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Genes controlling expression of defense responses in Ara6klo~s~s 
Jane Giazebrook 
In the past year, two regulatory defense-related genes, EDSll 
and CO/l, have been cloned. Several other genes with 

regulatory functions have been identified by mutation, including 

DNDl, PAD4, CPRG, and SSIi. It has become clear that 

jasmonate signaling plays an important role in defense 

response signaling, and that the jasmonate and salicylic acid 

signaling pathways are interconnected. 
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Abbreviations 
avr avirulence 

HR hypersensitive response 

ISR induced systemic resistance 

JA jasmonlc acid 

LRR leucine rich repeat 

Lz leucine zipper 
NBS nucleotide binding site 

PR pathogenesis related 

R resistance 

SA salicylic acid 
SAR systemic acquired resistance 

Introduction 
Plants are capable of activating a large array of defense 
mechanisms in response to pathogen attack. ,4 crucial factor 
determining the success of these mechanisms is the speed 
of their activation. Consequently, there is considerable 
interest in understanding how plants recognize pathogen 
attack and control expression of defense mechanisms. 

Some potential pathogens trigger a very rapid resistance 
response called gene-for-gene resistance. ‘I-his occurs 
when the pathogen carries an avirulence ((IV) gene that 
triggers specific recognition by a corresponding host resis- 
tancc (K) gene. K gene specificity is generally quite narrow, 
in most cases only pathogens carrying a particular nelrgene 
are recognized. Recognition is thought to be mediated by 
ligand-receptor binding. R genes have been studied 

extensively in recent years and several excellent reviews 
are available [l--3]. 

One of the defense mechanisms triggered by gene-for- 
gene resiscancc is programmed cell death at the infection 
site. ‘[‘his is called the hypersensitive response, or HR. 
Pathogens that induce the HR, or cause cell death by 
other means, activate a systcrnic resistance rcsponsc 
called systemic acquired resistance (S,4R). Dllring SAR, 
levels of salicylic acid (SA) rise Ihroughout rhe plant, 
defense genes such as pathogenesis related (PR) genes are 

expressed, and the plant becomes more resistant to 
pathogen attack. SA is a crucial component of this 
response. Plants that cannot accumulate SA due to the 
presence of a transgene that encodes an SA-degrading 
enzyme (9&C), develop an HR in response to challenge 
by avirulent pathogens, but do not exhibit systemic 
expression of defense genes and do not develop resistance 
to subsequent pathogen attack [4]. The nature of the sys- 
temic signal that triggers SAR is a subject of debate [5,6]. 
SA clearly moves from the site of the HR to other parts of 
the plant, but if this is the signal, it must be effective at 
extremely low concentration [7]. 

SAR is quite similar to some reactions that occur locally in 
response to attack by virulent (those that cause disease) or 
avirulent (those that trigger gene-for-gene resistance) 
pathogens. In general, activation of defense gene expres- 
sion occurs more slowly in response to virulent pathogens 
than in response to avirulent pathogens. Some pathogens 
trigger expression of defense genes through a different 
signaling pathway that requires components of the jas- 
manic acid (JA) and ethylene signaling pathways [8]. ‘I’he 
SA and JA pathways interact in a complicated manner that 
is poorly understood. 

One approach to understanding the signal transduction 
networks that control defense mechanisms is to use genet- 
ic methods to identify signaling components and 
determine their roles within the network. Considerable 
progress has been made using this approach in 
A~Nbinopsis-pathogen model systems. ‘I-his review will 
focus on recent (published in 19% and early 1999) progress 
in identifying A~hi&p.sir genes that affect regulation of 
defense gene expression, and on what is known about their 
roles and relative positions in the signal transduction net- 
work. 1:igure 1 shows a model of how the network might 
be arranged (see [9], for a discussion on earlier work). Due 
to space limitations, K genes, genes studied in other plant 
species, and insights gained from other types of analysis 
will not be discussed in derail. 

R gene signal transduction 
Genes such as NDRI, BDS’I, Z)ill)l, and the lesion-mimic 
genes probably act in signal transduction pathways down- 
stream from K-nc/- recognition. 

,VI)KI and F,‘D,Sl arc recluired for gene-for-gene mediat- 
ed resistance to avirulent strains of the bacterial 
pathogen I-‘.reu~omcln~.c s.yr-illg~e and the oomycete 

pathogen Pemmspora parmitic~n. Curiously, n&l mutants 
arc susceptible to one set of avirulent pathogens, where- 
as &sl mutants are susceptible to a non-overlapping set 
[ 1 O*‘]. ‘I’he five cloned K genes that require ~~‘IM’/ all 

belong to the subset of the nucleotide binding 
site-leucine rich repeat (NBS-1,RR) class of R genes 
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Figure 1 

A model of the defense response signaling 

network showing the relative sites of action of 

genes discussed in this review. This model is 
almost certain to be found incorrect before 

this article is published, and is intended only 

as a means to stimulate discussion. The SA 

amplification loop is not shown, as it is not 
clear which genes might be involved in this. 

The mutual inhibition between the JA and SA 

pathways is not shown for the same reason. 

The rationale for the arrangement of genes in 

the network is presented in the text. This 
figure is adapted from Figure 1 of last year’s 
review of this topic [9], with alterations to 

mcorporate results reported in the last year. 

\\ uf Camalexin I- 
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that contain sequences similar to the cytoplasmic 
domains of fh-o.sophi/a’l?oll and mammalian interleukin 1 
transmembrane receptors. The two genes that require 
il:nHZ belong to the leucine-zipper (I,%,) subclass of 
NBS-LRR genes. ‘I’here is another IX-NBS-LRR gene 
that does not require L!UI or :‘VDRI, so the correlation 
between R gene structure and requirement for E;fXZ or 
AJDRI is not perfect. Nevertheless, these results show 
that R genes differ in their requirements for downstream 
factors and that these differences arc correlated with 
R gene structural type. 

Ail)RZ encodes a protein with two predicted transmem- 
brane domains [ll]. RPMl, which requires NDRl to 
mediate resistance, is membrane-associated, despite the 
fact that its primary sequence does not include any likely 
membrane-integral stretches [ 12). It is possible that part of 
the function of NDRl is to hold R proteins close to the 
membrane. BLM’Z encodes a protein with blocks of homol- 
ogy to triacyl glycerol lipases [1.3”]. The significance of 
this homology is not known, but it is tempting to speculate 
that EDSl is involved in synthesis or degradation of a sig- 
nal molecule. EDSl expression is inducible by SA and 
pathogen infection, suggesting that EDSl may be 
involved in signal amplification [ 13”]. 

It has been extremely difficult to isolate mutations in 
genes other than the R genes that are required for gene- 
for-gene resistance. McNellis et CL/. have devised a 
selection procedure on the basis of precisely controlled 

inducible expression of the acr gene awRpt2 in plants 
carrying the corresponding resistance gene RPSZ [14’]. 
Expression of aarRpt2 in this background is lethal, as it 
triggers a systemic HR. It is now possible to select for 
mutants with subtle defects in gene-for-gene signaling by 
requiring growth on a concentration of inducer slightly 
higher than the lethal dose. This is a very promising 
approach for identifying loci involved in gene-for-gene 
resistance and/or the HR. 

Characterization of &zdl mutants has provided genetic 
ev-idence that the HR is separable from gene-for-gene 
resistance [lS”]. When n’na’l plants are infected with 
avirulent pathogens, no HR occurs, but the level of resis- 
tance is comparable to that in wild-type plants. One 
possibility is that DNDl is a regulator of cell death. 
However, dvzdl mutants also have elevated SA levels and 
constitutively express the defense gene PRI, raising the 
possibility that SAR activation leads indirectly to sup- 
pression of cell death. ‘I’his idea could be tested by 
constructing a &&Z nahG line. 

Lesion-mimic mutants develop HR-like lesions, have high 
levels of SA, and express defense genes, all in the absence 
of pathogen attack. It is likely that some of the lesion- 
tnimic gene products have important roles in regulation of 
the HR. These mutants have been studied quite exten- 
sively, but few results have been reported in the last year. 
The reader may refer to recent reviews describing this 
interesting class of mutants [16,17]. 
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SA-dependent signaling 
SA levels increase locally in response to pathogen attack, and 
systemically in response to the SAR-inducing signal. SA is 
necessary and sufficient for activation of PR gene expression 
and enhanced disease resistance. Physiological analyses and 
characterization of certain lesion-mimic mutants strongly sug- 
gest that there is a positive autoregulatory loop affecting SA 
concentrations [1X--20]. Several mutants with defects in SA 
signaling have been characterized. These include nprl, in 
which expression of PR genes in response to SA is blocked; 
rprl, @~r5, and rpr6, which constitutively express PR genes; 
the nprl suppressor ssil; pud4, which has a defect in SA accu- 
mulation; and edss’, which has a defect in PRJ expression. 

Expression of the defense genes PRI, BG?, and PK.5 in 
response to SA treatment requires a gene called NPRJ or 
/VI/VI. Mutations in tzprl abolish SAR, and cause enhanced 
susceptibility to infection by various pathogens [Zl-241. 
NPRl appears to be a positive regulator of PR gene 
expression that acts downstream from SA. NPRZ encodes a 
novel protein that contains ankyrin repeats (which are 
often involved in protein-protein interactions [25,X]), and 
that is localized to the nucleus in the presence of SA [9]. 
(Lmsequently, it is unlikely that NPRl acts as a transcrip- 
tion factor to directly control PR gene expression, but its 
nuclear localization suggests that it may interact with such 
transcription Fdctors. 

‘I’he rprJ, cpr.5, and @t-6 mutations cause elevated SA lev- 
els, constitutive expression of PRI, BG2, and PR.5, and 
resistance to p srtiBg&e and J? parasitica [27.28,29”]. In all 
cases, cpr na/iC plants do not exhibit elevated gene expres- 
sion or resistance to P .sy~tgoe, suggesting that the CPR 
genes act upstream from SA. In qw-5 npri double mutants, 
defense gene expression and resistance to p syringae are 
abolished, confirming that CPR.5 is acting upstream from 
NPRI [2X]. The case of cpld mutants is m&e complicated. 
The ~;nr-6 mutation is dominant, so it is likely that the 
mutant phenotype represents a gain of function rather than 
a loss of function [29”]. In cpr6 nprl plants, constitutive 
expression of PRJ. BG?, and PR.5 is retained, but resistance 
to F! .~fti’ng~~p is lost [29”]. This result leads to two interest- 
ing conclusions. First, there must be an SA-dependent, 
iXPRl/NIMl-independent mechanism for activation of 
PR/, BG2, and PK.5 [29”]. This could explain the observa- 
tion that in apt-1 plants infected with f? sytiegae, expression 
of PRJ is reduced but not abolished, and expression of BC;,/ 
and PR.5 is wild-type [23]. Second, the factor responsible 
for I? KW&Z~ZZ resistance in /pr6 plants is not PRI, BG’2, or 
PR.5, implying that the relationship between expression of 
these genes and p syfinl5ae resistance is merely correlative, 
not causal [29*‘]. The challenge now is to find a defense 
mechanism that is constitutively expressed in cpr6 in an 
NPRl-dependent manner, and to determine if this mecha- 
nism confers resistance to tl ~~Jtitig-ae. 

?‘he phenotypes caused by the dominant ssif mutation 
superficially resemble those of cpr mutants, with the 

important difference that ssil suppresses nprl mutations 
[30”]. In ssil plants, PRI, BGZ, and PR5 are constitutively 
expressed [30”]. In ssil nprl plants, this expression 
remains, and unlike cptd nprl plants, the enhanced sensi- 
tivity of nprJ to p syringae infection is suppressed [30”]. 
All of the ssil phenotypes are abolished by nahG, demon- 
strating that they are SA-dependent [30”]. 

PAD4 seems to act upstream from SA. In pad4 plants 
infected with a virulent 19 syringae strain, SA levels, syn- 
thesis of the antimicrobial compound camalexin, and PRI 
expression are all reduced [31’]. SA is necessary, but not 
sufficient, for activation of camalexin synthesis [31’,32]. 
The camalexin defect in pad4 plants is reversible by 
exogenous SA [31’]. Mutations in pad4 do not affect SA 
levels, camalexin synthesis, or PRI when plants are infect- 
ed with an avirulent p syrirtgae strain (31’1. Taken together, 
these results suggest that PAD4 is required for signal 
amplification to activate rhe SA pathway in response to 
pathogens that do not elicit a strong defense response 
[31’]. The phenotypes of cprl pad4 plants are indistin- 
guishable from those ofpad plants, indicating that CPRl 
acts upstream from PAD4 to activate PR gene expression 
(N %hou and J Glazebrook, unpublished data). 

Expression of PRI is also reduced in eds.5 mutants infected 
with a virulent p syritzgae strain [33]. It is likely that EDSS 
acts somewhere in the SA pathway. The phenotypes of the 
various mutants suggest that CPRl and CPRS act 
upstream from SA as negative regulators of SA signaling. 
CPR6 may also be a positive regulator acting upstream 
from SA. NPRl appears to be a positive regulator that 
functions downstream from SA to activate a subset of SA- 
dependent responses. SSIl and EDSS also affect SA 
signaling, but their positions in the signal transduction net- 
work are not yet clear. 

JA-dependent signaling 
JA signaling affects diverse processes including fruit ripen- 
ing, pollen development, root growth, and response to 
wounding [8]. ‘I’hejarJ and co;1 mutants frail to respond to 
JA [34,35]. L’O/I has been cloned, and found to encode a 
protein containing leucine-rich repeats and a degenerate 
F-box motif [36”]. ‘I’hese features are characteristic of pro- 
teins that function in complexes that ubiquitinate proteins 
targeted for degradation. It follows that CO11 may act by 
promoting degradation of a factor that exerts a negative 
regulatory effect in the JA signal transduction pathway. 

In the past few years it has become apparent that JA plays 
an important role in regulation of pathogen defenses. 
Inoculation of Arabidopsis with the avirulent fungal 
pathogen Alternaria brassicicola induces expression of the 
defensin gene PDF12 [37]. This induction does not 
require SA or NPRl, but it does require ethylene and JA 
signaling [37]. Studies of the effect of mutations in ETRI 
(the ethylene receptor), B1NL (required for responses to 
ethylene) or COIJ on PDF1.L expression in response to 
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A. ~ra.&ico/a, ethylene, JA, or combinations of JA and eth- 
ylene suggest a model in which ethylene and JA are 
required simultaneously for PDF22 expression [38”]. 

Like SA signaling, JA signaling has systemic effects. Plants 
in which only a few leaves were infected with A. brassicrco- 
/a express PDF12 throughout the plant [37]. Although 
A. brassicicola fails to infect wild-type plants, it is able to 
infect roil mutants, suggesting that JA signaling is required 
for resistance to A. t’mxsicicolu. JA-dependent responses are 
also sufficient to confer resistance to A. brassicicola. This 
was demonstrated usingpa& mutants, which are unable to 
synthesize camalexin and are susceptible to A. bra.ssicidu 
[39,40’]. Treatment of pad3 plants with JA prior to infec- 
tion greatly reduced A. brassicicola growth [40’]. 

SA signaling and JA signaling pathways are interconnected 
in complicated ways. Studies in other systems have shown 
that SA signaling and JA signaling are mutually inhibitory 
18,411. However, synthesis of camalexin in response to 
l? syringae infection is blocked in I&C [31’,32] and coil 
(J <;lazebrook, unpublished data) plants, strongly suggest- 
ing that camalexin synthesis requires both SA and JA 
signaling. ‘I’he cpn5, rprfi, and ami2 mutations cause consti- 
tutive expression of both PKl and PDFl.2, suggesting that 
there may be a common control point for activation of both 
pathways. [Z&29 “,37]. PDFl.2 is also constitutively 
expressed in ssil plants. Curiously, this expression is 
SA-dependent, in contrast with wild-type plants, in which 
activation of P/j/*‘12 expression is completely SA-inde- 
pendent [3O”]. The proposed explanation for this effect is 
that ssil acts as a switch between the two pathways [30”]. 
An alternative possibility is that ssil perturbs the balance 
of SA-dependent and JA-dependent signaling in a way that 
shifts Pi1F‘I.L expression toward SA-dependence. 

Induced systemic resistance (ISR) 
Some rhizosphere-associated bacteria promote disease 
resistance [42]. This phenomenon. called ISR, has been 
studied using P.s~udomnna.s fluarescem strain WCS417r to 
colonize Arahidopsis roots [43]. Colonized plants are more 
resistant to infection by the fungal pathogen Fusatium 
oxysporum f sp r~@hani and E .cyringae [43]. ISR occurs in 
r&G plants, indicating that it is not an SA-dependent phe- 
nomenon [43]. Rather, ISR appears to be JA- and 
ethylene-dependent. The observation that ethylene can 
induce ISR injarl mutants led to the hypothesis that ISR 
requires a JA signal followed by an ethylene signal [44”]. 
No changes in gene expression associated with ISR have 
been detected [44”], suggesting that it is different from 
activation of PDF12 expression by il. hrassi&oLa. 

Curiously, ISR requires NPRi [44”]. This was unexpected 
in light of the facts that NPRl was previously known to be 
involved only in SA-dependent processes, and ISR is SA- 
independent. This result implies that NPRl can respond 
to signals from at least two different sources, one that is 
SA-dependent and one that is derived from ISR signaling. 

If the SA-dependent signal is received, NPRl mediates a 
resistance response characterized by PRf expression, 
whereas ifthe ISR signal is received, NPRl mediates a dif- 
ferent resistance response. It is difficult to imagine how 
this could occur, unless NPRl is interacting with different 
‘adapter’ molecules to mediate the different signals. ‘I’he 
ankyrin repeats found in NPRl could function in pro- 
tein-protein interactions between NPRI and adapter 
proteins. Identification of proteins that interact with 
NPRI, and characterization of plants with loss-of-function 
mutations affecting those proteins, would be very helpful 
for understanding how NPRl acts in each pathway. It 
would also be worthwhile to determine if the ssil or cpr6 
mutations suppress the ISR defect of nprl mutants. 

Relevance to disease resistance 
i;haracterizdtion of the effects of various mutations on 
resistance to different pathogens has revealed that there is 
considerable variation in the extent to which pathogens are 
affected by defense mechanisms. SAR is known to confer 
resistance to a wide array of pathogens, including bacteria, 
fungi, oomycetes, and viruses. In Arabia’opsis, the SA path- 
way mutants nprl and pad4 show enhanced susceptibility 
to L! syringae and I?parasiticu [21,22,24,31’,45]. The fungus 
E:risyphe orontii also seems to be sensitive to SA-dependent 
responses. Among a collection of mutants that display 
enhanced susceptibility to )! syrhgae, only mutants that 
had defects in expression of PR/ were also more suscepti- 
ble to A. oroh’ [%‘I. p parxtiti~a may be inhibited by 
JA-dependent mechanisms as well as by SA-dependent 
ones. In rpr.5 rzprl double mutants, the PR/ expression and 
resistance to t? syringae caused by cpr5 is abolished, hut 
PDF12 expression and Pparmitira resistance are retained, 
suggesting that activation of the JA pathway is causing 
I? parasitim resistance (281. 

JA signaling is important for limiting the growth of certain 
fUngdl pathogens. The fad?-i,fu&-2 fad8 triple mutant is 
unable to synthesize JA due to an inability to produce 
linoleic acid, a precursor of JA. These plants and jnrj 
plants are much more susceptible to infection by Pyuiium 
species than wild-type plants are [47’,48’]. JA treatment 
enhances resistance to A. bra&-iroh, and roil mutants 
show enhanced susceptibility, whereas the nahC transgene 
and an nprl mutation have no effect [40]. These observa- 
tions suggest that JA signaling is important for resistance to 
fungi such as P#Gurrz species and A. hmsicicola, while SA 
signaling has little effect on resistance to A. ~russi&-&. 

Overexpression of rate-limiting defense response regula- 
tors may cause the signaling network to respond faster or 
more strongly to pathogen attack, thereby improving 
resistance. Overexpression of NPRl caused increased 
resistance to R syringae and P parasitica in a dosage depen- 
dent manner [49”]. Importantly. iVPR1-overexpression 
had no obvious deleterious effects on plant growth. in con- 
trast to mutations that lead to constitutive overexpression 
of defense responses, which generally cause dwarfism. In 
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the future, the effect of overexpression of other cloned 
regulatory genes, such as NDRI, EDSI, and COII, should 
be tested. 

Other mutations that may affect signaling 
There are several mutants that affect disease resistance 
that may prove to be involved in control of defense 
responses, but have not yet been characterized in detail. 

‘I’hese include CYZ!T mutants, that show enhanced disease 
susceptibility to virulent P .gGgfze strains [23,X3,50], p/lx 

mutants, isolated as suppressors of the lesion-mimic 
mutant lst15 [Sl], and erilr mutants, which display enhanced 
resistance to L qtingne and/or Ei:rigp~e fichorafefffwn infec- 
tion [52’]. EDRI almost certainly affects SA signaling, 
since expression of PRI in response to Ii:. ckhormearwn 
infection occurs more rapidly in e&l mutants than in wild- 
type plants [52’]. 

Conclusions 
Many genes that function in regulation of defense 
responses have been identified. Progress has been made 
in determining the positions of various genes in the sig- 
nal transduction network. However, current models seem 
to have little predictive value, in that characterization of 
new mutants often requires wholesale rearrangements of 
the existing models in order to explain observed pheno- 
types. Obviously. the signal transduction network is not 
well understood. 

‘I-he field is now in a position to develop second-genera- 
tion approaches to identify additional components of the 
signaling networks. These include screening for supprcs- 
SOTS and enhancers of known mutations, and using 
two-hybrid screens to identify proteins that may interact 
with the products of cloned genes. ‘I’he biological signifi- 
cancc of two-hybrid interactions can be tested using a 
reverse-genetic approach to obtain toss-of-filnctiol~ muta- 
tions in the relc\,ant genes. 

For determining the roles of each gene in the signal trans- 
duction network, it would be very helpful if all mutants 
were tested for all phenotypes. It is also important to con- 
struct double mutants for epistasis testing. Both of these 
approaches require free exchange of mutants among vari- 
ous laboratories. The sequencing of the ArnC/z’~~~.cis 
genome, which should be complete in late ZOOU, will make 
it possible to apply powerful new techniques to the study 
of signaling. For example, ‘gene chips’ could be used to 
monitor expression levels of every gene simultaneously. so 
that the effects of mutations on gene expression patterns 
can be determined completely and efficiently. ‘I’his \vitl bc 
useful for discovery of pathogen-inducible genes that are 
not yet known. as well as for elucidation of signal trans- 
duction networks. 
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