0(xi))1−ri

(H(xi))ri(1 − H(xi))1−ri
(7.36)

where ri is 1 or 0 with probability H(xi) and 1 − H(xi), respectively, and the true H
is denoted by H0. Then it is easily found that

EH0(Zi) = H0(xi) log
H0(xi)
H(xi)

+ (1 − H0(xi)) log
1 − H0(xi)
1 − H(xi)

(7.37)
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and

EH0(Z
2
i ) ≤ 2H0(xi)

(
log

H0(xi)
H(xi)

)2

+ 2(1 − H0(xi)) log
(

1 − H0(xi)
1 − H(xi)

)2

(7.38)

Assume that xis lie in a bounded interval containing H−1
0 (1/2), and the support of H0

contains a bigger interval. Since the range of xis is bounded, the sequence of formal
empirical distributions n−1 ∑n

i=1 δxi
of x1, . . . , xn is relatively compact. Assume that

all limits of subsequences converge to distributions which give positive measure to all
nondegenerate intervals, provided they lie in a certain interval containing H−1

0 (1/2).
Therefore, a positive fraction of xis lie in an interval of positive length if the interval is
close to the point H−1

0 (1/2). Also assume that H0 is continuous and the support of the
prior for H contains H0. For example, if the prior is Dirichlet with a base measure
whose support contains the support of H0, then the above condition is satisfied.
Mixture priors often have large supports also. For instance, the Dirichlet scale mixture
of normal prior used by Basu and Mukhopadhyay ([11, 12]) will have this property
if the true link function is also a scale mixture of normal cumulative distribution
functions.

If Hν is a sequence converging weakly to H0, then by Polya’s theorem, the conver-
gence is uniform. Note that for 0 < p < 1, the functions p log(p/q) + (1 − p) log((1 −
p)/(1 − q)) and p(log(p/q))2 + (1 − p)(log((1 − p)/(1 − q)))2 in q converge to 0 as
q → p, uniformly in p lying in a compact subinterval of (0, 1). Thus given δ > 0, we
can choose a weak neighborhood U of H0 such that if H ∈ U , then EH0(Zi) < δ and
EH0(Z2

i )’s are bounded. By the assumption on the support of the prior, condition (ii)
of Theorem 7.2.1 holds.

For existence of exponentially consistent tests in condition (i) of Theorem 7.2.1,
consider, without loss of generality, testing H−1(1/2) = H−1

0 (1/2) against H−1(1/2) >
H−1

0 (1/2) + ε for small ε > 0. Let

Kn =
{
i : H−1

0 (1/2) + ε/2 ≤ xi ≤ H−1
0 (1/2) + ε

}
Since

EH(ri) = H(xi) ≤ H(H−1
0 (1/2) + ε) ≤ 1

2
(7.39)

and
EH0(ri) = H0(xi) ≥ H0(H−1

0 (1/2) + ε/2) >
1
2

(7.40)
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the test
1

#Kn

∑
i∈Kn

ri <
1
2

+ η (7.41)

for η = (H0(H−1
0 (1/2) + ε/2) − 1/2)/2 is exponentially consistent by Hoeffeding’s

inequality and the fact that #Kn/n converge to positive limits along subsequences.
Therefore Theorem 7.2.1 applies and the posterior distribution of H−1(1/2) is consis-
tent at H−1

0 (1/2).

7.8 Stochastic Regressor

In this section, we consider the case that the independent variable X is stochastic.
We assume that the X observations X1, X2, . . . are i.i.d. with a probability density
function g(x) and are independent of the errors ε1, ε2, . . .. We will argue that all the
results on consistency hold under appropriate conditions.

Let G(x) =
∫ x

−∞ g(u)du, denote the cumulative distribution function of X. We shall
assume that the following condition holds.

Assumption D. The independent variable X is compactly supported and 0 <
G(0−) ≤ G(0) < 1.

Under these assumptions, results follow from a conditionality argument and the
corresponding results for the nonstochastic case, conditioned on a sequence x1, x2, . . .
such that Assumptions A and B hold. Note that if g satisfies Assumption D, under
P∞

g , almost all sequences x1, x2, . . . satisfy Assumptions A and B. For details see
[134]. Thus if X is stochastic and Assumption D replaces Assumptions A and B in
Theorems 7.5.1 and 7.6.1, posterior consistency holds.

7.9 Simulations

Additional insight can often be obtained by carrying out simulations. In the mixture
model that we have discussed, one can study the effect on the posterior of β by varying
the ingredients in the mixture model. There is an additional issue of symmetrization.
After fixing the prior, one can generate observations from carefully chosen parameters
and error density and in each case examine the behavior of the posterior. Extensive
simulations of this kind have been done by Charles Messan using WINBUGS, and we
present a few of these.

First we look at two cases for the kernel: normal and Cauchy. The base measure
for the Dirichlet process is N(0, 1). Figure 7.1 displays the simulated posterior when
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observations were generated from (true f0 is) normal. The value of β is 3.0., and
the random densities are not symmetrized. It is clear from the graphs that, in this
case, the posterior behaves well, and in addition to consistency also shows asymptotic
normality.

In figure 7.2, the setup for priors is the same as that just considered, but the
posterior is evaluated when the true f0 is Cauchy. Clearly, things do not seem to go
well. Both consistency and asymptotic normality seem to be in doubt.

One could see if the introduction of a hyperparameter for the base measure of the
Dirichlet process would lead to amelioration of the situation. Figures 7.3 and 7.4 show
the result of simulations with a hyperparameter for the base measure. There seems to
be some improvement. The estimates are closer to the true value of β = 3, and there
is a suggestion of asymptotic normality.
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Figure 7.4: Sample size n = 50 True f0 = cauchy(0, 0.5) Priors: base measure of Dirichlet: N(µ, σ)
µ|σ ~ N(0,2σ)

Classical estimate of beta: σ ~ Unif(0,10)

β̂ = 2.4641, Var( β̂ ) = infinite Bandwidth h: h ~ Unif(0,4)

MCMC estimates of beta: Hyperparameter of Dirichlet M = 100

Dirichlet mixture of cauchy: Cβ̂ = 2.898 Var( Cβ̂ ) = 0.0053 Skewness = - 0.0753

Kurtosis = 0.2729

Dirichlet mixture of normal: Nβ̂ = 2.899 Var( Nβ̂ ) = 0.0050 Skewness = - 0.0623

Kurtosis = 0.3620



8
Uniform Distribution on Infinite-Dimensional
Spaces

8.1 Introduction

Except for a noninformative choice of the base measure α for a Dirichlet very little
is known about noninformative priors in nonparametric or infinite-dimensional prob-
lems. In this chapter we explore how one may construct a prior that is noninformative,
i.e., completely nonsubjective in the sense of Chapter 1, for nonparametric problems.
One way of thinking of them is as a uniform distribution over an infinite-dimensional
space. Our approach has some similarities with that of Dembski [40], as well as many
differences.

Several new approaches to construction of such a prior are discussed in Section 8.2.
The remaining sections attempt some validation. In Section 8.3 we show that one of
our methods would lead to the Jeffreys prior for parametric models under regularity
conditions. We also briefly discuss what would be reference priors from this point of
view. Section 8.4 contains an application of our ideas to a density estimation problem
of Wong and Shen [172]. We show that for our hierarchical noninformative prior, the
posterior is consistent–a sort of weak frequentist validation. The proof of consistency is
interesting in that the Schwartz condition is not assumed. We also show that the rate
of convergence of the posterior is optimal. In particular, this implies that the Bayes
estimate of the density corresponding to this prior achieves the optimal frequentist
rate–a strong frequentist validation. We offer these tentative ideas to be tried out
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on different problems. Computational or other considerations may require replacing
Pi by other sieves, which need not be finite, changing an index i to h, which may
take values in a continuum, and distributions on Pi which are not uniform. These
relaxations will create a very large class of priors that are nonsubjective in some
sense and from which it may be convenient to elicit a prior. This approach includes
some of the priors in Chapter 5, namely, the random histograms and the Dirichlet
mixture of normals with standard deviation h. The parameter h can be viewed as
indexing a sieve. This chapter is almost entirely based on [73] and [80]

8.2 Towards a Uniform Distribution

8.2.1 The Jeffreys Prior

By way of motivation we begin with a regular parametric model. Let Θ ⊂ Rp. A
uniform distribution on Θ should be associated with the geometry on Θ induced by
the statistical problem. To do this, let I(θ) = [Ii,j(θ)] be the p × p Fisher information
(positive definite) matrix. As shown by Rao [2], the matrix induces a Riemannian
metric on Θ through the integration of

ρ(dθ) =
∑

i

∑
j

Ii,j(θ)dθidθj

over all curves connecting θ to θ′ and minimizing over curves. The minimizing curve is
a geodesic. If the model is N(θ, Σ), then Ii,j = Σ−1 and we get the famous Mahalanobis
distance. Cencov [30] has shown the Riemannian geometry induced by Rao’s metric
is the unique Riemannian metric that changes in a natural way under 1-1 smooth
transformations of Θ onto itself. The Jeffreys prior {detI(θ)}1/2 can be motivated as
follows.

Fix a θ and consider a 1-1 smooth transformation

θ �→ ψ(θ) = ψ

such that the information matrix Iψ with the new parametrization ψ is identity at
ψ(θ0). This implies that the local geometry in the ψ-space is Euclidean near ψ(θ0)
and hence the Lebesgue measure dψ is a suitable uniform distribution near ψ(θ0). If
we lift this back to the θ-space making use of the Jacobian and the elementary fact

[
∂θj

∂ψi

][Ii,j(θ)][
∂θj

∂ψi

]′ = Iψ = I
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we get Jeffreys prior in the θ-space, namely,

dψ == {det[
∂θi

∂ψj

]}−1dθ = {det[Ii,j(θ)]}1/2dθ

Another way of deriving the Jeffreys prior in a similar spirit is given in Hartigan ([93]
pp. 48, 49). The basic paper for the Jeffreys prior is Jeffreys [106]. These references
are relevant for Section 8.3 especially Remark 8.4.1.

8.2.2 Uniform Distribution via Sieves and Packing Numbers

Suppose we have a model P which is equipped with a metric ρ and is compact. In
applications we use the Hellinger metric. The compactness assumption can then be
relaxed in at least some σ compact cases in a standard way. Our starting point is a
sequence εi diminishing to zero and sieves Pi where Pi is a finite set whose elements
are separated from each other by at least εi and has cardinality D(εi,P), the largest m
for which there are P1, P2, . . . , Pm ∈ P with ρ(Pj, Pj′) > εi, j �= j′, j, j′ = 1, 2, . . . , m.
Clearly, given any P ∈ P there exists P ′ ∈ Pi such that ρ(P, P ′) ≤ εi. Thus Pi

approximates P within εi and no subset of it will have this property.
In the first method we choose εi(n), tending to 0 in some suitable way. It is then

convenient to think of Pi(n) as a finite approximation to P with the approximation
depending on the sample size n. The idea is that the approximating finite model is
made more and more accurate by increasing its cardinality with sample size. In the
first method our noninformative prior is just the uniform distribution on Fi(n).

This seems to accord well with Basu’s [9] recommendation in the parametric case to
approximate the parameter space Θ by a finite set and then put a uniform distribution.
It is also intuitively plausible that the complexity or richness of a model Pi(n) may
be allowed to depend on the sample size. Since this prior depends on the sample size,
we consider two other approaches that are more complicated but do not depend on
sample size.

In the second approach, we consider the sequence of uniform distributions Πi on
Pi and consider any weak limit Π∗ of {Πi} as a noninformative prior. If Π∗ is unique,
it is simply the uniform distribution defined and studied by Dembski [40].

In the infinite-dimensional case, evaluation of the limit points may prove to be
impossible. However, the first approach may be used, and Πi(n) may be treated as an
approximation to a limit point Π∗.

We now come to the third approach. Here, instead of a limit, we consider the index
as a hyperparameter and consider a hierarchical prior which picks up the index i with
probability λi and then uses Πi.
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8.3 Technical Preliminaries

Let K be a compact metric space with a metric ρ. A finite subset S of K is called
ε-dispersed if ρ(x, y) ≥ ε for all x, y ∈ S, x �= y. A maximal ε-dispersed set is called
an ε-net and an ε-net with maximum possible cardinality is said to be an ε-lattice.
The cardinality of an ε-lattice is called the packing number (or ε-capacity) of K and is
denoted by D(ε,K) = D(ε,K, ρ). As K is totally bounded, D(ε,K) is finite. Closely
related to packing numbers are covering numbers N(ε,K, ρ)–the maximum number
of balls of radius ε needed to cover K. Clearly,

N(ε,K, ρ) ≤ D(ε,K, ρ) ≤ N(ε/2, K, ρ)

In view of this, our arguments could also be stated in terms of covering numbers.
Define the ε-probability Pε by

Pε(X) =
D(ε,X)
D(ε,K)

, X ⊂ K

It follows that 0 ≤ Pε(·) ≤ 1, Pε(∅) = 0, Pε(K) = 1. Pε is subadditive and for
X, Y ⊂ K. Because K is compact, subsequences of µε will have weak limits. If all the
subsequences have the same limits, then K is called uniformizable and the common
limit point is called the uniform probability on K.

The following result of Dembski [40]) will be used in the next section.

Theorem 8.3.1 (Dembski). Let (K, ρ) be a compact metric space. Then the
following assertions hold.

(a) If K is uniformizable with uniform probability µ, then limε→0 Pε(X) = µ(X) for
all X ⊂ K with µ(∂X) = 0.

(b) If limε→0 Pε(X) exists on some convergence-determining class in K, then K is
uniformizable.

To extend these ideas to noncompact σ-compact spaces, one can take a sequence
of compact sets Kn ↑ K having uniform probability µn. Any positive Borel measure
µ satisfying

µ(· ∩ Kn) =
µn(· ∩ Kn)

µn(K1)

may be thought of as an (improper) uniform distribution on K. Such a measure would
be unique up to a multiplicative constant by lemma 2 of Dembski [40].
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8.4 The Jeffreys Prior Revisited

Let Xis be i.i.d. with density f(.; θ)(with respect to a σ-finite measure ν), and Θ is
an open subset of Rd. Assume that {f(.; θ) : θ ∈ Θ} is a regular parametric family,
i.e., there exist {ψ(.; θ) ∈ (L2(ν))d such that for any compact K ⊂ Θ

sup
θ∈K

∫
|f 1/2(x; θ + h) − f 1/2(x; θ) − hT ψ(x; θ)|2ν(dx) = o(‖h‖2) (8.1)

as ‖h‖ → 0. Define the Fisher information by the relation

I(θ) = 4
∫

ψ(x; θ)(ψ(x; θ))T ν(dx) (8.2)

Assume that I(θ) is positive definite and the map θ �→ I(θ) is continuous. Further,
assume the following stronger form of identifiability: On every compact set K ⊂ Θ,

inf{
∫ (

f 1/2(x; θ1) − f 1/2(x; θ2)
)2

ν(dx) : θ1, θ2 ∈ K, ‖θ1 − θ2‖ ≥ ε} > 0, ε > 0

For i.i.d. observations equip Θ with the Hellinger distance, as defined in Chapter
1, namely,

H(θ1, θ2) =
(∫

|f 1/2(x; θ1) − f 1/2(x; θ2)|2ν(dx)
)1/2

(8.3)

The following result is the main theorem of this section.

Theorem 8.4.1. Fix a compact subset K of Θ. Then for all Q ⊂ K with vol
(∂Q) = 0, we have

lim
ε→0

D(ε,Q)
D(ε,K)

=

∫
Q

√
detI(θ)dθ∫

K

√
detI(θ)dθ

(8.4)

By using Theorem 8.3.1 we conclude that the Jeffreys measure µ on Θ defined by

µ(Q) ∝
∫

K

√
detI(θ)dθ Q ⊂ Θ (8.5)

is the (possibly improper) noninformative prior on Θ in the sense of the second ap-
proach described in the introduction.

The idea is to approximate the packing number of relatively small sets by the
Jeffreys prior measure for those sets (see 8.13, 8.14) and then fit these small sets into
a given set Q or K. One has to check that the approximation remains good at this
higher scale [vide 8.16].
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Proof. Fix 0 < η < 1. Cover K by J cubes of length η. In each cube fix an interior
cube with length η −η2. The interior cube will provide an approximation from below.

Since by continuity, the eigenvalues of I(θ) are uniformly bounded away from zero
and infinity on K, by standard arguments [see theorem I.7.6. in [102]], it follows from
(8.1) that there exist M > m > 0 such that

m‖θ1 − θ2‖ ≤ H(θ1, θ2) ≤ M‖θ1 − θ2‖, θ1, θ2 ∈ K (8.6)

Given η > 0 choose ε > 0 so that ε/(2m) < η2. Any two interior cubes are separated
by at least η/m in terms of Euclidean distance and by ε in terms of the Hellinger
distance.

For Q ⊂ K, let Qj be the intersection of Q with the jth cube and Q′
j be the

intersection with the jth interior cube, j = 1, 2 . . . , J . Then

Q1 ∪ Q2 ∪ . . . ∪ QJ = Q′
1 ∪ Q′

2 ∪ . . . ∪ Q′
J (8.7)

Hence
J∑

j=1

D(ε,Q′
j, H) ≤ D(ε,Q,H) ≤

J∑
j=1

D(ε,Qj, H) (8.8)

In particular, with Q = K, we obtain

J∑
j=1

D(ε,K ′
j, H) ≤ D(ε,K,H) ≤

J∑
j=1

D(ε,Kj, H) (8.9)

where Kj and K ′
j are defined in the same way.

For the jth cube, choose θj ∈ K. By an argument similar to that for (8.6), for all
θ, θ′ in the jth cube,

λ(η)
2

√
(θ − θ′)T I(θj)(θ − θ′) ≤ H(θ, θ′) ≤ λ̄(η)

2

√
(θ − θ′)T I(θj)(θ − θ′) (8.10)

where λ̄(η) and λ(η)tend to 1 as η → 0.
Let

Hj(θ, θ
′) =

λ(η)
2

√
(θ − θ′)T I(θj)(θ − θ′)

and

H̄j(θ, θ′) =
λ̄(η)

2

√
(θ − θ′)T I(θj)(θ − θ′)
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Then from (8.10),

D(ε,Qj, H) ≤D(ε,Qj, H) (8.11)
D(ε,Q′

j, H) ≤D(ε,Q′
j, H̄) (8.12)

By the second part of theorem IX of Kolmogorov and Tihomirov [115], for some
constants τj, τ

′
j and absolute constants Ad (depending only on the dimension d),

D(ε,Qj, H) ∼ Advol(Qj)
√

detI(θj)(λ(η))−dε−d (8.13)

and
D(ε,Qj, H̄) ∼ Advol(Q′

j)
√

detI(θj)(λ̄(η))−dε−d (8.14)

where the symbol ∼ means that the limit of the ratio of the two sides is 1 as ε → 0.
As all metrics, Hj and H̄j; j = 1, 2, . . . , J arise from elliptic norms, it can be easily
concluded by making a suitable linear transformation that τj = τ ′

j = τ (say) for all
j = 1, 2, . . . , J . Thus we obtain from (8.7)–(8.14) that

lim sup
ε→0

D(ε,Q,H)
D(ε,K,H)

≤
∑J

j=1 vol(Qj)
√

detI(θj)∑J
j=1 vol(Kj)

√
detI(θj)

(
λ̄(η)
λ(η)

)−d

(8.15)

and

lim sup
ε→0

D(ε,Q,H)
D(ε,K,H)

≤
∑J

j=1 vol(Q′
j)
√

detI(θj)∑J
j=1 vol(Kj)

√
detI(θj)

(
λ(η)
λ̄(η)

)−d

(8.16)

Now let η → 0. By the convergence of sums
∑J

j=1 vol(Qj)
√

detI(θj) to
∫

Q

√
I(θ)dθ

and
∑J

j=1 vol(Q′
j)
√

detI(θj) →
∫

Q

√
I(θ)dθ and similarly for sums involving Kjs and

K ′
js. Also λ(η) → 1 and λ̄(η) → 1, so the desired result follows.

Remark 8.4.1. It has been pointed out to us by Prof.Hartigan that Jeffreys had en-
visaged constructing noninformative priors by approximating Θ with Kullback-Leibler
neighborhoods . He asked us if the construction in this section can be carried out us-
ing the Kullback-Leibler neighborhoods . Because the Kullback-Leibler divergence is
not a metric there would be obvious difficulties in formalizing the notion of an ε-net.
However, if the family of densities {fθ : θ ∈ Θ} have well-behaved tails such that, for
any θ, θ′, K(θ, θ′) ≤ φ(H(θ, θ′)), where φ(ε) goes to 0 as ε goes to 0, then any ε-net
{θ1, . . . , θk} in the Hellinger metric can be thought of as a Kullback-Leibler net in the
sense that
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1. K(θi, θj) > ε for i, j, = 1, 2, . . . k; and

2. for any θ there exists an i such that K(θi, θ) < φ(ε).

In such situations, the above theorems allow us to view the Jeffreys prioras a limit
of uniform distributions arising out of Kullback-Leibler neighborhoods. Wong and
Shen [172] show that a suitable tail behavior is that for all θ, θ′,∫

fθ/f
θ′≥exp 1

δ

fθ(
fθ

Fθ′
)δ < M

We now consider the case when there is a nuisance parameter. Let θ be the pa-
rameter of interest and φ be the nuisance parameter. We can write the information
matrix as (

I11(θ, φ) I12(θ, φ)
I12(θ, φ) I22(θ, φ)

)
(8.17)

In view of Theorem 8.4.1, and in the spirit of reference priors of Bernardo [18],
the prior for φ given θ is specified as Π(φ|θ) =

√
I11(θ, φ). So it is only necessary to

construct a noninformative marginal prior for θ. Assume, as before, that the parameter
space is compact. With n i.i.d. observations, the joint density of the observations given
θ only is given by

g(xn, θ) = (c(θ))−1
∫ n∏

1

f(xi, θ, φ)
√

I22(θ, φ)dφ (8.18)

where c(θ) =
∫ ∏n

1 f(xi, θ, φ)
√

I22(θ, φ)dφ is the constant of normalization. Let In(θ, g)
denote the information in the family {g(xn, θ) : θ ∈ Θ}. Under appropriate regularity
conditions, it can be shown that the information per observation In(θ, g)/n satisfies

lim
n→∞

In(θ, g)/n = (c(θ))−1
∫

I11.2(θ, φ)
√

I22(θ, φ)dφ = J(θ) ( say) (8.19)

where I11.2 = I11 − I2
12/I22 is the (11) element in the inverse of the information

matrix. Let Hn(θ, θ + h) be the Hellinger distance between g(xn, θ) and g(xn, θ + h).
Locally, as h → 0, H2

n(θ, θ + h) behaves like h2In(θ, g). Hence by Theorem 8.4.1, the
noninformative (marginal) prior for θ would be proportional to

√
In(θ, g). In view

of (8.19), passing to the limit as n → ∞, the (sample size–independent) marginal
noninformative prior for θ should be taken to be proportional to (J(θ))1/2, and so the
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prior for (θ, φ) is proportional to J(θ)π(φ|θ). Generally, for noncompact parameter
space, one can proceed like Berger and Bernardo [14]. Informally, we can sum up
as follows. The prior for θ based on the current approach is obtained by taking the
average of I11(θ, φ) with respect to

√
I22(θ, φ) and then taking the square root. The

reference prior of Berger and Bernardo or the probability matching prior takes average
geometric and harmonic means of other functions of

√
I11(θ, φ) and then transforms

back. In the examples of Datta and Ghosh [38], we believe that they reduce to the
same prior.

8.5 Posterior Consistency for Noninformative Priors for
Infinite-Dimensional Problems

In this section, we show that in a certain class of infinite dimensional families, the
third approach mentioned in the introduction leads to consistent posterior.

Theorem 8.5.1. Let P be a family of densities where P, metrized by the Hellinger
distance, is compact. Let εn be a positive sequence satisfying

∞∑
n=1

n1/2εn < ∞

Let Pn be a εn-net in P, µn be the uniform distribution on Pn, and µ be the probability
on P defined by µ =

∑∞
n=1 λnµn, where λns are positive numbers adding up to unity.

If for any β > 0,

lim
n→∞

eβn λn

D(εn, Pn)
= ∞ (8.20)

then the posterior distribution based on the prior µ and i.i.d. observations X1, X2, . . .
is strongly consistent at every p0 ∈ P.

Proof. Since P is compact under the Hellinger metric, the weak topology and the
Hellinger topology coincide on P . Consequently weak neighborhoods and strong
neighborhoods coincide and so do the notions of weak and strong consistency.

To prove consistency, by Remark 4.5.1, it is enough to show that for every δ, if
U δ

n = {P : H(P0, P ) < δ/n} then for all β > 0,

enβΠ(U δ
n) → ∞

Because
∑∞

n=1 n1/2εn < ∞, given δ, there is a n0 such that for n > n0, εn < δ/n; so
that for n > n0, there is a Pn ∈ Pn such that H(P0, Pn) < δ/n.
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Since Π{Pn} = λn/D(εn, Pn) and by assumption, for all β > 0,

lim
n→∞

eβn λn

D(εn, Pn)
= ∞

and Π(U δ
n) > Π{Pn}; consistency follows.

Remark 8.5.1. Consistency is obtained in the Theorem 8.5.1 by requiring (8.20)
for sieves whose width εn was chosen carefully. However, it is clear from the proof
that consistency would follow for sieves with width εn ↓ 0 by imposing (8.20) for a
carefully chosen subsequence.

Precisely, if εn ↓ 0,Pn an εn-net, µ is the probability on P defined by µ =
∑∞

1 λnµn

and δn is a positive summable sequence, then by choosing j(n) with

εj(n) ≤
√

2
n

δn (8.21)

the posterior is consistent, if

exp[nβ]
λj(n)

D(εj(n), Pn)
→ ∞ (8.22)

A useful case corresponds to

D(ε, P) ≤ A exp[cε−α] (8.23)

where 0 < α < 2/3 and A and c are positive constants, δn = n−γ for some γ > 1. If
in this case j(n) is the smallest integer satisfying (8.21), then (8.22) becomes

exp[nβ − cε−α
j(n)]λj(n) → ∞ (8.24)

If εn = ε/2n for some ε > 0 and λn decays no faster than n−s for some s > 0 then
(8.24) holds. Moreover, the condition 0 < α < 2 in (8.23) is enough for posterior
consistency in probability.

We can apply this in the following example [see Wong and Shen [172]] the following.

Example 8.5.1. Let

P = {g2 :g ∈ Cr[0, 1],
∫ 1

0
g2(x)dx = 1,

‖g(j)‖sup ≤ Lj, j = 1, 2, . . . r

|g(r)(x1) − g(r)(x2)| ≤ Lr+1|x1 − x2‖m}
where r is a positive integer and 0 ≤ m ≤ 1 and L’s are fixed constants. By theorem
15 of Kolomogorov and Tihomirov [115] D(ε, P , h) ≤ exp[cε−1/r+m].
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8.6 Convergence of Posterior at Optimal Rate

This section is based on Ghosal, Ghosh and van der Vaart ([80]).
We present a result concerning rate of convergence of the posterior relative to L1, L2,

and Hellinger metrics. The two main elements controlling the rate of convergence are
the size of the model (measured by packing or covering numbers) and the amount
of prior mass given to a shrinking ball around the true measure. It is the latter
quantity that is easy to estimate for the hierarchical noninformative priors introduced
in Section 8.1. and appearing in Theorem 8.5.1 of the preceding section. See also Shen
and Wasserman [150]

Theorem 8.6.1. Suppose for a sequence εn with εn → 0 and nε2
n → ∞, a constant

C > 0 and sets Pn ⊂ P we have

log D(εn, Pn, d) ≤ nε2
n (8.25)

Πn(P\Pn) ≤ exp(−nε2
n(C + 4)) (8.26)

Πn

(
P : −E0(log

p

p0
) ≤ ε2

n, E0(log
p

p0
)2 ≤ ε2

n

)
≥ exp(−nε2

nC). (8.27)

Then for sufficiently large M , we have that

Πn(P : d(P, P0) ≥ Mεn|X1, X2, . . . , Xn) → 0 in P n
0 probability

See [80] for a proof.
Condition (8.25) requires that the “model” Pn is not too big and (8.26) ensures

that its complement will not alter too much. It is true for every ε′
n ≥ εn as soon

at it is true for εn and thus can be seen as defining a minimal possible value of
εn. Condition (8.25) ensures the existence of certain tests and could be replaced by
a testing condition in the spirit of LeCam [120]. Note that the metric d used here
reappears in the assertion of the theorem. Since the total variation metric is bounded
above by twice the Hellinger metric, the assertion of the theorem using the Hellinger
metric is stronger, but also condition (8.25) will be more restrictive, so that we really
have two theorems. In the case that the densities are uniformly bounded, one can have
a third theorem, when using the L2-distance, which in that case will be bounded above
by a multiple of the Hellinger distance. If the densities are also uniformly bounded
and uniformly bounded away from zero, then these three distances are equivalent
and are also equivalent to the Kullback-Leibler number and L2-norm appearing in
condition (8.27).
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A rate εn satisfying (8.25) for P = Pn and d the Hellinger metric is often viewed as
giving the “optimal” rate of convergence for estimators of P relative to the Hellinger
metric, given the model P . Under certain conditions, such as likelihood ratios bounded
away from zero and infinity, this is proved as a theorem by Birgé [22] and LeCam [122]
and [120]. See also Wong and Shen [172]. From Birgé’s work it is clear that condition
(8.25) is a measure of the complexity of the model.

Condition (8.27) is the other main condition. It requires that the prior measures
put a sufficient amount of mass near the true measure P0. Here “near” is measured
through a combination of the Kullback-Leibler divergence of p and p0 and the L2(P0)-
norm of log(p/p0). Again, this condition is satisfied for ε′

n ≥ εn if it is satisfied for εn

and thus is another restriction on a minimal value of εn.
The assertion of the theorem is an in-probability statement that the posterior

mass outside a large ball of radius proportional to εn is approximately zero. The in-
probability statement can be improved to an almost-sure assertion, but under stronger
conditions, as indicated below.

Let h be the Hellinger distance and write log+ x for (log x) ∨ 0.

Theorem 8.6.2. Suppose that conditions (8.25) and (8.26) hold as in the preceding
theorem and

∑
n e−Bnε2n < ∞ for every B > 0 and

Πn

(
P : h2(P, P0)

∥∥∥p0/p
∥∥∥

∞
≤ ε2

n

)
≥ e−nε2nC

Then for sufficiently large M , we have that Πn(P : d(P, P0) ≥ Mεn|X1, . . . , Xn) → 0
in P n

0 -almost surely.

See also theorem 2.3 in [80].
These theorems are not tailored for finite-dimensional models. For such cases and

for finite-dimensional sieves, they yield an extra logarithmic factor in addition to the
correct rate of 1/

√
n. Suitable refinements of (8.25) and (8.27) to address this issue

are in [80].
Convergence of the posterior distribution at the rate εn implies the existence of

point estimators, which are Bayes in that they are based on the posterior distribution,
which converge at least as fast as εn in the frequentist sense. One possible construction
is to define P̂n as the (near) maximizer of

Q → Πn

(
P : d(P, Q) < εn|X1, . . . , Xn

)
Theorem 8.6.3. Suppose that Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn) converges to 0,

almost surely (respectively, in-probability) under P n
0 and let P̂n maximize, up to o(1),



8.6. CONVERGENCE OF POSTERIOR AT OPTIMAL RATE 233

the function Q �→ Πn

(
P : d(P, Q) < εn|X1, . . . , Xn

)
. Then d(P̂n, P0) ≤ 2εn eventually

almost surely (respectively, in-probability) under P n
0 .

Proof. By definition, the εn-ball around P̂n contains at least as much posterior prob-
ability as the εn-ball around P0, both of which by posterior convergence at rate εn,
has posterior probability close to unity. Therefore, these two balls cannot be disjoint.
Now apply the triangle inequality.

The theorem is well - known (See e.g. Le Cam ([120] or Le Cam and Yang [121]). If
we use the Hellinger or total variation metric (or some other bounded metric whose
square is convex), then an alternative is to use the posterior expectation, which typ-
ically has a similar property.

In order to state the next theorem we need a strengthening of the notion of entropy.
Given two functions l, u : X → R the bracket [l, u] is defined as the set of all

functions f : X → R such that l ≤ f ≤ u everywhere. The bracket is said to be of
size ε relative to the distance d if d(l, u) < ε. In the following we use the Hellinger
distance h for the distance d and the brackets to consist of nonnegative functions,
integrable with respect to a fixed measure µ. Let N[ ](ε, P , h) be the minimal number
of brackets of size ε needed to cover P . The corresponding bracketing entropy is
defined as the logarithm of the bracketing number N[ ](ε, P , h). It is easy to see that
N[ ](ε, P , h) is bigger than N[ ](ε/2, P , h) and hence bigger than D(ε, P , h). However,
in many examples, bracketing and packing numbers lead to the same values of the
entropy up to an additive constant.

In the spirit of Section 8.2.2 we now construct a discrete prior supported on densities
constructed from minimal sets of brackets for the Hellinger distance. For a given
number εn > 0 let Pin be the uniform discrete measure on the N[ ](εn, P , h) densities
obtained by covering P with a minimal set of εn-brackets and then renormalizing
the upper bounds of the brackets to integrate to one. Thus if [l1, u1], . . . , [lN , uN ] are
the N = N[ ](εn, P , h) brackets, then Πn is the uniform measure on the N functions
uj/

∫
uj dµ. Finally, construct the hierarchical prior

Π =
∑
n∈N

λnΠn

for a given sequence λn with λn ≥ 0 and
∑

n λn = 1. This is essentially the third
approach of Section 8.2.2. As before the rate at which λn → 0 is important.

Theorem 8.6.4. Suppose that εn are numbers decreasing in n such that

log N[ ](εn, P , h) ≤ nε2
n
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for every n, and
nε2

n/ log n → ∞

. Construct the prior Π as given previously for a sequence λn such that λn > 0 for all
n and log λ−1

n = O(log n). Then the conditions of Theorem 8.6.2 are satisfied for εn

a sufficiently large multiple of the present εn and hence the corresponding posterior
converges at the rate εn almost surely, for every P0 ∈ P, relative to the Hellinger
distance.

There are many specific applications. The situation here is similar to that in several
recent papers on rates of convergence of (sieved) maximum likelihood estimators, as
in Birgé and Massart, (1996, 1997), Wong and Shen [172], or chapter 3.4 of van der
Vaart and Wellner [161]. We consider again Example 8.5.1 of smooth densities of the
previous section.

Example 8.6.1 (Smooth densities). Because upper and lower brackets can be
constructed from uniform approximations, this shows that the bracketing Hellinger
entropies grow like ε−1/r, so that we can take εn of the order n−r/(2r+1) to satisfy
the relation log N[](εn, P , h) ≤ nε2

n. This rate is known to be the frequentist optimal
rate for estimators. From Theorem 8.6.3, we therefore conclude that for the prior
constructed earlier, the posterior attains the optimal rate of convergence.

Since the lower bounds of the brackets are not really needed, the theorem can be
generalized by defining N](ε, P , h) as the minimal number of functions u1, . . . , um such
that for every p ∈ P there exist a function ui such that both p ≤ ui and h(ui, p) < ε.
Next we construct a prior Π as before. These upper bracketing numbers are clearly
smaller than the bracketing numbers N[](ε, P , h), but we do not know any example
where this generalization could be useful.

So far, we have implicitly required that the model P is totally bounded for the
Hellinger metric. A simple modification works for countable unions of totally bounded
models, provided that we use a sequence of priors. Suppose that the bracketing num-
bers of P are infinite, but there exist subsets Pn ↑ P with finite bracketing numbers.
Let εn be numbers such that log N[ ](εn, Pn, h) ≤ nε2

n and be such that nε2
n is increasing

with nε2
n/ log n → ∞. Then we construct Πn as before with P replaced by Pn, but we

do not mix these uniform distributions. Instead, we consider Πn itself as the sequence
of prior distributions. Then the corresponding posteriors achieve the convergence rate
εn.

It is worth observing that we use a condition on the entropies with bracketing, even
though we apply Theorem 8.6.2, which demands control over metric entropies only.
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This is necessary because the theorem also requires control over the likelihood ratios.
If, for instance, the densities are uniformly bounded away from zero and infinity, so
that the quotients p0/p are uniformly bounded, then we can replace the bracketing
entropy also by ordinary entropy. Alternatively, if the set of densities P possesses
an integrable envelope function, then we can construct priors achieving the rate εn

determined by the covering numbers up to logarithmic factors. Here we define εn as
the minimal solution of the equation log N(ε, P , h) ≤ nε2 and N(ε, P , h) denotes the
Hellinger covering number (without bracketing).

We assume that the set of densities P has a µ-integrable envelope function: a
measurable function m with

∫
mdµ < ∞ such that p ≤ m for every p ∈ P. Given

εn > 0 let {s1,n, . . . , sNn,n} be a minimal εn-net over P (hence Nn = N(εn, P , h)) and
put

gj,n = (s1/2
j,n + εnm

1/2)2/cj,n

where cj,n is a constant ensuring that gj,n is a probability density. Finally, let Πn be
the uniform discrete measure on g1,n, . . . , gNn,n and let Π =

∑∞
n=1 λnΠn be a convex

combination of the Πn as before. This is similar to the construction of sieved MLE in
theorem 6 of Wong and Shen [172]. The following result guarantees an optimal rate
of convergence.

Theorem 8.6.5. Suppose that εn are numbers decreasing in n such that

log N(εn, P , h) ≤ nε2
n

for every n and nε2
n/ log n → ∞. Construct the prior Π =

∑∞
n=1 λnΠn as given

previously for a sequence λn such that λn > 0 for all n and log λ−1
n = O(log n).

Assume m is a µ-integrable envelope. Then the corresponding posterior converges at
the rate εn log(1/εn) in probability, relative to the Hellinger distance.

We omit the proof.



9
Survival Analysis—Dirichlet Priors

9.1 Introduction

In this chapter, our interest is in the distribution of a positive random variable X,
which arises as the time to occurrence of an event. What makes the problem different
from those considered so far is the presence of censoring. Typically, one does not
always get to observe the value of X but only obtains some partial information about
X, like X ≥ a or a ≤ X ≤ b. This loss of information is often modeled through
various kinds of censoring mechanisms: left, right, interval, etc. See Andersen et
al. [3] for a deep development of various censoring models. The earliest frequentist
methods for censored data were in the context of right censored data, and it is this
kind of censoring that we will study in this and in Chapter 10. Bayesian analysis of
other kinds of censored data is still tentative, and much remains to be done.

Let X be a positive random variable with distribution F and let Y be independent
of X with distribution G. The model studied in this section is: F ∼ Π, given F ;
X1, X2, . . . , Xn are i.i.d F ; given G; Y1, Y2, . . . , Yn are i.i.d G and are independent of
the Xis; the observations are (Z1, δ1), (Z2, δ2), . . . , (Zn, δn) where Zi = (Xi ∧ Yi) and
δi = I(Xi ≤ Yi).

Our interest is in the posterior distribution of F given (Zi, δi) : 1 ≤ i ≤ n.
Under the assumption that X and Y are independent, the posterior distribution of

F given (Z, δ) is independent of G. If Zi = zi and δi = 0, the observation is referred
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to as (right) censored at zi, and in this case it is intuitively clear that the information
we have about X is just that Xi > zi and hence the posterior distribution of F
given (Zi = zi, δi = 0) is Π (·|Xi > zi). Similarly, the posterior distribution of F given
(Zi = zi, δi = 1) is Π (·|Xi = zi).

In Section 9.1, we study the case when the underlying prior for F is a Dirichlet
process. This model was first studied by Susarla and Van Ryzin [154]. They obtained
the Bayes estimate of F , and later Blum and Susarla [26] gave a mixture represen-
tation for the posterior. Here we develop a different representation for the posterior
and show that the posterior is consistent.

In Section 9.2, we briefly discuss the notion of cumulative hazard function, describe
some its properties, and use it to describe a result of Peterson who shows that, under
mild assumptions, both F and G can be recovered from the distribution of (Z, δ).
This result is used in Section 9.3.

In Section 9.3, we start with a Dirichlet prior for the distribution of (Z, δ) and
through the map discussed in Section 9.2, transfer this to a prior for F . The properties
discussed in Section 9.2 are used to study these priors.

In the last section, we look at Dirichlet process priors for interval censored data
and note that some of the properties analogous to the right censored case do not hold
here. Some of the material in this chapter is taken from [81] and [87].

9.2 Dirichlet Prior

Let α be a finite measure on (0, ∞). The model that we consider here is F ∼ Dα; Given
F ; X1, X2, . . . , Xn are i.i.d F ; Given G; Y1, Y2, . . . , Yn are i.i.d G and are independent
of the Xis; the observations are (Z1, δ1), (Z2, δ2), . . . , (Zn, δn) where Zi = (Xi ∧ Yi)
and δi = I(Xi ≤ Yi).

Our interest is in the posterior distribution of F given (Zi, δi) : 1 ≤ i ≤ n. Under
the independence assumption the distribution of G plays no role in the posterior
distribution of F .

The posterior can be represented in many ways. Susarla and Van Ryzin [154], who
first investigated, obtained a Bayes estimate for F and showed that this Bayes es-
timate converges to the Kaplan-Meier estimate as α(R+) → 0. Blum and Susarla
[26] complemented this result by showing that the posterior distribution is a mix-
ture of Dirichlet processes. This mixture representation, while natural, is somewhat
cumbersome.
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Lavine [118] observed that the posterior can be realized as a Polya tree process.
Under this representation computations are more transparent, and this is the repre-
sentation that we use in this chapter. A more elegant approach comes from viewing a
Dirichlet process as a neutral to right prior. This method is discussed in Chapter 10.

Since a Dirichlet process is also a Polya tree, we begin with a proposition that
indicates that a Polya tree prior can be easily updated in the presence of partial
information. The proof is straightforward and omitted.

Proposition 9.2.1. Let µ be a PT (T , α). Given P ; X1, X2, . . . , Xn are i.i.d P . The
posterior given IBε1

(X1), IBε2
(X2), . . . , IBεn

(Xn) is again a Polya tree with respect to
T and with parameters α′

ε = αε + #{i : Bεi
⊂ Bε}.

Let Z = (Z1, Z2, . . . , Zn), where Z1 < · · · < Zn. Consider the sequence of nested
partitions {πm(Z)}m≥1 given by:

π1(Z) : B0 = (0, Z1], B1 = (Z1, ∞)
π2(Z) : B00, B01, B10 = (Z1, Z2], B11 = (Z2, ∞)

and for l ≤ (n − 1), let

πl+1(Z) : B0l0, B0l1, . . . , B1l,0 = (Zl, Zl+1], B1l1 = (Zl+1, ∞)

where 1l is a string of 1s of length l, and 0l is a string of 0s of length l. The remaining
Bεs are arbitrarily partitioned into two intervals such that {πm(Z)}m≥1 forms a
sequence of nested partitions that generates B(R+).

Let αε1,...,εl
= α(Bε1,...,εl

), and Cn
ε1,...,εl

=
∑

δi=0 I[(Zi, ∞) ⊂ Bε1,...,εl
]. Also, let

Ui = #
{
(Zi, δi) : Zi > Z(i), δi = 1

}
be the number of uncensored observations strictly larger than Z(i).

Similarly denote by Ci the number of censored observations that are greater than
or equal to Z(i), i.e.

Ci = #
{
(Zi, δi) : Zi ≥ Z(i), δi = 0

}
where ni = Ci + Ui−1 is the number of subjects alive at time Z(i) and n+

i = Ci + Ui

is the number of subjects who survived beyond Z(i). To evaluate the posterior given
(z1, δ1), . . . , (zn, δn), first look at the posterior given all the uncensored observations
among (z1, δ1), . . . , (zn, δn) . Since the prior on M(X )—the space of all distributions
for X–is a Dα, the posterior on M(X) is Dirichlet with parameter α +

∑
(i:∆i=1) δZi

.
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Because a Dirichlet process is a Polya tree with respect to every partition, it is
so with respect to T ∗(Z∗). Proposition 9.2.1 easily leads to the updated parameters
α′

ε1,ε2,...,εk
. We summarize these observations in the following theorem.

Theorem 9.2.1. Let µ = Dα ×δG0 be the prior on M(R+)×M(R+). Then the pos-
terior distribution µ1(· | (z1, δ1), . . . , (zn, δn)) is a Polya tree process with parameters

π
(Z ,δ)
n and α

(Z ,δ)
n = {άε1,...,εl

}, where άε1,...,εl
= αε1,...,εl

+ Ui] + Ci.

Remark 9.2.1. Note that if Bε1,...,εl
= (Zk, ∞) then

α′
ε1,...,εl

= α(Bε1,...,εl
) + number of individuals surviving at time Zk

and for every other Bε1,...,εl
,

α′
ε1,...,εl

= α(Bε1,...,εl
) + number of uncensored observations in Bε1,...,εl

The representation immediately allows us to find the Bayes estimate of the survival
function F̄ = 1 − F . Fix t > 0 and let Z(k) ≤ t < Z(k+1). Then, with Z(0) = 0

F̄ (t) =

[
k∏
1

F̄ (Z(i))
F̄ (Z(i−1))

]
F̄ (t)

F̄ (Z(k))
(9.1)

A bit of reflection shows that Theorem 9.2.1 continues to hold if we change the parti-
tion to include t, i.e., partition B1k

into (Z(k), t] and (t,∞) and then continue as before.
Thus the factors in (9.1) are independent beta variables and ˆ̄F (t) = E(F̄ (t)|(Zi, δi) :
1 ≤ i ≤ n) is seen to be

ˆ̄F (t) =

[
k∏
1

α(Z(i), ∞) + Ui + Ci

α(Z(i−1), ∞) + Ui−1 + Ci

]
α(t,∞) + Ut + Ct

α(Z(k), ∞) + Uk + Ct

(9.2)

Rewrite expression (9.2) as

[
k∏
1

α(Z(i), ∞) + Ui + Ci

α(Z(i), ∞) + Ui + Ci+1

]
α(t,∞) + Ut + Ct

α(0, ∞) + n
(9.3)

If the censored observations and the uncensored observations are distinct (as would
be the case if F and G have no common discontinuity), then at any Z(i) that is an
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uncensored value, Ci = Ci+1 and the corresponding factor in (9.3) is 1. Thus (9.3)
can be rewritten as⎡

⎣ ∏
Z(i)≤t,δi=0

α(Z(i), ∞) + Ui + Ci

α(Z(i), ∞) + Ui + Ci+1

⎤
⎦ α(t,∞) + Ut + Ct

α(0, ∞) + n
(9.4)

This is the expression obtained by Susarla and Van Ryzin [154]. The expression is
a bit misleading because it appears that the estimate, unlike the Kaplan-Meier, is a
product over censored values. Keeping in mind that Ct = Ck+1, it is easy to see that if
t is a censored value, then the expression is left-continuous at t, and being a survival
function it is hence continuous at t. Similarly, it can be seen that the expression has
jumps at uncensored observations. Thus the expression can be rewritten as a product
over censored observations times a continuous function. This form appears in the
Chapter 10.

As α(0, ∞) → 0, (9.1) goes to

[
k∏
1

Ui + Ci

Ui−1 + Ci

]
Ut + Ct

Uk + Ck

(9.5)

If Z(i) is uncensored then Ui +Ci = N+
i and Ui−1 +Ci = Ni. If Z(i) is censored then

Ui + Ci = Ui−1 + Ci and we get the usual Kaplan-Meier estimate.
We next turn to consistency.

Theorem 9.2.2. Let F0 and G have the same support and no common point of
discontinuity. Then for any t > 0,

(i) E(F̄ (t)|(Zi, δi) : 1 ≤ i ≤ n) → F̄0(t) a.e. P∞
F0×G; and

(ii) V (F̄ (t)|(Zi, δi) : 1 ≤ i ≤ n) → 0 a.e. P∞
F0×G.

Hence the posterior of F is consistent (F0.

Proof. Because F0 and G have the same support and no common point of discon-
tinuity, the censored and uncensored observations are distinct. Note that if a, b, c ≥
0, a + b/a + c ≥ b/c. Using this fact, it is easy to see that (9.1) is larger than (9.5),
and hence

lim
n→∞

E(F̄ (t)|(Zi, δi) : 1 ≤ i ≤ n) ≥ F̄0(t) a.e. P∞
F0×G
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On the other hand, writing (9.4) as An(t)Bn(t) where

An(t) =
α(t,∞) + Ut + Ct

α(0, ∞) + n
, Bn(t) =

⎡
⎣ ∏

Z(i)≤t,δi=0

α(Z(i), ∞) + Ui + Ci

α(Z(i), ∞) + Ui + Ci+1

⎤
⎦

it is easy to see that An(t) → F̄0(t)Ḡ0(t) and

(Bn(t))−1 ≥
∏

Z(i)≤t,δi=0

Ui + Ci

Ui + Ci+1

The right side of the last expression is the Kaplan-Meier estimate of Ḡ, and so

lim
n→∞

(Bn(t))−1 ≥ Ḡ(t)

and
lim

n→∞
Bn(t) ≤

(
Ḡ(t)

)−1

so that
lim

n→∞
An(t)Bn(t) ≤ F̄0(t)

Since the factors in (9.1) are beta variables, it is easy to write E(F̄ 2(t)|(Zi, δi) :
1 ≤ i ≤ n). A bit of tedious calculation will show that

E(F̄ 2(t)|(Zi, δi) : 1 ≤ i ≤ n) → F̄ 2
0 (t)

We leave the details to the reader.

9.3 Cumulative Hazard Function, Identifiability

Let F be a distribution function on (0, ∞). So the survival function F̄ = 1 − F is de-
creasing, right-continuous and limt→0 F̄ (t) = 1, limt→∞ F̄ (t) = 0. We will often write
F (A), F̄ (A) for the probability of a set A under the probability measure correspond-
ing to the distribution function F . Thus F{t} = F̄{t} = F (t)−F (t−) = F̄ (t−)−F̄ (t)
is the probability of {t}.

A concept of importance in survival analysis is failure rate and the related cumu-
lative hazard function. For the distribution function F of a discrete probability, a
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natural expression for the hazard rate at s is F{s}/F̄ (s−). Summing this over s ≤ t
gives a notion of cumulative hazard function for a discrete F at t as

H(F )(t) =
∑
s≤(t)

F{s}
F̄ (s−)

=
∫ (·)

0

dF (s)
F̄ (s−)

Extending this notion, cumulative hazard function for a general F is defined by

H(F )(·) =
∫ (·)

0

dF (s)
F̄ (s−)

More precisely, let F ∈ F and let TF = inf{t : F (t) = 1}. Note that TF may be ∞.
Set

H(F ) = HF (t) =

{∫
(0,t]

dF (s)
F [s,∞) , for t ≤ TF

HF (TF ) for t > TF

1. Let {s1, s2, . . . } be a dense subset of (0, ∞). For each n, let s
(n)
1 < · · · < s

(n)
n

be an ordering of {s1, . . . , sn}. Let s
(n)
0 = 0 and define

Hn
F (t) =

⎧⎨
⎩
∑

s
(n)
i <t

F (s(n)
i ,s

(n)
i+1]

F (s(n)
i ,∞)

for t ≤ TF

Hn
F (TF ) for t > TF

Then, for all t, Hn
F (t) → HF (t) as n → ∞.

2. HF is nondecreasing and right-continuous. The fact that HF is nondecreasing
follows trivially because F is nondecreasing. To see that HF is right-continuous,
fix a point t and note that if j = max{i ≤ n : s

(n)
i < t}, then

HF (t+) − HF (t) = lim
n→∞

F (s(n)
j+1, s

(n)
j+2]

F (s(n)
j+1, ∞)

where both {s
(n)
j+1} and {s

(n)
j+2} are nondecreasing sequences converging to t from

above. Thus F (s(n)
j+1, s

(n)
j+2] → 0 as n → ∞.

If t < TF , then the denominator of the right hand side of the equation is
positive for some n, hence right-continuity follows. For t ≥ TF it follows from
the definition.



244 9. SURVIVAL ANALYSIS—DIRICHLET PRIORS

It is easy to see that HF (t) < ∞ for every t < TF . As with F , we will think of HF

simultaneously as a function and a measure. Thus the measure of any interval
(s, t] under HF will be defined as HF (s, t] = HF (t) − HF (s). For TF < s < t,
define HF (s, t] = 0.

3. For any t, HF has a jump at t iff F has a jump at t, i.e. {t : HF {t} > 0} = {t :
F{t} > 0}.

4. It follows from preceding that

(a) TF = inf{t : HF (t) = ∞ or HF {t} = 1},

(b) HF {t} ≤ 1 for all t,

(c) HF (TF ) = ∞ if TF is a continuity point of F ,and

(d) HF {TF } = 1 if F{TF } > 0.

These and other properties of H and details can be found in Gill and Johansen
[90].

Let A′ be the space of all functions on [0, ∞) that are nondecreasing, right-continuous,
and may, at any finite point, be infinity, but has jumps no greater than one, i.e.,

A′ = {B ∈ H | B{t} ≤ 1 for all t}

Equip A′ with the smallest σ-algebra under which, the maps {A �→ A(t), t ≥ 0} are
measurable. H maps F into A′ and H is measurable. The actual range of H, which
we will now describe, is smaller.

For A ∈ A′, let TA = inf{t : A(t) = ∞ or A{t} = 1}. Let A be the space of all
cumulative hazard functions on [0, ∞). Formally define A as

A = {A ∈ A′ | A(t) = A(TA) for all t ≥ TA}

Endow A with the σ-algebra which is the restriction of the σ-algebra on A′ to A.
The map H is a 1-1 measurable map from F onto A and, in fact, has an inverse [see
Gill and Johansen [90]]. We consider this inverse map next and briefly summarize its
properties.

Let A ∈ A′. Let {s1, s2, . . . } be dense in (0, ∞). For each n, let s
(n)
1 < · · · < s

(n)
n

be as before. Fix s < t. If A(t) < ∞, define the product integral of A by∏
(s,t]

(1 − dA) = lim
n→∞

∏
s<s

(n)
i ≤t

(1 − A(s(n)
i−1, s

(n)
i ])
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where A(a, b] = A(b)−A(a) for a < b. If A(t) = ∞ and A(s) < ∞, set
∏

(s,t](1−dA) =
0. If A(s) = ∞, set

∏
(s,t](1 − dA) = 1.

Theorem 9.3.1. Let A ∈ A. Then F given by

F (t) = 1 −
∏
(0,t]

(1 − dA)

is an element of F . Further,

A(t) =
∫

(0,t]

dF (s)
F [s, ∞)

The following properties of the product integral are included to lend the reader a
better understanding of the nature of the map H and will be useful later. For details,
we again refer to Gill and Johansen [90].

5. Like H, the product integral also has an explicit expression:∏
(0,t]

(1 − dA) = exp (−Ac(t))
∏
s≤t

(1 − A{s})

where Ac is the continuous part of A.

6. Let ρS denote the Skorokhod metric on D[0, ∞) and let {Hn} be a sequence in
A. Say that ρS(Hn, A) → 0 for some A ∈ A as n → ∞, if ρS(HT

n , AT ) → 0 for
all T > 0 where HT

n and AT are restrictions of Hn and A to [0, T ]. It may be
shown, following Hjort [([100], Lemma A.2, pp. 1290–91), that if {Hn}, A ∈ A
and ρS(Hn, A) → 0, then H−1(Hn) w→ H−1(A). Thus, if A is endowed with the
Skorokhod metric, then H−1 is a continuous map.

Let F be a distribution function. In the literature

A(F ) = − log F̄

is also used to formalize the notion of “cumulative hazard function of F .” A arises
by defining the hazard rate at s for a continuous random variable as

r(s) = lim
∆s→0

1
∆s

P (s ≤ X < s + ∆s)
P (X ≥ s
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If X has a distribution F with density f then r(s) = f(s)/F̄ (s) and if the cumulative
hazard function is defined as

∫ (.)
0 r(s)ds then this gives A(F ) = − log F̄ (·). One

extends the definition for a discrete F formally to give A.
It is easy to see that the two definitions coincide when F is continuous. However, in

estimating a survival function or a cumulative hazard function one typically employs a
discontinuous estimate. Further, priors like the Dirichlet sit on discrete distributions.
The nature of the map, therefore, plays an important role in inference about lifetime
distributions and hazard rates. For us, the cumulative hazard function of a distribution
will be H(F ).

We next turn to identifiability of (F,G) by (Z, δ). As before, let X and Y be
independent with X ∼ F, Y ∼ G. Let T (x, y) = (z, δ) = (x∧y), I(x ≤ y)) and denote
by T ∗(F,G) the distribution of T when X ∼ F, Y ∼ G.

T ∗(F,G) is thus a probability measure on T = (0, ∞) × {0, 1}. Any probability
measure P on T gives rise to two subsurvival functions,

S0(t) = P ((t,∞) × {0})

and
S1(t) = P ((t,∞) × {1})

These satisfy

S0(0+) + S1(0+) = 1, Si(t) decreasing in t lim
t→∞

Si(t) = 0 (9.6)

Conversely, any pair of subsurvival functions satisfying (9.6) correspond to a prob-
ability on T . The following proposition, due to Peterson [138], shows that under mild
assumptions F and G can be recovered from T ∗(F,G).

Proposition 9.3.1. Assume that F and G have no common points of discontinuity.
Let T ∗(F,G) = (S0, S1). Then for any t such that Si(t) > 0, i = 0, 1;

1.

HF (t) =
∫

(0,t]

dS1(s)
S0(s−) + S1(s−)

(9.7)

2.

F̄ (t) = e
− ∫ t

0
dS1

c (s)
S0(s−)+S1(s−)

∏
s≤t,S1{s}>0

(
1 − S1{s}

S0(s−) + S1(s−)

)
(9.8)
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3.

sup
t

|Fn(t) − F (t)| + |Gn(t) − G(t)| → 0 iff

sup
t

[
|S0

n(t) − S0(t)| + |S0
n(t) − S0(t)|

]
→ 0 (9.9)

A similar expression holds for Ḡ. Thus, if we assume that F and G have no com-
mon points of discontinuity and have the same support, then both F and G can be
recovered from T ∗(F,G).

9.4 Priors via Distributions of (Z, δ)

It might be argued that in the censoring context, subjective judgments such as ex-
changeability are to be made on the observables (Z, ∆) and would hence lead to
priors for the distribution of (Z, ∆). The model of independent censoring can be used
to transfer this prior to the distribution of the lifetime X.

Formally, let M0 ⊂ M(X )×M(Y) be the class of all pairs of distribution functions
(F,G) such that

1. F and G have no points of discontinuity in common, and

2. for all t ≥ 0, F (t) < 1 and G(t) < 1.

Denote by T the function T (x, y) = (x∧y, Ix≤y) and by T ∗ the function on M(§×Y)
defined by T ∗(P, Q) = (P, Q)◦T−1, i.e., T ∗(P, Q) is the distribution of T under (P, Q).
Let M0

∗ = T ∗(M0). From the last section we know that on M0, T ∗ is 1-1. Note that
every prior on M0 gives rise to a prior on M0

∗ via T ∗ and every prior on M0
∗ induces

a prior on M0 through (T ∗)−1.

Theorem 9.4.1. Let Π be a prior on M0 and Π∗ = µ ◦ φ−1 be the induced prior
on M0

∗.

(i) If Π∗(·|(Zi, δi) : 1 ≤ i ≤ n) on M0
∗ is weakly consistent at T ∗(P0, Q0), and

(P0, Q0) is continuous then the posterior Π(·|(Zi, δi) : 1 ≤ i ≤ n) on M0 is
weakly consistent at (P0, Q0).

(ii) If Π∗(U |(Zi, δi) : 1 ≤ i ≤ n) → 1 for U of the form

U = {(S0, S1) : sup
t

[|S0(t) − S0
0(t)| + |S1(t) − S1

0(t)| < ε]}
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(here (S0
0 , S

1
0) are the subsurvival functions corresponding to T ∗(P0, Q0)), then

the posterior Π(·|(Zi, δi) : 1 ≤ i ≤ n) on M0 is weakly consistent at P0.

Proof. (i) immediately follows from the fact that for continuous distributions the
neighborhoods arising from supremum metric and weak neighborhoods coincide (see
Proposition 2.5.3). The second assertion follows from the continuity property de-
scribed in Proposition 9.3.1 and by noting that Π(.|(Zi, δi) : 1 ≤ i ≤ n) on M0 is just
the distribution of (T ∗)−1 under Π∗(.|(Zi, δi) : 1 ≤ i ≤ n).

We have so far not demonstrated any prior on M0
∗. We next argue that it is in

fact possible to obtain a Dirichlet prior on M(T ) that gives mass 1 to M0
∗.

Theorem 9.4.2. Let α be probability measure on T = (0, ∞) × {0, 1} and let
(S0

α, S1
α) be the corresponding subsurvival functions. Assume

(a) S0
α and S1

α have the same support and have no common points of discontinuity;
and

(b) if for i = 0, 1, Hi(t) =
∫

(0,t] dSi
α(s)/((S0

α(s−) + S1
α(s−))) satisfies

lim
t→∞

Hi(t) = ∞ for i = 0, 1

then for any c > 0, Dcα(M0
∗) = 1.

Proof. We will work with pairs of random subsurvival functions than with random
probabilities on T . We will show that with Dcα probability 1,

(a) S0 and S1 have the same support and have no common points of discontinuity;
and

(b) for i = 0, 1,
∫

(0,∞) dSi(s)/(S0(s−) + S1(s−)) = ∞
That (a) holds with probability 1 is immediate from assumption (a). For (b), let

t1, t2, . . ., continuity points of S0
α, be such that∑

i

S1
α(ti−1, ti]

(S0
α(ti−1) + S1

α(ti−1))
= ∞

Such tis can be chosen by first choosing si with H1(si) ↑ ∞ and then choosing tis in
(si, si+1] with ∑

tj∈(si,si+1]

S1
α(ti−1, ti]

(S0
α(ti−1) + S1

α(ti−1))
≥ H1(si) − H1(si−1) + 2−i
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Let Yi = S1(ti−1, ti]/((S0(ti−1) + S1(ti−1))), clearly
∑

i Yi ≥
∫

dSi(s)/(S0(s−) +
S1(s−)). Further, the Yi’s are bounded by 1 and under Dirichlet, are independent.

Note that (S0
α(ti−1) + S1

α(ti−1)) and Yi are independent and hence

E(Yi) =
S1

α(ti−1, ti]
(S0

α(ti−1) + S1
α(ti−1))

Assumption (b) guarantees
∑

E(Yi) = ∞. This in turn gives
∑

E(Yi) = ∞ [See
Loeve, [132] p 248)].

In addition to consistency, if the empirical distribution of (Z, ∆) is a limit of Bayes
estimate on M0

∗, then so is the Kaplan-Meier estimate. This method of constructing
priors on M0 is appealing and merits further investigation—for instance the Dirichlet
process on M0

∗ arises through a Polya urn scheme, and it would be of interest to see
the corresponding process for the induced prior.

9.5 Interval Censored Data

Susarla and Van Ryzin showed that the Kaplan-Meier estimate, which is also the non-
parametric MLE, is the limit of Bayes estimates with a Dα prior for the distribution
of X. The observations in this section show that this result does not carry over to
other kinds of censored data.

Here our observation consists of n pairs (Li, Ri]; 1 ≤ i ≤ n where Li ≤ Ri and
corresponds to the information X ∈ (Li, Ri]. We assume that (Li, Ri]; 1 ≤ i ≤ n
are independent and that the underlying censoring mechanism is independent of the
lifetime X so that the posterior distribution depends only on (Li, Ri]; 1 ≤ i ≤ n.
Let t1 < t2 < . . . , tk+1 denote the endpoints of (Li, Ri]; 1 ≤ i ≤ n arranged in
increasing order and let Ij = (tj, tj+1]. For simplicity we assume that t1 = min

i
Li and

tk+1 = max
i

Ri.

Our starting point is a Dirichlet prior D(cα1, cα2, . . . , cαk) for (p1, p2, . . . , pk) where
pj = P{X ∈ Ij}. Turnbull [159] suggested the use of the nonparametric maximum
likelihood estimate obtained from the likelihood function

n∏
i=1

⎛
⎝ ∑

Ij⊂(Li,Ri]

pj

⎞
⎠

If (p1, p2, . . . , pk) has a D(cα1, cα2, . . . , cαk) prior then the posterior distribution of
(p1, p2, . . . , pk) given (Li, Ri]; 1 ≤ i ≤ n is a mixture of Dirichlet distributions.
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Call a vector a = (a1, a2, . . . , an), where each ai, is an integer, an imputation of
(Li, Ri]; 1 ≤ i ≤ n if Iai

⊂ (Li, Ri]. For an imputation a, let nj(a) be the number of
observations assigned to the interval Ij. Formally nj(a) = #{i : ai = j}.

Let the order O(a) of an imputation be #{j : nj(a) > 0}. Let A be the set of all
imputations of (Li, Ri]; 1 ≤ i ≤ n and let m = mina∈A O(a). Call an imputation a
minimal if O(a) = m.

It is not hard to see that the posterior distribution of (p1, p2, . . . , pk) given (Li, Ri]; 1 ≤
i ≤ n is ∑

a∈A

CaD(cα1 + n1(a), cα2 + n2(a), . . . , cαk + nk(a))

where

Ca =
∏k

1 Γ(cαj + nj(a))∑
a′∈A

∏k
1 Γ(cαj + nj(a′))

The Bayes estimate of any pj is

p̂j =
∑
a∈A

Ca
cαj + nj(a)

c + n

As c ↓ 0, (cαj + nj(a))/(c + n) → nj(a)/n. The behavior of Ca is given by the next
proposition.

Proposition 9.5.1. limc→0 Ca > 0 iff a is a minimal imputation.

Proof. Suppose a is not minimal. Let a0 be an imputation with O(a) > O(a0):

Ca ≤
∏k

1 Γ (cαj + nj(a))∏k
1 Γ (cαj + nj(a0))

=

∏k
j=1 Γ(cαj)∏k
j=1 Γ(cαj)

∏
j:nj(a) 
=0)

(∏nj(a)
0 (cαj + i)

)
∏

j:nj(a0) 
=0)

(∏nj(a0)
0 (cαj + i)

)

Since O(a) > O(a0) the ratio goes to 0. Conversely, if a is minimal it is easy to see
that

1
Ca

=
∑

a′∈A

∏k
1 Γ (cαj + nj(a′))∏k
1 Γ (cαj + nj(a))

converges to a positive limit.
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Thus the limiting behavior is determined by minimal imputations. A few examples
clarify these notions.

Example 9.4.1. Consider the right censoring case, i.e., for each i either Li = Ri

or Ri = tk. Any minimal imputation is given by assigning compatible observations
to the singletons corresponding to uncensored observations and Ik if the last(largest)
observation is censored.

Example 9.4.2. Consider the case when we have current status or case I interval
censored data. Here for each i, either Li = t1 or Ri = tk+1 so that all we know is if
Xi is to the right of Li or to the left of Ri.

(i) If maxi Li < mini Ri the minimal imputation is allocation of all the observations
to the interval (maxi Li, mini Ri].

(ii) In general, the minimal imputations have order 2. For example, a consistent
assignment of the data to (t1, mini Ri], (maxi Li, tk+1] would yield a minimal
imputation.

A couple of simple numerical examples help clarify the different cases. In the follow-
ing examples the prior of the distribution is Dcα, where α is a probability measure.
The limit is taken as c → 0. Corresponding to any imputation a, we will call the
intervals Ijs for which nj(a) > 0, an allocation, and an allocation corresponding to a
minimal imputation will be called a minimal allocation.

Example (a): This example illustrates that the limit of Bayes estimates could be
supported on a much bigger set than the NPMLE. The observed data consist of the
four intervals (1, ∞), (2, ∞), (0, 3], (4, ∞).
The limit of Bayes estimates in this case turns out to be;
F̃ (0, 1] = 1/22,
F̃ (1, 2] = 2/22,
F̃ (2, 3] = 6/22, and
F̃ (4, ∞] = 13/22,
while the NPMLE is given by,
F̂ (2, 3] = 1/2 and
F̂ (4, ∞] = 1/2.

In the example, each minimal allocation consists of only two subntervals.
(i) (0,1], and (4, ∞), with the corresponding numbers of Xis in the subintervals being
1 and 3, respectively, represents a minimal allocation.
(ii) (2, 3] and (4, ∞) with the corresponding numbers of Xis in the subintervals being
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1 and 3, respectively, represents another minimal allocation.
(iii) (2, 3] and (4, ∞) with the corresponding numbers of Xis in the subintervals being
2 and 2, respectively, represents yet another minimal allocation.

Example (b): This example shows that the limit of Bayes estimates could be sup-
ported on a smaller set than the NPMLE. The observed data consist of the intervals
(0, 1], (2, ∞), (0, 3], (0, 4], and (5, ∞).
The limit of Bayes estimates in this case turns out to be:
F̃ (0, 1] = 3/5, and
F̃ (5, ∞) = 2/5.
while the NPMLE is given by:
F̂ (0, 1] = 1/2,
F̂ (2, 3] = 1/6, and
F̂ (5, ∞) = 1/3.

As c → 0, while Dirichlet priors lead to strange estimates for the current status data,
the case c = 1 seems to present no problems. Even when c → 0 we expect that the
limiting behavior will be more reasonable when the data are case II interval censored,
in the sense described in [91]. In this case, the tendency to push the observation to
the extremes would be less pronounced.

In the current status data case the limit (as c ↓ 0) of the posterior itself exhibits
degeneracy. The following proposition is easy to establish.

Proposition 9.5.2. Let R∗ = inf
i:Li=0

Ri and L∗ = sup
i:Ri=tk+1

Li.

(i) If R∗ < L∗ then as c ↓ 0 the posterior distribution of P (R∗, L∗) converges to the
measure degenerate at 0

(ii) If L∗ < R∗ then as c ↓ 0 the posterior distribution of P (L∗, R∗) converges to the
measure degenerate at 1



10
Neutral to the Right Priors

10.1 Introduction

In Chapter 3, among other aspects, we looked at two properties of Dirichlet processes-
the tail free property and the neutral to the right property. In this chapter we discuss
priors that generalize Dirichlet processes via the neutral to the right property.

Neutral to the right priors are a class of nonparametric priors that were introduced
by Doksum [48]. Historically, the concept of neutrality is due to Connor and Mosimann
[34] who considered it in the multinomial context. Doksum extended it to distributions
on the real line in the form of neutral to the right priors and showed that if Π is neutral
to the right, then the posterior given n observations is also neutral to the right. This
result was extended to the case of right-censored data by Ferguson and Phadia [64].
These topics are discussed in Section 10.2.

Doksum and Hjort showed that a prior is neutral to the right iff the cumulative
hazard function has independent increments. Since independent increment processes
are well understood, this connection provides a powerful tool for studying neutral
to the right priors. In particular, independent increment processes have a canonical
structure, the so-called Lévy representation. The associated Lévy measure can be
used to elucidate properties of neutral to the right priors. For instance Hjort provides
an explicit expression for the posterior given n independent observations in terms of
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the Lévy representation when the Lévy measure is of a specific form. In Section 10.3
we summarize these results.

In Section 10.4 we discuss beta processes. Hjort [100] and Walker and Muliere [166],
respectively, developed beta processes and beta-Stacy processes, which provide con-
crete and useful classes of neutral to the right priors. These priors are analogous to
the beta prior for the Bernoulli (θ), are analytically tractable, and are flexible enough
to incorporate a wide variety of prior beliefs.

The rest of the chapter is devoted to consistency results for neutral to the right
priors. These results center around an example of Kim and Lee [114] of a neutral to
the right prior that is inconsistent at all continuous distributions.

10.2 Neutral to the Right Priors

For any F ∈ F , as in the Chapter 9 F̄ (·) = 1 − F (·) is the survival function corre-
sponding to F . Let F̄ (0) = 1. We also continue to denote by F (A) the measure of
the set A under the probability measure corresponding to F .

Definition 10.2.1. A prior Π on F is said to be neutral to the right if, under Π,
for all k ≥ 1 and all 0 < t1 < . . . < tk,

F̄ (t1),
F̄ (t2)
F̄ (t1)

, . . . ,
F̄ (tk)

F̄ (tk−1)

are independent.

If Π is neutral to the right, we will also refer to a random distribution function
F with distribution Π as being neutral to right. Note that (0/0) is defined here and
throughout to be 1.

For a fixed F , if X is a random variable distributed as F , then for every 0 ≤ s < t,
F̄ (t)/F̄ (s) is simply the conditional probability F (X > t|X > s). For t > 0, F̄ (t) is
viewed as the conditional probability F (X > t|X > 0).

Example 10.2.1. Consider a finite ordered set {t1, . . . , tn} of points in (0, ∞). To
construct a neutral to right prior on the set Ft1,...,tn of distribution functions supported
by the points t1, . . . , tn, we only need to specify (n − 1) independently distributed
[0, 1]-valued random variables V1, . . . , Vn−1, and then set F̄ (ti)/F̄ (ti−1) = 1 − Vi for
1 ≤ i ≤ n − 1. Finally, set F̄ (tn)/F̄ (tn−1) = 0. Observe that F̄ (tn) = 0 and, for
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1 ≤ i ≤ n − 1,

F̄ (ti) =
i∏

j=1

(1 − Vj)

Example 10.2.2. In a similar fashion we can construct a neutral to right prior on
the space FT of all distribution functions supported by a countable subset T = {t1 <
t2 < . . .} of (0, ∞).

Let {Vi}i≥1 be a sequence of independent [0, 1]-valued random variables such that,
for some η > 0, ∑

i≥1

P(Vi > η) = ∞

This happens, for instance, when Vis are identically distributed with P(Vi > η) > 0.
As before, for i ≥ 1, set F̄ (ti)/F̄ (ti−1) = 1−Vi. In other words, F̄ (tk) =

∏k
i=1(1−Vi),

for all k ≥ 1. By the Borel-Cantelli lemma, we have

P

(∏
i≥1

(1 − Vi) = 0

)
= 1

This defines a neutral to right prior Π on F because

lim
t→∞

F̄ (t) = lim
k→∞

k∏
i=1

(1 − Vi) = 0, a.s. Π

Dirichlet process priors of course provide a ready example of a family of neutral to
the right priors. Other examples are the beta process and beta-Stacy process , to be
discussed later.

As before, we consider the standard Bayesian set-up where Π is a prior and given F ,
X1, X2, . . . be i.i.d. F . For each n ≥ 1, denote by ΠX1,...,Xn a version of the posterior
distribution, i.e. the conditional distribution of F given X1, . . . , Xn.

Following are some notations:

For n ≥ 1, define the observation process Nn(.) as follows:

Nn(t) =
∑
i≤n

I(0,t](Xi) for all t > 0

For every n ≥ 1, let Nn(0) ≡ 0. Observe that Nn(.) is right-continuous on [0, ∞). Let

Gt1...tk = σ

{
F̄ (t1),

F̄ (t2)
F̄ (t1)

, . . . ,
F̄ (tk)

F̄ (tk−1)

}
.
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Thus Gt1...tk denotes the collection of all sets of the form

D =
{

( F̄ (t1),
F̄ (t2)
F̄ (t1)

, . . . ,
F̄ (tk)

F̄ (tk−1)
) ∈ C

}

where C ∈ Bk
[0,1].

Theorem 10.2.1 (Doksum). Let Π be neutral to the right. Then ΠX1,...,Xn is also
neutral to the right.

Proof. Fix k ≥ 1 and let t1 < t2 < · · · < tk be arbitrary points in (0, ∞). Denote by
Q the set of all rationals in (0, ∞) and let Q′ = Q ∪ {t1, . . . , tk}. Let {s1, s2, . . . } be
an enumeration of Q′. Observe that, for large enough m, {t1, . . . , tk} ⊂ {s1, . . . , sm}.

For such an m, let s
(m)
1 < · · · < s

(m)
m be an ordering of {s1, . . . , sm}. Let Y

(m)
i =

F̄ (s(m)
i )/F̄ (s(m)

i−1) and, under Π, let Π(m)
i denote the distribution of Y

(m)
i .

Let n1 ≤ · · · ≤ nm. Then, given {Nn(s(m)
1 ) = n1, . . . , Nn(s(m)

m ) = nm}, the posterior
density of (Y (m)

1 , . . . , Y
(m)
m ) is written as

f
Y

(m)
1 ,...,Y

(m)
m

(y1, . . . , ym) =
∏m

i=1(1 − yi)ni−ni−1yn−ni
i∫ ∏m

i=1(1 − yi)ni−ni−1yn−ni
i dΠ(m)

i (yi)

=
m∏

i=1

(1 − yi)ni−ni−1yn−ni
i∫

(1 − yi)ni−ni−1yn−ni
i dΠ(m)

i (yi)

This shows that (Y (m)
1 , . . . , Y

(m)
m ) are independent under the posterior given

{Nn(s(m)
1 ), . . . , Nn(s(m)

m )}. Hence,

F̄ (ti)
F̄ (ti−1)

=
∏

ti−1<s
(m)
j ≤ti

F̄ (s(m)
j )

F̄ (s(m)
j−1)

, i = 1, . . . , k

are also independent under the posterior given the same information.
Now, by the right-continuity of Nn(·) we have, as n → ∞,

σ{Nn(sj), j ≤ m} ↑ σ{Nn(t), t ≥ 0} ≡ σ(X1, . . . , Xn)

Hence, for any A ∈ Gt1...tk , by the martingale Convergence theorem, we have

Π(A | Nn(s(m)
1 ), . . . , Nn(s(m)

m )) → Π(A | X1, . . . , Xn) almost surely

Since for each m, the random quantities F̄ (t1), F̄ (t2)/F̄ (t1) . . . , F̄ (tk)/F̄ (k1) are
independent given σ(Nn(s(m)

1 ), . . . , Nn(s(m)
m )), independence also holds as m → ∞.
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A perusal of the proof given above suggests that for any t1 < t2 the posterior
distribution of F̄ (t2)/F̄ (t1) depends on {Nn(s) : t1 ≤ s ≤ t2}. In words, the pos-
terior depends on the number of observations less than t1, the exact observations
between t1 and t2 and the number of observations greater than t2. This was observed
by Doksum. The following theorem proved in [42] shows that this property essen-
tially characterizes neutral to the right priors. Walker and Muliere [167] have also
obtained characterizations of neutral to the right priors. Their results are presented
in a different flavor.

Theorem 10.2.2. Let Π be a prior on F such that Π{0 < F (t) < 1, for all t} = 1.
Then the following are equivalent:

(i) Π is neutral to the right

(ii) for every t

L
(
F̄(t)|Π(

∣∣X1, X2, . . . , Xn)) = L
(
F̄(t)|Nn(s) : 0 < s < t

)
where L(.) stands for the Law of (.).

Thus, if one wants to estimate the probability that a subject survives beyond t
years based on n samples of which n1 fell below t, then a neutral to the right prior
would lead to the same estimate if the remaining n − n1 observations fell just above
t or far beyond it. This is a property that is also shared by the empirical distribution
function. This suggests that neutral to the right priors are appropriate when the
interest is in all of F and inappropriate if the interest is in a local neighborhood of a
fixed time point.

Ferguson and Phadia [64] extend Doksum’s result in the case of inclusively and
exclusively right censored observations. Let x be a real number in (0,∞). Given a
distribution function F ∈ F , an observation X from F is said to be exclusively right
censored if we only know X ≥ x and inclusively right-censored if we know X > x.
We state their result next. The proof is straightforward.

Theorem 10.2.3 (Ferguson and Phadia). Let F be a random distribution func-
tion neutral to the right. Let X be a sample of size one from F , and let x be a number
in (0, ∞). Then

(a) the posterior distribution of F given X > x is neutral to the right, and

(b) the posterior distribution of F given X ≥ x is neutral to the right.
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10.3 Independent Increment Processes

As mentioned in the introduction, neutral to the right priors relate to independent
increment process via the cumulative hazard function. To recall from Chapter 9, the
cumulative hazard function is given by

H(F )(t) = HF (t) =

{∫
(0,t]

dF (s)
F [s,∞) for t ≤ TF

HF (TF ) for t > TF

and discussed its properties.
The next result establishes the connection between neutral to the right priors and

independent increment processes with nondecreasing paths via the map H.

Theorem 10.3.1. Let Π be a neutral to the right prior on F . Then, under the
measure Π∗ on A induced by the map H, {A(t) : t > 0} has independent increments.
Conversely, if Π∗ is a probability measure on A such that the process {A(t) : t > 0}
has independent increments, then the measure induced on F by the map

H−1 : A �→ 1 −
∏
(0,t]

(1 − dA)

is neutral to the right.

Proof. First suppose that Π is neutral to the right on F and let t1 < · · · < tk be
arbitrary points in (0, ∞). Consider, as before, a dense set {s1, s2, . . . } in (0, ∞). Let,
for each n, s

(n)
1 < · · · < s

(n)
n be as before.

Suppose n is large enough that s
(n)
n ≥ tk. Then, for each 1 ≤ i ≤ k, we have with

An
F as

An
F (ti) − An

F (ti−1) =
∑

ti−1<s
(n)
j ≤ti

F (s(n)
j−1, s

(n)
j ]

F (s(n)
j−1, ∞)

=
∑

ti−1<s
(n)
j ≤ti

(
1 −

F̄ (s(n)
j )

F̄ (s(n)
j−1)

)

Because for each n, F̄ (s(n)
1 ), F̄ (s(n)

2 )/F̄ (s(n)
1 ), ..., F̄ (s(n)

n )/F̄ (s(n)
n−1) are independent,

An
F (t1), An

F (t2)−An
F (t1), ..., An

F (tk)−An
F (tk−1) are also independent. Letting n → ∞,

we get that AF (t1), AF (t2) − AF (t1), ..., AF (tk) − AF (tk−1) are independent.
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For the converse, suppose Π∗ on A such that, under Π∗, {A(t) : t > 0} is an
independent increment process. Again, let t1 < · · · < tk be arbitrary points in (0, ∞).
Then with s

(n)
1 < · · · < s

(n)
n as before, let, for 1 ≤ i ≤ k,

F̄ n
A(ti) =

∏
s
(n)
j ≤ti

(1 − A(s(n)
j−1, s

(n)
j ])

If FA = H−1(A), then it follows from the definition of the product integral that
F̄

(n)
A (t) → F̄A(t) for all t, as n → ∞. Now, observe that, for 1 ≤ i ≤ k,

F̄ n
A(ti)

F̄ n
A(ti−1)

=
∏

ti−1<s
(n)
j ≤ti

(1 − A(s(n)
j−1, s

(n)
j ])

Since A(s(n)
j−1, s

(n)
j ], 1 ≤ j ≤ n are independent for each n so are F̄ n

A(ti)/F̄ n
A(ti−1), 1 ≤

i ≤ k. Consequently, we have independence in the limit, i.e., F̄A(t1), F̄A(t2)/F̄A(t1),
..., F̄A(tk)/F̄A(tk−1) are independent.

It is not hard to verify that for a neutral to the right prior Π,

EΠH(F ) = H(EΠF )

Since the posterior given X1, X2, . . . , Xn is again neutral to the right, the above
property continues to hold for ΠX1,X2,...,Xn . It is shown in Dey etal. [43] that in the
time discrete case the above property characterizes neutral to the right property. We
expect a similar result to hold in general.

Doksum was the first to observe a connection between neutral to the right priors
and independent increment processes. He, however, considered cumulative hazard
function defined by D(F )(t) = DF (t) = − log F̄ (t). The proof of Theorem 10.3.2 is
straightforward.

Theorem 10.3.2 (Doksum). A prior Π on F is neutral to the right if and only
if Π̃ = Π ◦ D−1 is an independent increment process measure such that Π̃{H ∈ H :
limt→∞ H(t) = ∞} = 1.

The theory of neutral to the right priors owes much of its development and analytic
elegance to its connection with independent increment processes. The principal ex-
amples of general families of neutral to the right priors have been constructed via this
connection. Next, we briefly discuss the relevant theory of these processes in terms of
a representation due to P. Lévy. Following is a brief description of the representation.



260 10. NEUTRAL TO THE RIGHT PRIORS

The following facts are wellknown and can be found in , for example, Ito [104] and
Kallenberg [110].

Definition 10.3.1. A stochastic process {A(t)}t≥0 is said to be an independent
increment process if A(0) = 0 almost surely and if, for every k and every {t0 < t1 <
· · · < tk} ⊂ [0, ∞), the family {A(ti) − A(ti−1)}k

i=1 is independent.

Let H be a space of functions defined by

H = {H | H : [0, ∞) �→ [0, ∞], H(0) = 0, H non-decreasing, right-continuous}
(10.1)

Let B(0,∞)×[0,∞] be the Borel σ-algebra on (0, ∞) × [0,∞].

Theorem 10.3.3. Let Π∗ be a probability on H. Under Π∗, {A(t) : t > 0} is an
independent increment process if and only if the following three conditions hold. There
exists

1 a finite or countable set M = {t1, t2, . . . } of points in (0, ∞) and, for each ti ∈ M,
a positive random variable Yi defined on H with density fi;

2 a nonrandom continuous nondecreasing function b; and

3 a measure λ on
(
(0, ∞) × [0, ∞], B(0,∞)×[0,∞]

)
that for all t > 0, satisfies

(a) λ({t} × [0, ∞]) = 0 and

(b)
∫∫

0<s≤t
0≤u≤∞

u

1 + u
λ(ds du) < ∞,

such that
A(t) = b(t) +

∑
ti≤t

Yi(A) +
∫∫

0<s≤t
0≤u≤∞

uµ(ds du, A) (10.2)

where, for each A ∈ H, µ(·, A) is a measure on
(
(0,∞) × [0, ∞], B(0,∞)×[0,∞]

)
such

that, under Π∗, µ(·, ·) is a Poisson process with parameter λ(·), i.e., for arbitrary dis-
joint Borel subsets E1, . . . , Ek of (0, ∞)×[0, ∞], µ(E1, ·), . . . , µ(Ek, ·) are independent,
and

µ(Ei, ·) ∼ Poisson(λ(Ei)) for 1 ≤ i ≤ k

Note the following facts about independent increment processes, which will be
useful later and facilitate understanding of the remaining subject matter.
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(1) The measure λ on (0, ∞) × [0, ∞] is often expressed as a family of measures
{λt : t > 0} where λt(A) = λ((0, t] × A) for Borel sets A.

(2) The representation may be expressed equivalently in terms of the moment-generating
function of A(t) as

E(e−θA(t)) = e−b(t)

[∏
ti≤t

E(e−θYi)

]
exp

⎡
⎢⎢⎣−

∫∫
0<s≤t

0≤u≤∞

(1 − e−θu) λ(ds du)

⎤
⎥⎥⎦

(3) The random variables Yi occurring in the decomposition arise from the jumps
of the process at fixed points. Say that t is a fixed jump-point of the process if
Π∗(A{t} > 0) > 0. It is known that there are at most countably many such fixed
jump-points, and the set M is precisely the set of such points and that Yi = A{ti}.

(4) The random measure A �→ µ(·, A) also has an explicit description. For any Borel
subset E of (0, ∞) × [0, ∞],

µ(E, A) = # {(t, A{t}) ∈ E : A{t} > 0}

(5) Let Ac(t) = A(t) − b(t) − ∑
ti≤t A{ti}. Then

Ac(t) =
∫∫

0<s≤t
0≤u≤∞

uµ(du ds, A)

(6) The countable set M, the set of densities {fi : i ≥ 1}, the measure λ, and the
nonrandom function b are known as the four components of the process {A(t) :
t > 0}, or, equivalently, of the measure Π∗. The measure λ is known as the Lévy
measure of Π∗.

(7) A Lévy process Π∗ without any non-random component, i.e., for which b(t) = 0,
for all t > 0, has sample paths that increase only in jumps almost surely Π∗. Most
of the Lévy processes that we encounter here will be of this type.
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10.4 Basic Properties

Let Π be a neutral to the right prior on F . From what we have seen so far, the maps D
and H yield independent increment process measures Π̃ and Π∗, respectively. Let the
Lévy measures of Π̃ and Π∗ be denoted λ̃ and λ∗, respectively. The next proposition
establishes a simple relationship between λ̃ and λ∗.

Proposition 10.4.1. Suppose λ̃ and λ∗ are as earlier. Then

1 for each t, λ̃t is the distribution of x �→ − log(1 − x) under the measure λ∗
t , and

2 for each t, λ∗
t is the distribution of x �→ 1 − e−x under λ̃t

Proof. The proposition is an easy consequence of the following easy fact.
If ω �→ µ(·, ω) is an M(X)-valued random measure which is a Poisson process with

parameter measure λ, then for any measurable function g : X → X, the random
measure ω �→ µ(g−1(·), ω) is a Poisson process with parameter measure λ ◦ g−1.

Note that

D(F )(t) − D(F )(t−) = − log
F (t,∞)
F [t,∞)

= − log
{

1 − F{t}
F [t,∞)

}
= − log[1 − (H(F )(t) − H(F )(t−))]

It is of interest to know if we can choose neutral to the right priors with large
support. The next proposition gives a sufficient condition that will ensure that the
support is all of F . Recall that the (topological) support E of a measure µ on a
metric space X is the smallest closed set E with µ(Ec) = 0. We view F as a metric
space under convergence in distribution.

Proposition 10.4.2. If the support of the Lévy measure λH is all of [0, ∞)× [0, 1]
then the support of Π is all of F .

Proof. We need to show that every open set (in the topology given by convergence
in distribution) has positive Π measure. Since the set of continuous distributions is
dense in F , it is enough to show that neighborhoods of continuous distributions have
positive Π measure. We will establish a stronger fact, namely, that every uniform
neighborhood has positive prior probability.
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Let F0 be a continuous distribution , A0 = H(F0) be the hazard function of F0 and
let U = {F : sup

0<s≤t
|F (s) − F0(s)| < ε}. In view of the last section, U contains a set

H−1(V ), where V is of the form V = {A : sup
0<s≤t

|A(s) − A0(s)| < δ}. We will show

that Π(U) > 0 by showing that Π ◦ H−1(V ) > 0.
To see this, set δ0 = δ/3 and choose 0 = t0 < 0 < t1 < t2 . . . < tk < tk+1 = t such

that for i = 1, 2, . . . , (k + 1);A0(ti) − A0(ti−1) < δ0.
Recall the definition of µ(.; A). Let

W = {A : µ(Ei; A) = 1, i = 1, 2, . . . , k}

where Ei = (ti−1, ti] × (A0(ti) − A0(ti−1) − δ0/k, A0(ti) − A0(ti−1) + δ0/k) .
If ti < s ≤ ti+1,

|A(s) − A0(s)|

≤
i∑
1

|(A0(tj) − A0(tj−1)) − (A(tj) − A(tj−1))|+ |(A0(s)−A0(ti))− (A(s)−A(ti))|

The first term on the right-hand side is less than iδ0/k and the second term is less
than 2δ0 so that for every s ∈ (0, t], |A(s) − A0(s)| < δ. Hence W ⊂ V .

Under the measure induced by H−1, the random variables µ(Ei; A) = 1, i =
0, 1, 2, . . . , k−1 are independent Poisson random variables with parameters λ(Ei), i =
1, 2, . . . , k. These are positive by assumption and hence V has positive Π ◦ H−1 mea-
sure.

Let A∗ be a right continuous function increasing to ∞. A convenient class of neutral
to the right priors are those with Lévy measure λH of the form

dλH(x, s) = a(x, s)dA∗(x)ds 0 < x < ∞, 0 < s < 1 (10.3)

with
∫ 1

0 sa(x, s)ds < ∞ for all x. Without loss of generality we assume that for all
x,

∫ 1
0 sa(x, s)ds = 1. This ensures that the prior expectation of A(t) is A0(t).

Every neutral to the right prior gives rise to a Lévy measure via λH . Is every Lévy
measure on R+ × [0, 1] obtainable as λH of a neutral to the right prior? The next
proposition answers the question for the class of measures just discussed.

Proposition 10.4.3. Let A∗ be H(F ∗) for some distribution function F ∗ and

dλH(x, s) = a(x, s)dA∗(x)ds 0 < x < ∞, 0 < s < 1
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such that for all x,
∫ 1

0 sa(x, s)ds = 1 so that E(A(t) = A∗(t).
The function A �→

∏
(0,t] (1 − dA(s)) (where

∏
(0,t] stands for the product integral)

defines a neutral to the right prior on F .

Proof. It can be easily deduced from the basic properties of the product integral that
the function A �→

∏
(0,t] (1 − dA(s)) induces a probability measure on the set of all

functions which are right continuous and decreasing. In order to show that this is a
prior on F we need to verify that if F̄ (t) =

∏
(0,t] (1 − dA(s)), then with probability 1

limt→∞ F̄ (t) = 0. This follows because the property of independent increments gives

E
∏
(0,t]

(1 − dA(s)) =
∏
(0,t]

(1 − dE(A)(s)) = F̄ ∗

Each F̄ (t) is decreasing in t and limt→∞ E(F̄ (t) = limt→∞ F̄ ∗(t) = 0.

Lévy representation plays a central role in the study of posteriors of neutral to
the right priors. When the prior is neutral to the right, since the posterior given
X1, X2, . . . , Xn is again neutral to the right, this posterior has a Lévy representation.
An expression for the posterior in terms of λD can be found in Ferguson [62] and in
terms of λH can be found in Hjort [100]. There is another proof due to Kim [113].
James [105] has a some what different approach, an approach we believe is promising
and deserves further study. We will give a result from [100] without proof.

Our setup consists of random variables X1, X2, . . . , Xn that are independent iden-
tically distributed F and Y1, Y2, . . . , Yn, which are independent of the Xis and are
independent identically distributed as G0. The observations are Zi = Xi ∧ Yi and
δi = I(Xi ≤ Yi). Let

Nn(t) =
n∑
1

I(Zi > t) be the number of observations greater than t

and
Mn(t) be the number of Zis equal to t

Theorem 10.4.1 (Hjort). Let Π be a neutral to the right prior with Lévy measure
of the form (10.3). When all the uncensored values—the Zis with δi = 1—are distinct
among themselves, and from the values of the censored observations, the posterior has
the Lévy representation given by
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1 Mn
u : the set of uncensored values are points of fixed jumps. The distribution of the

jump at Zi has the density

(1 − s)Nn(Zi)sa(Zi, s)∫ 1
0 (1 − s)Nn(Zi)sa(Zi, s)ds

2 the Lévy measure of the continuous part has

â(x, s) = (1 − s)Nn(x)+Mn(x)

Remark 10.4.1. Consequently

E

(
F̄(t2)
F̄(t1)

|Π(
∣∣∣∣ (Zi, δi) :≤ i ≤ n)

=

⎡
⎣ ∏

Zi∈Mn
u :t1<Zi≤t2

∫ 1
0 (1 − s)Nn(Zi)+1sa(Zi, s)ds∫ 1
0 (1 − s)Nn(Zi)sa(Zi, s)ds

⎤
⎦ e− ∫ t2

t1

∫ 1
0 (1−s)Nn(z)+Mn(z)sa(z,s)dsdÂ(z)

(10.4)

10.5 Beta Processes

Beta processes, introduced by Hjort [100] are continuous analogs of a time-discrete
case where (see Example 10.2.2) the Vis are independent beta random variables. The
continuous case is obtained as a limit of the time-discrete case. However, in order
to ensure that the limit exists, the parameters of the beta random variables have to
be chosen carefully. In addition to introducing beta processes and elucidating their
properties for right censored data, Hjort [100] studied extensions to situations more
general than right censored data. This chapter only deals with a part of [100].

10.5.1 Definition and Construction

Let A∗ be a hazard function with finitely many jumps. Let t1, . . . , tk be the jump-
points of A∗. Let c(·) be a piecewise continuous non-negative function on [0, ∞) and
let A∗,c denote the continuous part of A∗. Let A∗(t) < ∞ for all t.

Definition 10.5.1. An independent increment process A is said to be a beta pro-
cess with parameters c(.) and A∗, written A ∼ beta(c, A∗), if the following holds: A
has Lévy representation as in Theorem 10.3.3 with
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1 M = {t1, . . . , tk} and the jump-size at any tj given by

Yj ≡ A{tj} ∼ beta(c(tj)A∗{tj}, c(tj)(1 − A∗{tj}))

2 Lévy measure given by

λ(ds du) = c(s)u−1(1 − u)c(s)−1du dA∗,c(s)

for 0 ≤ s < ∞, 0 < u < 1; and

3 b(t) ≡ 0 for all t > 0.

The existence of such a process is guaranteed by Proposition 10.4 but this existence
result does not give any insight into the prior. A better understanding of the prior
comes from the construction of Hjort who obtained these priors as weak limits of
time-discrete processes on A′ and showed that the sample paths are almost surely
in A. In a very similar spirit, we construct the prior on F as a weak limit of priors
sitting on a discrete set of points on (0, ∞).

Let F ∗ ∈ F and, to begin, assume that it is continuous. Let A∗ = H(F ∗) be the
cumulative hazard function corresponding to F ∗.

Let Q be a countable dense set in (0, ∞), enumerated as {s1, s2, . . . }. For each
n ≥ 1, let { s

(n)
1 < · · · < s

(n)
n } be an ordering of s1, . . . , sn. Construct a prior Πn on

Fs1,...,snas in Example 10.2.1 by requiring that, under Πn,

V
(n)
i ∼ beta

(
c(s(n)

i−1)
F̄ ∗(s(n)

i )

F̄ ∗(s(n)
i−1)

, c(s(n)
i−1)

(
1 − F̄ ∗(s(n)

i )

F̄ ∗(s(n)
i−1)

))
for 1 ≤ i ≤ n − 1. (10.5)

Let V
(n)
n ≡ 1 and let F be a random distribution function , such that, under Πn,

L(F̄ (t)) = L

⎛
⎜⎝ ∏

s
(n)
i ≤t

(1 − V
(n)
i )

⎞
⎟⎠ for all t > 0

Theorem 10.5.1. {Πn}n≥1 converges weakly to a neutral to the right prior Π on
F , which corresponds to a beta process.
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Proof. First observe that, as n → ∞,

EΠn(F̄ (t)) =
∏

s
(n)
i ≤t

EΠn(1 − V
(n)
i )

=
∏

s
(n)
i ≤t

(
1 − F ∗(s(n)

i−1, s
(n)
i ]

F ∗(s(n)
i−1, ∞)

)

→
∏
(0,t]

(1 − dH(F ∗))

=
∏
(0,t]

(1 − dA∗) = F̄ ∗(t)

for all t ≥ 0. Thus EΠn(F ) = Fn
w→ F ∗ as n → ∞. Hence, by Theorem 2.5.1, {Πn} is

tight.
We now follow Hjort’s calculations to show that the finite-dimensional distributions

of the process F , under the prior Πn, converges weakly to those under the prior
induced by a beta process with parameters c and A0 on H.

Consider, for each n ≥ 1, an independent increment process Ac
n with process mea-

sure Π∗
n on A such that, for each fixed t > 0,

L(Ac
n(t)) = L(

∑
s
(n)
i ≤t

V
(n)
i )

Thus, for each n ≥ 1, Ac
n is a pure jump-process with fixed jumps at s

(n)
1 , . . . , s

(n)
n−1

and with random jump sizes given by V
(n)
i , . . . , V

(n)
n−1 at these sites. Clearly, Π∗

n induces
the prior Πn on F .

Now, for any fixed t > 0, repeating computations as in Hjort [ [100], Theorem 3.1,
pp. 1270-72] with

cn,i = c(s(n)
i−1), bn,i = cn,i

¯F ∗,c(s(n)
i )

¯F ∗,c(s(n)
i−1)

and an,i = cn,i − bn,i

one concludes that, for each θ, as n → ∞,

E [e−θAc
n(t)] → exp

{∫ 1

0

∫ t

0
(1 − e−θu)λ(ds du)

}
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and, similarly,

E exp −
m∑

j=1

θjA
c
n(aj−1, aj] → exp

{
−

m∑
j=1

∫ 1

0

∫ aj

aj−1

(1 − e−θju)λ(ds du)

}

Thus the finite-dimensional distributions of the independent increment processes An

converge to the finite-dimensional distributions of an independent increment process
with Lévy measure as in Definition 10.5.1. If the process measure is denoted by Π∗

and the corresponding induced measure on F is denoted by Π, then considering the
Skorokhod topology on A and by the continuity of H−1, we conclude that, for all
a1, . . . , am,

L(F̄ (a1), . . . , F̄ (am) | Πn) w→ L(F̄ (a1), . . . , F̄ (am) | Π)

Therefore, {Πn} converges weakly to Π, a neutral to the right prior on F .

10.5.2 Properties

The following properties of beta processes are from Hjort [100].

1 Let A∗ ∈ A be a hazard function with finitely many points of discontinuity and let
c be a piecewise continuous function on (0, ∞).

If A ∼ beta(c, A∗) then E(A(t)) = A∗(t). In other words F = H−1(A) follows a
beta(c, F ∗) prior distribution and we have E(F (t)) = F ∗(t) where F ∗ = H−1(A∗).

The function c enters the expression for the variance. If M = {t1, . . . , tk} is the set
of discontinuity points of A0 then

V(A(t)) =
∑
tj≤t

A∗{tj}(1 − A∗{tj})
c(tj) + 1

+
∫ t

0

dA∗,c(s)
c(s) + 1

where A∗,c(t) = A∗(t) −
∑

ti≤t A
∗{ti}.

2 Let A ∼ beta(c, A∗) where, as before, A∗ has discontinuities at points in M. Given
F , let X1, . . . , Xn be i.i.d. F . Then the posterior distribution of F given X1, . . . , Xn

is again a beta process, i.e., the corresponding independent increment process is
again beta.
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To describe the posterior parameters, let Xn be the set of distinct elements of
{x1, . . . , xn}. Define

Yn(t) =
n∑

i=1

I(Xi≥t) and Ȳn(t) =
n∑

i=1

I(Xi>t)

With Nn(t) as before, note that Ȳn(t) = n − Nn(t) and Yn(t) = n − Nn(t−).

Using this notation, the posterior beta process has parameters

cX1...Xn(t) = c(t) + Yn(t)

A∗
X1...Xn

(t) =
∫ t

0

c(z) dA∗(z) + dNn(z)
c(z) + Yn(z)

More explicitly, A∗
X1...Xn

has discontinuities at points in M∗ = M ∪ Xn, and for
t ∈ M∗,

A∗
X1...Xn

{t} =
c(t).A∗{t} + Nn{t}

c(t) + Yn(t)

A∗,c
X1...Xn

(t) =
∫ t

0

c(z) dA∗,c(z)
c(z) + Yn(z)

Note that if t ∈ M∗,

A{t} ∼ beta (c(t) A∗{t} + Nn{t}, c(t)(1 − A∗{t}) + Yn(t) − Nn{t}) .

3 Our interest is in the following special case of 2. Suppose A ∼ beta(c, A∗) and t
A∗ is continuous. Then the posterior given X1, . . . , Xn is again a beta process with
parameters

cX1...Xn(t) = c(t) + Yn(t)

and
A∗X1 . . . Xn(t) = A∗,dX1 . . . Xn(t) + A∗,cX1 . . . Xn(t)

where
A∗,d

X1...Xn
(t) =

∑
ti∈Xn
ti≤t

Nn{ti}
c(ti) + Yn(ti)

and

A∗,c
X1...Xn

(t) =
∫ t

0

c(z) dA∗(z)
c(z) + Yn(z)
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As a consequence, if t ∈ Xn, then under the posterior ΠX1,...,Xn we have

A{t} ∼ beta(Nn{t}, c(t) + Ȳn(t)).

Also note that the Bayes estimates are

EΠX1,...,Xn
(A(t)) = A∗X1 . . . Xn(t)

and

EΠX1,...,Xn
(F̄ (t)) =

∏
ti∈Xn
ti≤t

(
1 − Nn{ti}

c(ti) + Yn(ti)

)
exp

{
−

∫ t

0

c(z) dA∗(z)
c(z) + Yn(z)

}
(10.6)

4 A neat expression for the posterior and the Bayes estimate for right censored data
can be easily obtained using Theorem 10.4.1. We leave the details to the reader.

Using these explicit expressions it is not very difficult to show that beta processes
lead to consistent posteriors. However since we take up the consistency issue more
generally in the next section we do not pursue it here.

Like the Dirichlet, any two beta processes tend to be mutually singular. This is
proved in [43].

Walker and Muliere [167] started with a positive function D on (0, ∞) and a distri-
bution function F̂ and constructed a class of priors on F called beta-Stacy processes.
We again consider the simple case when F̂ is continuous. The beta-Stacy process is
the neutral to the right prior with

dλD(s, x) = D(x)
e−sD(x)F̄ (x)

1 − e−s
dsdÂx; 0 < x < ∞, 0 < s < ∞

The beta process prior thus relates to an independent increment process via H and
the beta -Stacy via D. Viewing the processes as measures on F provides a mean to
calibrate the prior information in H in terms of that in D and vice versa. Though not
explicitly formulated in the following form, the relationship between the two priors is
already implicit in remark 2 and remark 4 of [167].

Theorem 10.5.2. Π is a Beta Stacy (D, F̂ ) process iff Π is a Beta (C, Â) process
prior where C = D

¯̂
F and Â is the cumulative hazard function of F̂ .

Proof. Because Beta Stacy process has λD given above, we can compute its λH using
Proposition 10.4.1. This immediately yields the assertion.
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10.6 Posterior Consistency

Since neutral to the right priors, like tail free priors, possess nice independence and
conjugacy properties it appeared that they would always yield consistent posteriors.
However, Kim and Lee [114] gave an example of a neutral to the right prior which is
inconsistent. Their elegant example is constructed with a homogeneous Lévy measure
and is inconsistent at every continuous distribution.

Recall from Theorem 4.2.1 that to establish posterior consistency at F0, it is enough
to show that with F∞

0 probability 1, for all t

(i) lim
n→∞

E(F(t)|X1, X2, . . . , Xn) = F0(t) and

(ii) lim
n→∞

V (F(t)|X1, X2, . . . , Xn) = 0.

The next theorem shows that for neutral to the right priors consistency of Bayes
estimates ensures consistency of the posterior.

Theorem 10.6.1. Let Π be a neutral to the right prior of the form (10.3). If

lim
n→∞

E(F(t)|X1, X2, . . . , Xn) = F0(t)

then
lim

n→∞
V (F(t)|X1, X2, . . . , Xn) = 0

Proof. Let X[1] < X[2] . . . X[k] be the ordering of the observations X1, X2, . . . , Xn

which are less than t. Then, apart from an exponential factor going to 1,

E(F̄(t)2|X1, X2, . . . , Xn) =
k∏
2

∫ 1
0 (1 − s)j+2a(s, X[j])ds∫ 1
0 (1 − s)ja(s, X[j])ds

multiplying each term by
∫ 1

0 (1 − s)j+1a(s, X[j])ds/
∫ 1

0 (1 − s)j+1a(s, X[j])ds, we get

=
k∏
2

∫ 1
0 (1 − s)j+2a(s, X[j])ds∫ 1
0 (1 − s)j+1a(s, X[j])ds

k∏
1

∫ 1
0 (1 − s)j+1a(s, X[j])ds∫ 1
0 (1 − s)ja(s, X[j])ds

→ (F̄0(t))2

There is another structural aspect of neutral to the right priors. Consistency for
the censored case follows from consistency for the uncensored case. Following is the
result. For a proof, see Dey et al. [43]
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Theorem 10.6.2. Suppose X is a survival time with distribution F and Y is a
censoring time distributed as G. X1, X2, . . . , are given F = F , i.i.d. F and Y1, Y2, . . . ,
be i.i.d. G, where G is continuous and has support all of R+. We also assume that the
Xis and Yis are independent. Let Zi = Xi ∧Yi and ∆i = I(Xi ≤ Yi). If Π is a neutral
to the right prior for F whose posterior is consistent at all continuous distributions
F0, then the posterior given (Zi, ∆i) : i ≥ 1 is also consistent at all continuous F0.

Proof. Fix t1 < t2. since the exponential term in 10.4 goes to 0 as n → ∞, our assump-
tion on consistency translates into: for any continuous distribution F , if X1, X2, . . . , Xn

are i.i.d. F , then

lim
n→∞

∏
Xi∈(t1,t2]

∫
0,1 s(1 − s)Nn(Xi)+1a(Xi, s)ds∫
0,1 s(1 − s)Nn(Xi)a(Xi, s)ds

=
F̄ (t2)
F̄ (t1)

Fix F0 continuous. Let X1, X2, . . . , Xnbe i.i.d. F0 and Y1, . . . , Yn be i.i.d. G, and let
(Zi, ∆i) be as above. We will first show that

lim
n→∞

∏
Zi∈M∗

n∩(0,t]

∫
0,1 s(1 − s)Nn(Xi)+1a(Xi, s)ds∫
0,1 s(1 − s)Nn(Xi)a(Xi, s)ds

= F̄ (t) a.s. (F0 × G)∞

where M∗
n = {Zj : ∆j = 0}.

With t1 < t2 fixed, let φ be an increasing continuous mapping of (t1, ∞) into (t2, ∞)
and define

Z∗
i = ZiI(∆i = 1) + φ(Zi)I(|Deltai = 0)

Then Z∗
i are again i.i.d. with a continuous distribution F ∗

0 such that

F ∗
0 (t2)

F ∗
0 (t1)

=
J̄(t1, 1) − J̄(t2, 1)

J̄∗(t1)

where J̄∗(t) = P (Z > t) and J̄(t1 = P (Z > t,∆ = 1).
Now using our assumption, if Nn

∗ (t) =
∑n

i=1 I(Z∗
i > t) then

lim
n→∞

∏
Z∗

i ∈(t1,t2]

∫
0,1 s(1 − s)Nn∗ (Z∗

i )+1a(Z∗
i , s)ds∫

0,1 s(1 − s)Nn∗ (Z∗
i a(Z∗

i , s)ds
=

J̄(t1, 1) − J̄(t2, 1)
J̄∗(t1)

a.s
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Note that the above product is only over the uncensored Zis and that, for each t1 < t2
with ∆i = 1, Nn(Zi) ≤ Nn

∗ (Zi). Now using the Cauchy-Schwarz inequality we get[∫ 1

0
(1 − s)n+2sa(x, s)ds

] [∫ 1

0
(1 − s)nsa(x, s)ds

]

=
[∫ 1

0
[(1 − s)(n+2)/2]2sa(x, s)ds

] [∫ 1

0
[(1 − s)(n)/2]2sa(x, s)ds

]

≥
[∫ 1

0
(1 − s)n+1sa(x, s)ds

]2

and consequently
∫ 1

0 (1−s)n+1sa(x, s)/
∫ 1

0 (1−s)nsa(x, s)ds is decreasing in n. Hence,
we have

lim
n→∞

∏
Zi∈M∗

n∩(t1,t2]

∫
0,1 s(1 − s)Nn(Zi)+1a(Zi, s)ds∫
0,1 s(1 − s)Nn(Zi)a(Zi, s)ds

≤ lim
n→∞

∏
Z∗

i ∈(t1,t2]

∫
0,1 s(1 − s)Nn∗ (Z∗

i )+1a(Z∗
i , s)ds∫

0,1 s(1 − s)Nn∗ (Z∗
i )a(Z∗

i , s)ds

=
J̄(t1, 1) − J̄(t2, 1)

J̄∗(t1)

Let 0 = t0 < t1 < t2 < . . . < tk = t be a partition of (0, t]. Then

lim
n→∞

∏
Zi∈M∗

n∩(0,t]

∫
0,1 s(1 − s)Nn(Zi)+1a(Zi, s)ds∫
0,1 s(1 − s)Nn(Zi)a(Zi, s)ds

≤
k∏
1

J̄(ti−1, 1) − J̄(ti, 1)
J̄∗(ti−1)

As the width of the partition max |ti − ti−1 goes to 0, the right-hand side converges
to the product integral

∏
(0,t](1 − J(ds, 1)/J̄(s)), which from Peterson [138] is equal

to F̄ (t).
Let ˆ̄Fn denote the Bayes estimate of F̄ given X1, X2, . . . , Xn and let F̄ ∗

n denote the
Bayes estimate of F̄ given (Zi, δi) : 1 ≤ i ≤ n. we have shown that for all t,

F̄ ∗
n(t) ≤ ˆ̄Fn(t) and hence lim inf

n
F ∗

n ≥ F̄0

Similarly, by considering the “Bayes” estimate for G, with Mn
0 = {(Zj, ∆j : ∆j =

0)},

lim inf
n

∏
Zi≤t:Zi∈Mn

0

∫ 1
0 (1 − s)Nn(Zi)+1a(Zi, s)ds∫ 1
0 (1 − s)Nn(Zi)a(Zi, s)ds

≥ Ḡ
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Consider,

∏
Zi≤t:Zi∈Mn

u

∫ 1
0 (1 − s)Nn(Zi)+1a(Zi, s)ds∫ 1
0 (1 − s)Nn(Zi)a(Zi, s)ds

∏
Zi≤t:Zi∈Mn

0

∫ 1
0 (1 − s)Nn(Zi)+1a(Zi, s)ds∫ 1
0 (1 − s)Nn(Zi)a(Zi, s)ds

(10.7)

but this is equal to ∏
Zi≤t

∫ 1
0 (1 − s)Nn(Zi)+1a(Zi, s)ds∫ 1
0 (1 − s)Nn(Zi)a(Zi, s)ds

But this is just the Bayes estimate based on i.i.d. observations from the continuous
survival distribution F̄0(t)Ḡ(t) and by assumption (10.7) converges to F̄0(t)Ḡ(t). The
conclusion follows easily.

Thus, as far as consistency issues are concerned, we only need to study the uncen-
sored case. We begin looking at the simple case when the Lévy measure is homoge-
neous. In the sequel for any a, b > 0, we denote by B(a, b),the usual beta function
given by

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

=
[∫ 1

0
(1 − s)a−1sb−1ds

]

If f is an integrable function on (0, 1) we set

K(n, f) =
∫ 1

0
(1 − s)nf(s)ds

We will repeatedly use the fact that

for any p, q; lim
n→∞

nq−p Γ(n + p)
Γ(n + q)

= 1

Lemma 10.6.1. Suppose f is a nonnegative function on (0, 1) such that

(a) 0 <
∫ 1

0 f(s)ds < ∞ and

(b) for some α < 1, 0 < lim
s→0

sαf(s) = b < ∞.

Then

lim
n→∞

K(n, f)
B(n + 1, 1 − α)

= b
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Proof. Since ∫ 1

ε

(1 − s)nf(s)ds ≤ (1 − ε)n

∫ 1

0
f(s)ds = o(n−(1−α))

and as n → ∞, n1−αB(n, 1 − α) → Γ(1 − α), we have

lim
n→∞

∫ 1
ε
(1 − s)nf(s)ds

B(n + 1, 1 − α)
= 0 (10.8)

Similarly, because α < 1,∫ 1

ε

(1 − s)ns−αds ≤ (1 − ε)n

∫ ε

0
s−αds ≤ (1 − ε)n 1 − ε1−α

1 − α
= o(n−(1−α))

which in turn yields

lim
n→∞

∫ 1
ε
(1 − s)ns−αds

B(n + 1, 1 − α)
= 0 (10.9)

Given δ, use assumption (b) to choose ε > 0 such that for s < ε

(b − δ)s−α < f(s) < (b + δ)s−α

Then

K(n, f) ≤ (b + δ)B(n + 1, 1 − α) +
∫ 1

ε

(1 − s)nf(s)ds

and by (10.8) we have

lim
n→∞

K(n, f)
B(n + 1, 1 − α)

≤ (b + δ)

A similar argument using (10.9) shows that

lim
n→∞

K(n, f)
B(n + 1, 1 − α)

≥ (b − δ)

Since δ is arbitrary, the lemma follows.

Theorem 10.6.3. Let A∗ be a cumulative hazard function which is continuous and
finite for all x. Suppose that a neutral to the right prior with no fixed jumps has the
expected hazard function A∗ and the Lévy measure

dλH(x, s) = a(s)dA∗(x)ds 0 < x < ∞, 0 < s < 1
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such that
for some α < 1, 0 < lim

s→0
s1+αa(s) = b < ∞ (10.10)

If F0 is a continuous distribution with F0(t) > 0 for all t, then with F∞
0 -probability

1, the posterior converges weakly to the measure degenerate at F 1−α
0 . In particular, if

(10.10) holds with α = 0 then the posterior is consistent at F0.

Proof. Set f(s) = sa(s). We have
∫ 1

0 f(s)ds = 1. Using (10.4),

E(F̄(t)|X1, X2, . . . , Xn) =

[∏
Xi≤t

K(Nn(Xi) + 1, f)
K(Nn(Xi), f)

]
e−ψn(t) (10.11)

where ψn(t) =
∫ t

0

∫ 1
0 (1 − s)Nn(x)+Mn(x)sa(s)dsdA∗(x).

For any x < t,(1 − s)Nn(x)+Mn(x) < (1 − s)Nn(t) and hence ψn(t) is bounded above
by (

∫ 1
0 (1 − s)Nn(t)ds)A∗(t). Since Nn(t) → ∞ as n → ∞, it follows that ψn(t) → 0 as

n → ∞. Hence the exponential factor goes to 1.
If X(1) < X(2) . . . < X(n−Nn(t)) is an ordering of the n − Nn(t) samples that are

less than t, then, since with F0 probability 1 the X1, X2, . . . , Xn are all distinct,
Nn(X(1)) = n−1, Nn(X(2)) = n−2, and so on. Thus the first term in (10.11) reduces
to

(i=n−Nn(t))∏
i=0

K(n − i, f)
K((n − i − 1), f)

=
K(n, f)

K(Nn(t) − 1, f)

It follows from Lemma 10.6.1 that

lim
n→∞

K(n, f)
K(Nn(t) − 1, f)

= lim
n→∞

B(Nn(t) − 1, 1 − α)
B(n, 1 − α)

= lim
n→∞

Γ(Nn(t) − α)
Γ(Nn(t) − 1)

Γ(n)
Γ(n + 1 − α)

= lim
n→∞

(
Nn(t)
n + 1

)1−α

= F̄0(t)1−α a.s. F∞
0

Remark 10.6.1. The Kim-Lee example had the homogeneous Lévy measure given
by a(s) = 2s−3/2. In this case the conditions of the Theorem 10.6.3 are satisfied with
α = 1/2 so that the posterior converges to F

1/2
0 .
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We next turn to a sufficient condition for consistency in the general case. We begin
with an extension of Lemma 10.6.1.

For each x in a set X let f(x, .) be a non negative function on (0, 1). Let mn be a
sequence of integers such that lim

n→∞
mn

n
= c, 0 < c < 1.

Lemma 10.6.2. Suppose

(a) 0 < supx

∫ 1
0 f(x, s)ds = I < ∞ and

(b) As s → 0, f(x, s) converges uniformly (in x), to the constant function 1, i.e., as
ε → 0,

δε = sup
x

sup
s<ε

|f(s, x) − 1| → 0

Then

lim
n→∞

n∏
mn

(
i + 2
i + 1

) ∫ 1
0 (1 − s)i+1f(xi, s)ds∫ 1
0 (1 − s)if(xi, s)ds

= 1

and the convergence is uniform in the x′
is.

Proof. To avoid unpleasant expressions involving fractions of integrals, set

Ki,x =
∫ 1

0
(1 − s)if(x, s)ds and Li,x =

∫ 1

0
s(1 − s)if(x, s)ds

We will show that for any x, given δ small, there is an m0 such that, for i > m0,

i + 1 − 2δ
i + 2

≤ Ki+1,x

Ki,x

≤ i + 1 + 2δ
i + 2

(10.12)

The bounds in inequality 10.12 do not depend on the xis. Consequently, we have
uniformly in the xis,(

1 − 2δ
mn + 1

)n−mn

≤
n∏

mn

i + 2
i + 1

Ki+1,x

Ki,x

≤
(

1 +
2δ

mn + 1

)n−mn

For small positive y, e−2y < 1 − y < 1 + y < ey. Hence, as n → ∞, the left-hand
side converges to e−4δ(1−c)/c and the right side to e2δ(1−c)/c. Letting δ go to 0 we have
the result.
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To prove (10.12) note that

Ki+1,x

Ki,x

= 1 − Li,x

Ki,x

For any 0 < ε = 1 − α < 1,

(1 − δεHi,ε) ≤ Ki,x ≤ (1 + δε)Hi,ε + αiI

and
(1 − δεJi,ε) ≤ Li,x ≤ (1 + δε)Ji,ε + αiI

where

Hi,ε =
∫ ε

0
(1 − s)ids =

1 − αi+1

i + 1
and

Ji,ε =
∫ ε

0
s(1 − s)ids =

1 − αi+1(1 + ε + iε)
(i + 1)(i + 2)

Now

(i + 2)
Li,x

Ki,x

≤ (i + 2)
{

(1 + δε)Ji,ε

(1 − δε)Hi,ε

+
αiI

(1 − δε)Hi,ε

}
which goes to (1+δε)/(1−δε) as i → ∞. Further, the right-hand side does not involve
x, and hence this convergence is uniform in x.

On the other hand,

(i + 2)
Li,x

Ki,x

≥ (i + 2)
{

(1 − δε)Ji,ε

(1 + δε)(Hi,ε + αiI)

}

which goes to (1 − δε)/(1 + δε), again uniformly in x.
Because δε → 0 as ε goes to 0, given any δ > 0, for sufficiently small ε, (1−δε)/(1+δε)

is larger than (1 − δ) and (1 + δε)/(1 − δε) is smaller than (1 + δ).
Thus given any δ > 0, there is an nε such that for i > nε,

1 − δ ≤ (i + 2)Li,x

Ki,x

≤ 1 + δ

Using Ki+1,x/Ki,x = 1 − (Li,x/Ki,x), we get

1 − 1 + δ

i + 2
<

Ki+1,x

Ki,x

< 1 +
1 − δ

i + 2

and this is (10.12)



10.6. POSTERIOR CONSISTENCY 279

Remark 10.6.2. In the Lemma 10.6.2, assumption (a) can be replaced by:
(a’) 0 < supx

∫ 1
0 (1 − s)f(x, s)ds < ∞.

This follows from setting g(s, x) = (1 − s)f(x, s) and noting that g satisfies as-
sumptions (a) and (b) and that

∫ 1
0 (1 − s)n+1f(x, s)ds∫ 1
0 (1 − s)nf(x, s)ds

=

∫ 1
0 (1 − s)ng(x, s)ds∫ 1

0 (1 − s)n−1g(x, s)ds

and observing that (n + 2)/(mn + 2) =
∏n

mn
[(i + 2)/(i + 1) and (n + 1)/(mn + 1) =∏n

mn
[(i + 1)/i both converge to the same limit 1/c.

Theorem 10.6.4. Let Π be a neutral to the right prior with

dλH(x, s) = c(x)a(x, s)dA∗(x)ds 0 < x < ∞, 0 < s < 1

If f(x, s) = sa(x, s) satisfies the assumption of the Lemma 10.6.2 (or the remark
following it) then the posterior is consistent at any continuous distribution F0.

Proof. Since the exponential factor in equation (10.4) goes to 1, it follows immediately
from Lemma 10.6.2 that for each t with F̄0(t) > 0,

E(F̄(t)|Π()|X1, X2, . . . , Xn) → F̄0(t)

Theorem 10.6.5. The posterior of the beta(C,A∗) prior is consistent at all con-
tinuous distribution F0.

Proof. Since the Lévy measure satisfies the conditions of Remark 10.6.2, this is an
immediate consequence of Theorem 10.6.4.

Remark 10.6.3. Kim and Lee [114] have shown consistency when

1 (1 − s)f(x, s) ≤ 1 and

2 as x → 0, f(x, s) converges uniformly in x to a positive continuous function b(x).

The result is marginally more general than that of Kim and Lee. The methods that
we have used are more elementary.
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To summarize, neutral to priors are an elegant class of priors that can, in terms of
mathematical tractability, conveniently handle right censored data. We have also seen
that some caution is required if one wants consistent posteriors. As with the Dirichlet,
mixtures of neutral to priors would yield more flexibility in terms of prior opinions
and posteriors that are amenable to simulation. These remain to be explored.



11
Exercises

11.0.1. If two probability measures on RK agree on all sets of the form (a1, b1] ×
(a2, b2], . . . × (ak, bk] then they agree on all Borel sets in Rk.

11.0.2. Let Mt be the median of Beta(ct, c(1−t)) where 0 < t < 1. Show that Mt ≥ 1
2

iff t ≥ 1
2 . [Hint: If x ≥ 1

2 show that xct−1(1 − x)c(1−t)−1 is increasing in t. Suppose
t ≥ 1

2 and Mt < 1
2 . Then

∫ 1/2
0 xct−1(1 − x)c(1−t)−1dx ≥ 1

2 . Make the change of variable
x �→ (1 − x) to obtain a contradiction]

11.0.3. Suppose αis a finite measure. Define X1, X2, . . . by

X1 is distributed as ᾱ

, for any n ≥ 1,

P (Xn+1 ∈ B|X1, X2, . . . , Xn) =
α(B) +

∑n
1 δXi

(B)
α(R + n)

Show that X1, X2, . . . form an exchangeable sequence and the corresponding
DeFinneti measure on M(R) is Dα

11.0.4. Assume a Dirichlet prior and show that the predictive distribution of Xn+1

given X1, X2, . . . , Xn, converges to P0 weakly almost surely P0. Examine what hap-
pens when the prior is a mixture of Dirichlet processes.
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11.0.5. Show that if P ∈ Mα and U is a neighborhood of P in set-wise convergence
then Dα(U) > 0. However Mα is not the smallest closed set with this property.

11.0.6. Show that a Polya tree prior is a Dirichlet process iff for any ε ∈ E∗
i , αε0+αε1 =

αε.

11.0.7. Let Lµ be the set of all probability measures dominated by a σ−finite
measure µ. Verify that, when restricted to Lµ all the three σ−algebras discussed in
section 2.2 coincide.

11.0.8. Let E be a measurable subset of Θ×X such that θ �= θ′, Eθ ∩Eθ′ = ∅ and for
all θ, Pθ(Eθ) = 1. For any two priors Π1, Π2 on Θ show that ‖Π1 − Π2‖ = ‖λ1 − λ2‖,
where λi are the respective marginals on X .

Derive the Blackwell- Dubins merging result from Doob’s theorem

11.0.9. Consider fθ = U(0, θ); 0 < θ < 1. Show that the Schwartz condition fails at
θ = 1 but posterior consistency holds. Can you use the results in Section 4.3 to prove
consistency?

11.0.10. Suppose X1, X2, . . . , Xn are i.i.d. Ber(p), i.e.,

Pr(Xi = 1) = p = 1 − Pr(Xi = 0)

A prior for p may be elicited by asking for a rule for predicting Xn+1. Suppose for all
n ≥ 1, one is given the rule

Pr(Xn+1 = 1|X1, X2, . . . , Xn) =
a +

∑n
1 Xi

a + b + n

Assuming that the prediction loss is squared error, show that there is a unique
prior corresponding to this rule and identify the prior

11.0.11. With Xis as in Exercise11.0.11, consider a conjugate prior and a realization
of the Xis such that p̂ =

∑n
1 Xi/n is bounded away from 0 and 1 as n → ∞.

Show directly (without using the results established in the text) that as n → ∞, the
posterior distribution of

√
n(p̂ − p)/(p̂(1 − p̂) converges weakly to N(0, 1)

11.0.12. Let X1, X2 . . . , Xn be i.i.d. N(0, 1). Consider a Bayesian who does not know
the true density and who uses the model, θ ∼ N(µ, η) and given θ, X1, X2 . . . , Xn be
i.i.d. N(θ, 1). Calculate the posterior of θ given X1, X2 . . . , Xn and verify that with
probability 1 under the joint distribution under N(0, 1), the density of

√
n(θ − X̄)

converges in L1 distance to N(0, 1).
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11.0.13. Consider Xis as in Exercise11.0.11. Consider a beta prior, i.e., a prior with
density

Π(p) = cpα−1(1 − p)β−1, α ≥, β ≥ 0

a Discuss why relatively small values of α+β indicate relative lack of prior information

b Consider a sequence of hyperparameters αi, βi such that αi + βi → 0 but αi/βi →
C, 0 < C < 1. Show that the corresponding sequence of priors converge weakly, and
determine the limiting prior. Would you call this prior noninformative? Reconcile
your answer with the discussion in (a)

11.0.14. (1). For a multinomial with probabilities p1, p2, . . . , pk for k classes,calculate
the Jeffreys prior. [Hint: Use the following well known identity (see [144]): Let B
be a positive definite matrix. Let A = B+xxT . Then det A = det B(1+xT B−1x)
]

(2). In the above problem calculate the reference prior for (p1, p2) assuming k = 3.

For the next four problems P ∼ Dα and given P ,X1, X2, . . . , Xn are i.i.d. P .

11.0.15. Assume
∫ ∞

−∞ x2dα < ∞. Calculate the prior variance of the population
mean

∫
xdP

11.0.16. Assuming α has the Cauchy density

1
π

1
1 + x2

and
∫

xdP = T (P ) is well defined for almost all P , show that T (P ) has the same
Cauchy distribution.

[Hint: Use Sethuraman’s construction]

11.0.17. For ᾱ Cauchy, show that
∫

xdP = T (P ) is well defined for almost all P .

[Hint: If Yi is a sequence of independent random variables such that
∑n

1 Yi converges
in distribution, then

∑∞
1 Yi is finite a.s. Alternatively, use methods of Doss and Selke

[55]]

11.0.18. Let αθ = N(θ, 1) and θ ∼ N(µ, η). Given X1, X2, . . . , Xn are all distinct,
calculate the posterior distribution of θ.

For the next three problems, let P ′ ∼ Dα, P a convolution of P ′ and N(0, h2) and
h have the prior density Π(h). Given P , let X1, X2, . . . , Xn be i.i.d. f , where f is the
density of P
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11.0.19. Let Cn be the information that all the Xis are distinct. For any fixed x
calculate E(f(x)|X1, X2, . . . , Xn, Cn) assuming the Xis are all distinct.

11.0.20. Let the true density f0 be uniform on (0, 1). Verify if the Bayes estimate
E(f |X1, X2, . . . , Xn, h) is consistent in the L1 distance

11.0.21. Let f0 be Normal or Cauchy with location and scale parameters chosen by
you but not equal to 0 and 1. Set n = 50 from f0, draw a sample of size n, namely,
X1, X2, . . . , Xn. Simulate the Bayes estimate of f(x) when the prior is a Dirichlet
mixture of normal and ᾱ = N(0, 1) or N(µ, σ2) with µ and σ2 independent, µ normal
and σ2 is inverse gamma truncated above.

Plot f0 and the Bayes estimate. Discuss whether putting a prior on µ, σ2 leads to a
Bayes estimate that is closer to f0 than the Bayes estimate under a prior with fixed
values of µ and σ2. (Base your comments from 10 simulations on each case).

11.0.22. Let f0 be normal or Cauchy. Using the Polya tree prior recommended in
Chapter6 and a normal or Cauchy prior for the location parameter, calculate numeri-
cally the posterior for θ, for various values of n and various choices of X1, X2, . . . , Xn.

11.0.23. (a) Assume the regression model discussed in Chapter7 with a prior for the
random density f that is Dirichlet mixture of Normal or Cauchy . Calculate and
plot the posterior for β for the different priors listed in Exercise11.0.21.

(b) Do the same but symmetrize f around 0. Discuss whether the behavior of the
posterior for β is similar o that in (a)

11.0.24. Examine Doob’s theorem in the regression set up considered in Chapter 7

11.0.25. Show that the Bayes estimate for survival function under a Dirichlet prior
with censored data has a representation as a product of survival probabilities and
that it converges to the Kaplan-Meier estimate as α(R) → 0.

11.0.26. Show that the Bayes estimate for the bivariate survival function is incon-
sistent in the following example (due to R.Pruitt):
(T1, T2) ∼ F and F ∼ Dα where α is the uniform distribution on (0, 2) × (0, 2). The
censoring random variable (C1, C2) takes the values (0, 2), (2, 0) and (2, 2) with equal
probability of 1/3. The Bayes estimator for F is inconsistent when F0 is the uniform
distribution on (1, 2) × (0, 1).

11.0.27. Show, in the context of Chapter9 that if one starts with a Dirichlet prior
for the distribution of (Z, ∆) (i.e., a prior for probability measures on {0, 1} × R+),
then the induced prior for F-the distribution of the survival time X is a Beta process.
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Birgé, L., 232, 234
Blackwell, D., 21, 103
Blum, J., 238
Borgan, Ø., 237
Borwanker, J., 35
boundary, 10
bracket, 233
Bunke, O., 183
Burr D., 198

Cencov, N.N., 222
censored data, 237

consistency, 241, 247



Index 301

change point, 45
Chen, M., 147, 213
Chib, S., 213
Clarke, B, 48
closed , 10
compact, 10
conjugate prior, 53
Connor, R.J., 253
consistency

L1, 122, 135
strong, 122

consistency of posterior, 17, 26
consistent estimate, 33
Cooke, G.E., 198
Cramér, H., 33, 177
cumulative hazard function, 242, 243,

253, 258

Datta, G., 50–52, 229
Dawid, A.P., 51
De Finetti’s theorem, 64
Dembski, W.A., 221, 223, 224
density estimation, 141
Dey, D.K., 213
Dey, J., 257, 259, 271
Diaconis, P., 21, 22, 31, 53, 55, 86, 113,

181–185, 192, 195
Dirichlet density, 62
Dirichlet distribution, 87, 89

polya urn, 94
properties, 89–94
Bayes estimate, 95

Dirichlet mixtures, 143
normal densities, 144, 161, 197, 198,

209, 222
L1-Consistency, 169, 172
weak consistency, 162, 164, 165

uniform densities, see random his-
tograms

Dirichlet process, 96
convergence properties, 105
discrete support, 102
existence, 96
mixtures of, 113
mutual singularity, 110
neutral to the right, 99
posterior, 96
posterior consistency, 106
predictive distribution, 99
Sethuraman construction, 103
support, 104
tail free, 98

Doksum, K.A, 253
Doksum, K.A., 120, 253, 257, 259
Doss, H., 166, 181, 198
Dragichi, L., 120, 257
Dubins, L., 21
Dudley, R., 16, 81

empirical process, 26
entropy, 47
Erickson, R.V., 259, 271
Escobar, M.D., 142, 146, 147

Ferguson, T., 87, 107, 114, 143, 144,
146, 253, 257, 264

finitely additive prior, 52
Fisher information, 40
Florens, 146
Fortini, S., 86
Freedman, D., 21, 22, 24, 31, 55, 86,

113, 181–185, 192, 195

Gasperini, M., 142, 150, 151
Gaudard, M., 61



302 Index

Gaussian process priors, 174
sample paths, 175, 176

Ghorai, J.K., 161
Ghosal, S., 18, 35, 43, 45, 187, 198, 202,

231
Ghosh, J.K., 18, 33, 35, 39, 40, 43, 45–

47, 50–52, 187, 198, 202, 229,
231

Gill, R., 237, 244
Glivenko-Cantelli theorem, 59
Goldschmidt-Clermont, P.J., 198

Haar measure
left invariant, 51
right invariant, 51

Hannan, J., 14
Hartigan, J.A., 142, 223
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