Compiler2008RuntimeSystem

F+E RALEKE R AL

LR R

B A A R A
WA Rt
B 2 AE G S FE R
LSRR

Basic Block Optimizations

F Common Sub-Expression Elimination/Jfi & 2
15
& a=(x+y)tz; b=xty
St=xty;a=t+z;b=t;
= Constant Propagation’# $/& 4%/ £ &
& X =5; b=x+y;
& b =5+y;
E Algebraic Identitiest%5iE &5 /AR B ik 17
Sa=x*1,
Ba=x

(e

® RS
= ERA AR
F RERISS*

Yinliang Zhao

K1k

Basic Block Optimizations

® Copy Propagation®3 5 {4 1%
& a=x+y;b=a;c=b+z;
S a=xty;b=a;c=atz;

E Dead Code Eliminationfil 2 7c FH A5

=x+y;b=a;c=atz
B a=x+y,c=at+z
® Strength Reductionsi /& 11 55
St=i*4
Bt=i<<2;

PRAG A B BT o B] R

= AR A AR BRI
® HAr P
m A
® R

® A i
LRI R/G i S
AR AR R T i

HArFEF

Compiler2008RuntimeSystem

RAG L= RB RN

E R RS
SHHBMRRHE
5 A FHME T A B inplas BB
s BSERMENRUME, WA T REHEBRERAE
o BB R
ERFSRER
o FpAIR 7 AP A48 7 BT AR B X 5 12 AT I ik

FHBAIR

FEFFROIHINE, ERPOR - ERREEEAE
FraTHERESE

B RS KSR B, SRR EEEKA
AHlas

F R T IFRTRIR T RENPE RN
B H il Fieas A R B L e o i F A

10.2 RAG £ R E AR &

E

E University of Berkeley

¥ 6.035 Computer Language Engineering (SMA 5502)
Fall 2005

Yinliang Zhao

BT

= AR LB
oo T BT
m RS
TSR, R
mIC4UARHD
s RTGA HA 5

IR WA

W ST RO F AR ROR
LREPS 20 TR TP
™ R T NP SR & I

SEX: HEAHR

E A basic block is a maximal sequence of instructions
with:
& no labels (except at the first instruction), and
#no jumps (except in the last instruction)
HEARPUR R WR r@ﬁm# Sl
AL P A 247 43 S
A N BB 8] 1 73 32
SEIVEPS =N A1)
Fﬁk%mmﬁE%LMT S ERPIN

Compiler2008RuntimeSystem

Idea about Basic Blocks

E Cannot jump in a basic block (except at beginning)
E Cannot jump out of a basic block (except at end)

B Each instruction in a basic block is executed after
all the preceding instructions have been executed

& X EEHI LA

E A control-flow graph is a directed graph with
asic blocks as nodes

$3An edge from block A to block B if the execution
can flow from the last instruction in A to the
first instruction in B

ofl. AP RE—4&TESRE jump Lg
s B, NRABIBLBIIBAT AT BEAR BT

EREHEh CFG

Basic Block Construction

B Start with instruction control-flow graphi-4-2% [t
CFG

E Visit all edges in graph
® Merge adjacent nodes if
3Only one edge from first node
nly one edge into second node

Yinliang Zhao

Basic Block Example

E Consider the basic block
1. L:
L ti=2%x
. WISt+X
if w>0goto L'
¥ No way for (3) to be executed without (2) having
been executed right before
&We can change (3) tow :=3 * x
¢ Can we eliminate (2) as well?

Control Flow Graphs

int add(n, k) {

s=0; ;1=0;

if (k==0)b=1;

else b =2;

while (i < n) {
s=s+a*b;
i=i+1;

}

returns;

}

returns;

Compiler2008RuntimeSystem

return s; — return s;

returns;

Yinliang Zhao

Compiler2008RuntimeSystem

return s;

returns;

Optimization Overview

B Optimization seeks to improve a program'’s
utilization of some resourcefi Atk Bl i FE T 2
RIKIFH

i Execution time (most often)

3 Code size

Network messages sent
Battery power used, etc.
® Optimization should not alter what the program

eturn s: computestEAb N Z KR FIhRE

returns; £ The answer must still be the same

Yinliang Zhao

Compiler2008RuntimeSystem

RAAipiES

E For languages like C and Cool there are three
granularities of optimizations#hL & 4
1.Local optimizations
+ Apply to a basic block in isolation
2.Global optimizations

+ Apply to a control-flow graph (method body) in
isolation

3.Inter-procedural optimizations
+ Apply across method boundaries

E Most compilers do (1), many do (2) and very few do

©)

Local Optimizations

® The simplest form of optimizations
® No need to analyze the whole procedure body
£ Just the basic block in question

E Example: algebraic simplification

Constant Folding® &37 &8

B Operations on constants can be computed at
compile time

E In general, if there is a statement
X:i=yopz
#And y and z are constants

& Theny op z can be computed at compile time

E Example: x:=2+2 =>x:=4
E Example: if 2 <0 jump L can be deleted

Yinliang Zhao

Cost of Optimizations

E s£fRH, aconscious decision is made not to
implement the fanciest optimization known

E Why?
£ Some optimizations are hard to implement

& Some optimizations are costly in terms of
compilation time

& The fancy optimizations are both hard and
costly

® The goal: maximum improvement with minimum
of cost

Algebraic Simplification

E Some statements can be deleted
X:=x+0
X:=x*1

B Some statements can be simplified

X:=x*0 = x:=0

yi=y**2 = yiI=y*y

X:=X*8 = X:=x<<3

xX:=x*15 = ti=x<<4;x:=t-X

(on some machines << is faster than *; but
not on all!)

ZHlF A

E Eliminating unreachable code:
:3Code that is unreachable in the control-flow graph

i Basic blocks that are not the target of any jump or
“fall through” from a conditional

& Such basic blocks can be eliminated
® Why would such basic blocks occur?
¥ Removing unreachable code makes the program
smaller
3 And sometimes also faster, due to memory cache
effects (increased spatial locality)

Compiler2008RuntimeSystem

Single Assignment Form

® Some optimizations are simplified if each
assignment is to a temporary that has not appeared
already in the basic blockZ8 & R 52—

B Intermediate code can be rewritten to be in single
assignment form

X:i=a+ty X:i=a+ty
a:=x a; ==X
X:=a*x X, = a; * X
b:=x+a b:=x +a
(x, and a, are fresh temporaries)

Copy Propagation

® If w := x appears in a block, all subsequent uses of
w can be replaced with uses of x

=)
b:=z+y b:=z+y
a:=b = a:=b
X:=2%*a X:=2*Db
® This does not make the program smaller or faster
but might enable other optimizations

Constant folding
& Dead code elimination
B Again, single assignment is important here.

Dead Code Elimination

L

w := rhs appears in a basic block

w does not appear anywhere else in the program
® Then

the statement w := rhs is dead and can be eliminated
¥ Dead = does not contribute to the program'’s result
Example: (a is not used anywhere else)

Xi=z+y b:=z+y

ai=x = a:=b =

X:=2*a X:=2*b

Yinliang Zhao

Common Subexpression Eliminatio

® Assume
33 Basic block is in single assignment form

E All assignments with same rhs compute the same
value

® Example:
Xi=y+z Xi=y+z
- =
Wi=y+z W =X
® Why is single assignment important here?

Copy Propagation and Constant Fo

E Example:
a:=5
Xx:=2%*a
y:=Xx+6
ti=x*y

Applying Local Optimizations

E Each local optimization does very little by itself
E Typically optimizations interact

s Performing one optimizations enables other opt.
E Typical optimizing compilers repeatedly perform

optimizations until no improvement is possible

& The optimizer can also be stopped at any time to
limit the compilation time

Compiler2008RuntimeSystem

An Example

E |nitial code: E Algebraic optimization:

ai=x**2

b:=3

C:=X

d:=c*c

e=pb*2

f:=a+d

g:=e*f

B Algebraic optimization: ® Copy propagation:
a:=x*x

E Copy propagation: E Constant folding:
a:=x*x a:=x*x
b:=3
C:=X

d:i=x*x

f:=a+d
g:=e*f

Yinliang Zhao

Compiler2008RuntimeSystem

E Constant folding: E Common subexpression elimination:
a:=x*x
b:=3 b:=3
C:=X C:=X
d:=x*x

f:=a+d
g:=e*f

B Common subexpression elimination: ® Copy propagation:
a:=x*x

b:=3 b:=3
c:i=Xx c:i=Xx

E Copy propagation: E Dead code elimination:
a:=x*x a:=x*x
b:=3
C:=X

Yinliang Zhao

Compiler2008RuntimeSystem

E Dead code elimination:
a:=x*x

fi=a+a
g:=6*f

® This is the final form

Peephole Optimizations (Cont.)

E Write peephole optimizations as replacement rules
ilv it in _)jlv ! jm
where the rhs is the improved version of the lhs
B Examples:
move $a $b, move $b $a — move $a $b
&Works if move $b $a is not the target of a jump
addiu $a $b k, Iw $c ($a) — lw $c k($b)
& Works if $a not used later (is “dead")

Peephole Optimizations (Cont.)

E Many (but not all) of the basic block optimizations
can be cast as peephole optimizations

& Example: addiu $a $b 0 — move $a $b
Example: move aa —
These two together eliminate addiu $a $a 0

® Just like for local optimizations, peephole
optimizations need to be applied repeatedly to get
maximum effect

Yinliang Zhao

Peephole Optimizations on Assemb)

E The optimizations presented before work on
intermediate code

& They are target independent

& But they can be applied on assembly language
also
¥ Peephole optimization is an effective technique for
improving assembly codeZiFLAL4k
& The “peephole” is a short sequence of (usually
contiguous) instructions

£ The optimizer replaces the sequence with
another equivalent (but faster) one

MIPS#4-

¥ addiu d,s,const
B # $d <-- s + const.

B # Const is 16-bit two's comp. sign-extended to 32
bits

E # when the addition is done. No overflow trap.

E lw register_destination, RAM_source

B #copy word (4 bytes) at source RAM location to
destination register.

Local Optimizations. Notes.

E Intermediate code is helpful for many
optimizations

B Many simple optimizations can still be applied on
assembly language

10

Compiler2008RuntimeSystem

Local Optimizations. Notes (I1).

E Serious problem: what to do with pointers?
3*t may change even if local variable t does not:
Aliasing
33 Arrays are a special case (address calculation)
® What to do about globals?
E What to do about calls?

3 Not exactly jumps, because they (almost) always
return.

i Can modify variables used by caller
¥ Next: global optimizations

B RE % F 7RI

E Qutline
B What is register allocation
B Webs
E - ¥ Interference Graphs
= 555 5,Graph coloring
% vt Spilling
B 43 34Splitting
B More optimizations ()

E RIS 6.035 ©MIT Fall 1999

Issues

E On atypical RISC architecture
All computation takes place in registers

Load instructions and store instructions transfer
values between memory and registers

E Add two numbers, values in memory
& load r1, 4(sp)
oad r2, 8(sp)
dd r3,r1,r2
& store r3, 12(sp)

Yinliang Zhao

10.3 ¥ H# BT 5 # ik

" % B A A EI T 7 8
s RS R—4; FHEHE 4, HBRdRe
DE—AEE T RE

®2RFFRI
wﬁ%ﬁ%ﬁ%%ﬁ%ﬁmm%¢ﬂ@%ﬁﬁ£

E.

S RHEPR AP 22 H A0 AL ERAT A2 B) R A7 2
sEFTHNFESERULEF RERITHFS
SrECERAE

Storing values between def and use

¥ Program computes with values
¢ value definitions (where computed)
i3 value uses (where read to compute new values)
¥ Values must be stored between def and use
E First Option
&3 store each value in memory at definition
& retrieve from memory at each use
E Second Option
& store each value in register at definition
& retrieve value from register at each use

Issues

E On atypical RISC architecture
% All computation takes place in registers

5 Load instructions and store instructions transfer
values between memory and registers

® Add two numbers, values in memory
& load r1, 4(sp)
& load r2, 8(sp)
& add r3,r1,r2
& store r3, 12(sp)

11

Compiler2008RuntimeSystem

Issues

E On a typical RISC architecture
3 All computation takes place in registers

& Load instructions and store instructions transfer
values between memory and registers

® Add two numbers, values in registers
& add r3,r1,r2

Register Allocation

E Deciding which values to store in limited number of
registers

E Register allocation has a direct impact on
performance

3 Affects almost every statement of the program
& Eliminates expensive memory instructions

& # of instructions goes down due to direct
manipulation of registers (no need for load and
store instructions)

& Probably is the optimization with the most impact!

Web-Based Register Allocation

E Determine live ranges for each value (web)

B Determine overlapping ranges (interference)

E Compute the benefit of keeping each web in a register
(spill cost)

 Decide which webs get a register (allocation)

® Split webs if needed (spilling and splitting)

F Assign hard registers to webs (assignment)

B Generate code including spills (code gen)

Yinliang Zhao

Issues

B Fewer instructions when using registers
Most instructions are register-to-register
3 Additional instructions for memory accesses
B Registers are faster than memory
3 wider gap in faster, newer processors
Factor of about 4 bandwidth, factor of about 3 latency

3 Could be bigger if program characteristics were
different

E But only a small number of registers available
& Usually 32 integer and 32 floating-point registers
& Some of those registers have fixed users (r0, ra, sp, fp)

What can be put in a register?

® Values stored in compiler-generated temps
® Language-level values
Values stored in local scalar variables
Big constants
¢ Values stored in array elements and object fields
¥ Issue: alias analysis
B Register set depends on the data-type
loating-point values in floating point registers
& integer and pointer values in integer registers

E Starting Point: def-use chains (DU chains)
& Connects definition to all reachable uses

E Conditions for putting defs and uses into same web
&3 Def and all reachable uses must be in same web

All defs that reach same use must be in same web
¥ Use a union-find algorithm

Compiler2008RuntimeSystem

Yinliang Zhao

13

Compiler2008RuntimeSystem

Convex Sets and Live Ranges

E Concept of convex set

E AsetSis convex if
& A, BinSand Cis on a path from A to B implies
¢ CisinS

E Concept of live range of a web

& Minimal convex set of instructions that includes all
defs and uses in web

& Intuitively, region in which web’s value is live

Yinliang Zhao

Webs

E Web is unit of register allocation
® |f web allocated to a given register R
& All definitions computed into R
& All uses read from R
¥ If web allocated to a memory location M
& All definitions computed into M
& All uses read from M
B |ssue: instructions compute only from registers
® Reserve some registers to hold memory values

Interference

B Two webs interfere if their live ranges overlap (have
a nonemtpy intersection)

B |If two webs interfere, values must be stored in
different registers or memory locations

®E |f two webs do not interfere, can store values in same
register or memory location

® Webs S1IHIS2T#
® \Webs S2HIS3 T

14

Compiler2008RuntimeSystem

Interference Graph

E Representation of webs and their interference
Nodes are the webs
& An edge exists between two nodes if they interfere

Graph Coloring

E Assign a color to each node in graph

E Two nodes connected to same edge must have
different colors

B Classic problem in graph theory
E NP complete
& But good heuristics exist for register allocation

Yinliang Zhao

Register Allocation Using Graph Colge

E Each web is allocated a register
3 each node gets a register (color)
B If two webs interfere they cannot use the same register

& if two nodes have an edge between them, they
cannot have the same color

15

Compiler2008RuntimeSystem

® 24N

m 3N

i

E Option 1
ick a web and allocate value in memory
3 All defs go to memory, all uses come from memory
E Option 2
& Split the web into multiple webs
B In either case, will retry the coloring

Yinliang Zhao

® 2Nt

® 3B

Which web to pick?

E One with interference degree >= N

E One with minimal spill cost (cost of placing value in
memory rather than in register)

B What is spill cost?
& Cost of extra load and store instructions

16

Compiler2008RuntimeSystem

Ideal and Useful Spill Costs

E |deal spill cost -dynamic cost of extra load and store
instructions. Can’t expect to compute this.

¢ Don’'t know which way branches resolve
Don’t know how many times loops execute

& Actual cost may be different for different
executions

B Solution: Use a static approximation

& profiling can give instruction execution frequencies
or use heuristics based on structure of control flow
graph

Spill Cost Example

E Spill Cost For x
sstoreCost +loadCost
E Spill Cost Fory
*storeCost +9*loadCost

E With 1 Register, Which
Variable Gets Spilled?

Splitting Example

Xy z
|

Yinliang Zhao

One Way to Compute Spill Cost

E Goal: give priority to values used in loops
® So assume loops execute 10 or 8 times
® Spill cost =

& sum over all def sites of cost of a store instruction
times 10 to the loop nesting depth power, plus

& sum over all use sites of cost of a load instruction
times 10 to the loop nesting depth power

® Choose the web with the lowest spill cost

Splitting Rather Than Spilling

B Split the web

& Split a web into multiple webs so that there will be
less interference in the interference graph making it
N-colorable

& Spill the value to memory and load it back at the
points where the web is split

Splitting Example

Xy z
|

17

Compiler2008RuntimeSystem

Splitting Example
XYy z

Splitting Example

Xy z
|

Cost and benefit of splitting

E Cost of splitting a node

£ Proportion to number of times splitted edge has to
be crossed dynamically

& Estimate by its loop nesting
E Benefit

& Increase colorability of the nodes the splitted web
interferes with

& Can approximate by its degree in the interference
graph
B Greedy heuristic

& pick the live-range with the highest benefit-to-cost
ration to spill

Yinliang Zhao

Splitting Example
XYy z

Splitting Example
XYz

Control Flow Analysis

ECFG, fTl, 45 mRmiEAs, SRR

B REANGE R A EARHTIRES KR,

A HEEEk

18

Compiler2008RuntimeSystem

Data Flow Analysis

E A

~

ef (b) W 7EREABb R LD Bt ftse

13 use(by) WAERE A T 5| A 5L 4R
® def (b;) A1 use(b;) 5 in(b;) A1 out(b;) HIZ< R QI F:

Yinliang Zhao

19

