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Recent research bridging mechanistic and ecological
approaches demonstrates that plant attributes can affect
herbivores, natural enemies of herbivores, and their interaction.
Such effects may be genetically variable among plants and/or
induced in individual plants by herbivore attack, and are
mediated by primary plant attributes (i.e. nutritional quality and
physical structure) and defense-related products (i.e.
secondary chemicals and plant volatiles), and may be modified
by human activity (e.g. by the introduction of Bacillus
thuringiensis). The study of tri-trophic interactions is important
in order to understand natural species interactions and to
manipulate these interactions in pest control.
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Abbreviations
Bt Bacillus thuringiensis toxin
JA jasmonic acid
PDA 12-oxo-phytodienoic acid

Introduction
For a long time, theoretical predictions have suggested
that plants interact in complex ways with herbivores and
pathogens that feed on plants, and with natural enemies
of herbivores and pathogens [1] (Figure 1). For example,
plant traits may be attractive or beneficial to some ene-
mies of herbivores, but the same traits may be

poisonous or otherwise detrimental to other enemies of
herbivores [2••]. Studies of tri-trophic interactions aim to
identify these interactions, understand their mechanistic
basis, and document their consequences. Ultimately,
manipulating these interactions may result in better pest
control and the reduced use of pesticides. In the past
year, rapid advances have been made and four edited
books have appeared that cover various aspects of
plant–herbivore/pathogen–natural-enemy interactions
[3,4,5•,6•]. This review focuses on recent empirical
advances that have improved our understanding of 
tri-trophic interactions.

Plant volatiles and natural enemies of
herbivores
Plants respond to initial attack by herbivores and
pathogens by increasing their levels of defense [7]. For
example, volatiles emitted by herbivore-infested plants
that are attractive to natural enemies of herbivores are
hypothesized to be an evolved response to herbivory.
Although the net costs or benefits in plant performance of
such induced volatile responses have not been identified,
intricate and highly specific interactions between con-
stituents of herbivore saliva and plant responses provide
circumstantial evidence of their importance. 

Recent physiological studies have linked the plant signal
transduction pathways that result in induction of direct
defenses in leaves to indirect defenses that act through
the production of volatiles that attract natural enemies of
herbivores. Jasmonic acid (JA) is a key component of the
highly conserved octadecanoid pathway in plants that
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Figure 1

Tri-trophic interactions and the effects of
plants on the natural enemies of plant
parasites. Solid arrows indicate consumption,
whereas the large clear arrow on the left
indicates plant influences on the third trophic
level. Plant chemistry, morphology, and
resources (e.g. pollen and nectar) may
positively or negatively affect the behavior,
efficacy, and performance of natural enemies
of plant parasites. Some tri-trophic
interactions operate with a high degree of
specificity between the interacting organisms,
whereas others act more generally. The
mechanisms and consequences of induced
plant volatiles attracting herbivores [48•],
predators eating predators [49], and
pathogens infecting predators and parasitoids
[50] deserve more attention. 
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mediates induction of direct foliar defenses [6•]. Boland
et al. [8] have reviewed the evidence that JA plays a key
role in the induction of volatiles that may attract natural
enemies of herbivores. Specifically, lima bean leaves
treated with inhibitors of JA biosynthesis did not produce
the herbivore-induced volatiles that are implicated in
indirect defense. Exogenous applications of JA to plants
increase direct and indirect defenses [2••,6•,8]. JA is
thought to work through a positive feedback mechanism
in which precursors of JA are stimulated upstream, result-
ing in increased production of JA and subsequent
downstream products in planta.

Thaler [2••] demonstrated that exogenous applications of
JA to field-grown tomato plants cause an increase in the
parasitism of naturally occurring beet armyworm larvae
by a solitary ichneumonid parasitoid. This result was a
direct effect of changes in plant quality, not an effect of
changes in herbivore quantity or quality. JA-mediated

attraction of parasitoids was also shown to be associated
with foliar defenses that negatively affected several her-
bivores by increasing their development time [2••,6•].
The pupal weights of the parasitoids of these herbivores
were, however, also decreased. Thus, there were positive
and negative effects associated with the JA induction,
with the net benefits apparently being more important
than the costs. Similar positive (i.e. parasitoid attraction)
and negative effects (i.e. 40% fewer emerging parasitoid
progeny) have been reported for a gregarious braconid
parasitoid attacking gypsy moth larvae on induced poplar
trees [9].

JA applications to gerbera and lima bean plants also
resulted in induced volatile production and the attrac-
tion of natural enemies of herbivorous mites [10,11•].
The profiles of the volatiles emitted after application of
JA were similar to those induced by natural herbivory,
although not identical. In contrast to mite-induced
plants, methyl salicylate, a well-known attractant of
predatory mites, was conspicuously missing from JA-
induced plants, which were consequently less preferred
by predators than were mite-induced plants [10,11•].
The dose of JA and method of its delivery is likely to be
an important determinant of some of the differences
between the attraction of predators to JA-induced and
mite-induced plants. A novel class of elicitors of
volatiles, fungal peptaibols, induces both jasmonate
products and methyl salicylate [12•]. Fungal peptaibols
were previously shown to induce phytoalexins and are
particularly intriguing because they appear to circum-
vent the typical antagonistic interaction between
jasmonate and salicylate signaling in plants. 

The bouquet of volatiles that are emitted from damaged
plants come from at least three biosynthetic pathways:
first, the fatty acid (or octadecanoid) pathway produces
leafy green volatiles and jasmone; second, the shikimic
acid (or tryptophan) pathway produces indole and methyl
salicylate; and third, the isoprenoid-derived pathways pro-
duce terpenes [6•]. Given the essential role of JA in
regulating volatile production, there must be a role for JA
in activating the shikimic acid and isoprenoid pathways
that is additional to its role in the octadecanoid pathway
(Figure 2). JA-responsive enzymes are thought to catalyze
the response of some terpenoids. Octadecanoid intermedi-
ates (which are present upstream of JA), including
12-oxo-phytodienoic acid (PDA), form a second group of
signals that lead to the production of volatiles [13•]. JA and
PDA induce different terpenoids in lima bean but the
same terpenoids in corn [13•]. The identification and char-
acterization of various octadecanoid-sensitive enzymes
catalyzing volatile biosynthesis is just beginning. For
example, (3S)-(E)-nerolidol synthase is induced in cucum-
ber and lima bean after infestation by spider mites, but not
after mechanical damage [14•]. The activity of this enzyme
correlates with the release of the homoterpene 4,8-
dimethyl-1,3(E),7-nonatriene, which is a major component

Figure 2

Biosynthetic pathways resulting in the production of plant volatiles that
are attractive to natural enemies of herbivores. JA and PDA are thought
to be endogenous chemical signals that induce the production of
these volatiles [8,13•]. JA- or PDA-responsive genes/enzymes
upstream of the isoprenoid and shikimic pathways link the production
of volatiles to the octadecanoid pathway, which is responsible for the
expression of defensive genes, including those that result in the
production of proteinase inhibitors.
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of the odor-blend released from many herbivore-infested
plants. It is unclear whether (3S)-(E)-nerolidol synthase is
responsive to JA or PDA, or both.

Until recently, little was known about how phloem-feed-
ing aphids and their natural enemies respond to induced
plant responses. Although induced direct defense to
aphids is still poorly documented, a body of literature on
the indirect attraction of natural enemies of aphids has
emerged [15,16•,17,18••]. As demonstrated in studies of
plant responses to lepidopteran and mite herbivores,
volatiles induced in response to aphid attack are system-
ically released by the plant and appear to be positively
dependent on the level of infestation. It was found that
volatile extracts from host-infested plants are more
attractive to parasitoids than extracts from plants infest-
ed with non-host aphids. This result exemplifies
specificity in the response of plants to different aphid
herbivores. Volatile isothiocyanates (produced from pre-
formed glucosinolates) in the Brassicaceae attract aphid
parasitoids. Bradburne and Mithen [18••] have shown
that breeding for the release of specific volatiles from
Brassica napus and B. oleracea result in the attraction of
aphid parasitoids in the laboratory and field. The physi-
cal mapping and identification of the GSL-ELONG gene
from Arabidopsis thaliana, which is involved in this
volatile production, opens the door to genetically modi-
fying plants to attract natural enemies of herbivores
[19•]. Extreme caution will be needed when deploying
such genetically modifying plants; natural enemies of
herbivores are extremely good learners and the lack of
prey at sites emitting volatiles causes natural enemies to
negatively associate the odors with prey [6•]. 

Complex interactions between herbivores and plants
continue to be revealed. Glucose oxidase is an important
component in the saliva of many lepidopteran herbivores
that attenuates JA-mediated direct resistance to herbi-
vores in Nicotiana [6•], although it does not appear to
affect the production of plant volatiles (GW Felton, per-
sonal communication). Constituents of the oral
secretions of Manduca sexta also suppress JA-mediated
production of nicotine (a direct defense) in Nicotiana,
which is linked with plant production of ethylene.
Unlike glucose oxidase, these oral secretions resulted in
strong volatile responses [20]. In these variable interac-
tions it is not clear whether it is the herbivore or the
plant that controls the outcome of the interaction. 

Ant–plant associations present a special case of mutualism
between plants and predators of herbivores in which the
plant provides the ants with food and/or shelter. These are
perhaps the best-known cases of indirect defense with
numerous examples of fitness benefits to plants that
attract ants. Although not all ants benefit the plants [21•],
herbivore damage may elicit induced recruitment of ants
via the production of volatiles and/or extrafloral nectar
rewards [22,23]. 

Plant morphological traits affect tri-trophic
interactions
Aspects of plant morphology may influence the performance
of plant parasites, natural enemies of these parasites, and
their interactions. Leaf domatia are small hair-tufts or pock-
ets on the abaxial surface of leaves that have been found in
nearly 300 plant families and 2000 species [24] (Figure 3).
Over a century ago, a Swedish naturalist, Axel Lundströem,
proposed that leaf domatia mediated a mutualism between
plants (which provide shelter for arthropods) and predatory
or fungivorous arthropods (which clean the leaf surface of
plant parasites) (see [25]). Many crop plants, including cof-
fee, grape, and walnut, are endowed with natural leaf
domatia. These structures have apparently been lost (com-
pared to their wild relatives) in crops such as avocado. 

When artificial domatia were added to cotton plants, sever-
al species of predators increased in abundance, populations
of three species of herbivores decreased, and cotton yield
was enhanced compared to controls [26]. Although cotton
plants do not possess leaf domatia, their close wild relatives
do [27], and the quantitative trait loci for pubescence in cot-
ton have been identified [28•]. Selective expression of
pubescence in the vein axils could enhance the control of
herbivores in cotton and other species.

Wild and cultivated grape plants show variation in the pres-
ence and size of leaf domatia that are inhabited by tydeid
mites (Figure 3). Tydeid mites are voracious consumers of the
phytopathogen powdery mildew, a major pest of grapes [29].
Norton et al. [30••] convincingly showed the importance of
domatia for disease control using clonal variation and experi-
mentally manipulated leaf domatia. Classical breeding as well
as genetic enhancements of domatia could yield benefits for
many crops. Leaf domatia benefit predators and fungivores
by providing a refuge (from their own enemies) and a favor-
able microclimate. Domatia do not appear to have high costs
in terms of energetic drain or ecological blunders, although
this issue has not received much attention.

The morphological attributes of plants may also have a
direct impact on herbivores. Leaf pubescence [31] and lack
of cuticular waxblooms [32] can impair the development of
herbivores. Of particular interest is the impact that these
morphological traits can have on the natural enemies of her-
bivores. If morphological barriers interfere with the action
of natural enemies, the benefits of these ‘defenses’ may be
reduced. Understanding the compatibility of plant resis-
tance factors with biological control and the interactions of
biological control enhancing features, such as leaf domatia,
with plant resistance remains an important challenge for
plant biologists [26,31,32].

Plant effects on omnivores: friend or foe?
Many arthropods are not strictly herbivores or predators,
but feed on multiple foods, including leaf tissue, pollen,
nectar, and other arthropods [33]. Generalist predators
often rely on plants for alternative foods in times of prey
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scarcity. Big-eyed-bugs survive better and do not disperse
when their diet of aphids is supplemented with high-qual-
ity plant material [34•]. The presence of alternative foods
increases the retention of predators and may stabilize the
interactions between predators and prey.

Omnivores may be either beneficial to plants because of
their action as predators or detrimental to plants because
of their action as herbivores. The factors that encourage
predation and discourage herbivory could be exploited in
pest control. In cotton plants, induced plant resistance
has been shown to reduce herbivory by mites and thrips,
and increase predation of mite eggs by thrips [35•].
Although thrips can be severe crop pests, manipulation of
their feeding behavior can provide benefits to plants.
Interactions between plant defenses, the quality of prey,
and omnivory may obscure the costs and benefits of
omnivory [36,37] and require further study. For example,
the volatile odors of predators that eat thrips cause thrips
to increase their occupancy of mite colonies (under mite
webbing), thereby potentially increasing their consump-
tion of herbivorous mites [38]. 

Biotechnology, Bacillus thuringiensis, and
beneficial insects
Genetic manipulation of plants can provide potent resis-
tance against pests. Controversy has surrounded the

current broad-scale use of transgenic plants with
improved resistance to pests in agriculture because of
their potential effects on the natural enemies of herbi-
vores, other non-target organisms, gene flow to wild
relatives, the rapid evolution of resistance in pests, and
human health [39]. The consequences for tri-trophic
interactions of expressing Bacillus thuringiensis toxins
(Bts) in plants has been the subject of recent research.
Parasitoids inside dead lepidopteran larvae that are
exposed to Bts usually suffer the same fate as the larvae.
Thus, death of herbivore larvae caused by Bts may be
detrimental for populations of parasitoids. Two groups
have found that herbivore larvae that were exposed to
Bts, but were themselves resistant to its effects, howev-
er, supported the normal development of parasitoids
[40,41•]. Because the strains of Bts currently in use are
largely specific to lepidoptera, there may be no direct
consequences of Bts for the predators and parasites of
herbivores. Nevertheless, Hilbeck et al. [42•] report a
dose-dependent effect of Bts on lacewing predators. This
effect was mediated by the direct effects of Bts on the
predators and the indirect effects of the predators feed-
ing on caterpillars that had been fed Bts. Although many
natural enemies of herbivores may not be directly affect-
ed by Bts, negative effects on their populations through
the consumption of sick, dead, or dying herbivores may
be a nasty indirect effect.
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Figure 3

Leaf hair domatia. (a) and (b) The hair-tuft leaf domatium on a grape leaf. (c) The domatium is occupied by a tydeid mite, which has a voracious
appetite for plant pathogens including powdery mildew [29,30••]. Tri-trophic interactions linking plant morphology with the control of plant parasites
by natural enemies hold promise as a form of pest control. Line drawing courtesy of Karen English-Loeb, and scanning electron micrographs
courtesy of Andrew Norton and Harvey Hoch. 
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Do predators and parasitoids of herbivores avoid Bts-exposed
prey? Could behavioral mechanisms in parasitoids potentially
reduce the negative indirect effects of Bt? Because the feed-
ing of susceptible caterpillars on Bt plants is severely
reduced, and plant damage attracts parasitoids, parasitoids
may preferentially be attracted to either resistant larvae or
susceptible larvae on non-Bt plants [41•]. Thus, a potential
tri-trophic benefit of employing Bts in agriculture is that par-
asitoids may be an agent for minimizing the evolution of
resistance to Bts in pests. This possibility was demonstrated
for the Plutella (diamondback moth)–Cotesia (parasitoid
wasp) system in an elegant laboratory study [41•].
Unfortunately, diamondback moth was the first insect report-
ed to have evolved resistance to Bts in the field. Thus, the
relative importance of this tri-trophic interaction, which
effectively sandwiches herbivores between toxic plants and
virulent natural enemies, remains unclear. 

The tri-trophic effects of other genetically engineered
plant toxins have also been the subject of investigation.
Contrary to the results of previous artificial diet studies,
Ali et al. [43] showed that tobacco budworm feeding on
transgenic tobacco plants that either under- or over-
expressed phenylalanine ammonia-lyase (PAL) had
higher mortality, caused by a nucleopolyhedrovirus,
when feeding on lines with higher levels of PAL expres-
sion. Aphids grown on potatoes engineered with an
anti-aphid plant protein (snowdrop lectin GNA), how-
ever, supported ladybird predators with reduced
fecundity, egg viability and longevity [44]. The appar-
ent specificity of Bts has made it more marketable than
these other transgenic options. The benefits of Bt
expression in plants are obvious for the short term; nev-
ertheless, future research must address how the
not-so-obvious negative aspects of such transgenics for
trophic interactions can be minimized. 

Conclusions
In terrestrial environments, strong trophic interactions
are modified by the chemistry, morphology, and behavior
of each organism involved. Plants recruit natural enemies
of herbivores using volatiles. The essential constituents
of these interactions ranging from herbivore saliva to
plant hormones and regulatory enzymes are now being
isolated, and their genes cloned. It is unknown whether
plants that are infested with microbial diseases or nema-
todes attract or facilitate natural enemies of these plant
parasites. Such interactions are probably abundant, yet
their natural history and applied potential are unex-
plored. Chemically mediated tri-trophic interactions have
recently been described from marine ecosystems [45–47],
indicating the prevalence of such interactions. Only a
combination of natural history, molecular and genetic
tools, and field experimentation can lead to a predictive
understanding of tri-trophic interactions. 
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