
Compiler2008RuntimeSystem

Yinliang Zhao 1

第十章 代码生成与优化概述

概述

代码生成的基本概念

基本块的优化（局部优化）

寄存器分配与指派

流图中的循环

10.1 概述

前端源程序
代码优
化器

代码生
成器

目标程序

符号表

中
间
代
码

中
间
代
码

Basic Block Optimizations

Common Sub-Expression Elimination删除公共子表

达式

a = (x+y)+z; b = x+y;
t = x+y; a = t+z; b = t;

Constant Propagation常数传播/常量折叠

x = 5; b = x+y;
b = 5+y;

Algebraic Identities代数恒等式/代数化简

a = x * 1;
a = x;

Basic Block Optimizations

Copy Propagation复写传播

a = x+y; b = a; c = b+z;
a = x+y; b = a; c = a+z;

Dead Code Elimination删除无用代码

a = x+y; b = a; c = a+z;
a = x+y; c = a+z

Strength Reduction强度削弱

t = i * 4;
t = i << 2;

循环优化

代码外提

删除归纳变量

强度削弱*

代码生成器设计中的问题

代码生成器的输入

目标程序

存储管理

指令选择

寄存器分配

计算次序的选择

代码生成方法

Compiler2008RuntimeSystem

Yinliang Zhao 2

代码生成器的输入

源程序的中间表示

可有多种表示方法

名字的值可为目标机器直接操作

已完成必要的类型检查，插入了类型转换操作

一般没有语义错误

符号表信息

中间表示中名字所代表的数据对象的运行时地址

目标程序

绝对机器语言

可立即执行

可重定位的机器语言

可分块编译，并链接

汇编代码

代码生成容易

寄存器分配

在寄存器分配期间，在程序的某一点选择要驻留在
寄存器中的变量集

在随后的寄存器指派阶段，挑出变量将要驻留的具
体机器

选择最优的寄存器指派方案是NP完全的

目标机器对寄存器使用的某些约定使分配更复杂

计算次序的选择

计算执行的次序影响目标代码效率

也会影响使用寄存器的多寡

选择最佳次序也是NP完全问题

10.2 代码生成基本概念

CS164: Programming Languages and Compilers,
Spring 2008
University of Berkeley

6.035 Computer Language Engineering (SMA 5502)
Fall 2005
MIT OpenCourseWare

定义：基本块

A basic block is a maximal sequence of instructions
with:

no labels (except at the first instruction), and
no jumps (except in the last instruction)

基本块是具有如下性质的指令序列

基本块的中间不会有分支转出

也没有转入到基本块中间的分支

基本块应当是最大化的

基本块的执行是从它的第一条指令开始

Compiler2008RuntimeSystem

Yinliang Zhao 3

Idea about Basic Blocks

Cannot jump in a basic block (except at beginning)
Cannot jump out of a basic block (except at end)
Each instruction in a basic block is executed after
all the preceding instructions have been executed

Basic Block Example

Consider the basic block
1. L:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L’

No way for (3) to be executed without (2) having
been executed right before

We can change (3) to w := 3 * x
Can we eliminate (2) as well?

定义. 控制流图

A control-flow graph is a directed graph with
Basic blocks as nodes
An edge from block A to block B if the execution
can flow from the last instruction in A to the
first instruction in B
例. A中最后一条指令是 jump LB

例. 从块A到块B的执行可能不成功

通常缩写为 CFG

Control Flow Graphs

int add(n, k) {
s = 0; a = 4; i = 0;
if (k == 0) b = 1;
else b = 2;
while (i < n) {

s = s + a*b;
i = i + 1;

}
return s;
}

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
i = i + 1;

return s;

Basic Block Construction

Start with instruction control-flow graph指令级的
CFG
Visit all edges in graph
Merge adjacent nodes if

Only one edge from first node
Only one edge into second node

s = 0;

a = 4;

s = 0;
a = 4;

s = 0;
a = 4;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

Compiler2008RuntimeSystem

Yinliang Zhao 4

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;
k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = s + a*b;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = s + a*b;
i = i + 1;

Compiler2008RuntimeSystem

Yinliang Zhao 5

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = s + a*b;
i = i + 1;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = s + a*b;
i = i + 1;

return s;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1;

i < n;

s = s + a*b;
i = i + 1;

return s;

b = 2;
k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
i = i + 1;

return s;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
i = i + 1;

return s;

k == 0

b = 1; b = 2;

i < n;

s = s + a*b;
return s;

i = 0;

s = 0;

a = 4;

i = i + 1;

Optimization Overview

Optimization seeks to improve a program’s
utilization of some resource优化试图改善程序对某

资源的利用

Execution time (most often)
Code size
Network messages sent
Battery power used, etc.

Optimization should not alter what the program
computes优化不该改变程序功能

The answer must still be the same

Compiler2008RuntimeSystem

Yinliang Zhao 6

优化的分类

For languages like C and Cool there are three
granularities of optimizations按粒度来分

1.Local optimizations
• Apply to a basic block in isolation

2.Global optimizations
• Apply to a control-flow graph (method body) in

isolation

3.Inter-procedural optimizations
• Apply across method boundaries

Most compilers do (1), many do (2) and very few do
(3)

Cost of Optimizations

实际中， a conscious decision is made not to
implement the fanciest optimization known
Why?

Some optimizations are hard to implement
Some optimizations are costly in terms of
compilation time
The fancy optimizations are both hard and
costly

The goal: maximum improvement with minimum
of cost

Local Optimizations

The simplest form of optimizations
No need to analyze the whole procedure body

Just the basic block in question

Example: algebraic simplification

Algebraic Simplification

Some statements can be deleted
x := x + 0
x := x * 1

Some statements can be simplified
x := x * 0 ⇒ x := 0
y := y ** 2 ⇒ y := y * y
x := x * 8 ⇒ x := x << 3
x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but
not on all!)

Constant Folding常量折叠

Operations on constants can be computed at
compile time
In general, if there is a statement

x := y op z
And y and z are constants
Then y op z can be computed at compile time

Example: x := 2 + 2 ⇒ x := 4
Example: if 2 < 0 jump L can be deleted

控制流优化

Eliminating unreachable code:
Code that is unreachable in the control-flow graph
Basic blocks that are not the target of any jump or
“fall through” from a conditional
Such basic blocks can be eliminated

Why would such basic blocks occur?
Removing unreachable code makes the program
smaller

And sometimes also faster, due to memory cache
effects (increased spatial locality)

Compiler2008RuntimeSystem

Yinliang Zhao 7

Single Assignment Form

Some optimizations are simplified if each
assignment is to a temporary that has not appeared
already in the basic block变量只定值一次

Intermediate code can be rewritten to be in single
assignment form
x := a + y x := a + y
a := x ⇒ a1 := x
x := a * x x1 := a1 * x
b := x + a b := x1 + a1

(x1 and a1 are fresh temporaries)

Common Subexpression Elimination

Assume
Basic block is in single assignment form

All assignments with same rhs compute the same
value
Example:
x := y + z x := y + z
… ⇒ …
w := y + z w := x

Why is single assignment important here?

Copy Propagation

If w := x appears in a block, all subsequent uses of
w can be replaced with uses of x
例:

b := z + y b := z + y
a := b ⇒ a := b
x := 2 * a x := 2 * b

This does not make the program smaller or faster
but might enable other optimizations

Constant folding
Dead code elimination

Again, single assignment is important here.

Copy Propagation and Constant Folding

Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated

Dead = does not contribute to the program’s result
Example: (a is not used anywhere else)

x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

Applying Local Optimizations

Each local optimization does very little by itself
Typically optimizations interact

Performing one optimizations enables other opt.
Typical optimizing compilers repeatedly perform
optimizations until no improvement is possible

The optimizer can also be stopped at any time to
limit the compilation time

Compiler2008RuntimeSystem

Yinliang Zhao 8

An Example

Initial code:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Algebraic optimization:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Algebraic optimization:
a := x * x
b := 3
c := x
d := c * c
e := b + b
f := a + d
g := e * f

Copy propagation:
a := x * x
b := 3
c := x
d := c * c
e := b + b
f := a + d
g := e * f

Copy propagation:
a := x * x
b := 3
c := x
d := x * x
e := 3 + 3
f := a + d
g := e * f

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 3 + 3
f := a + d
g := e * f

Compiler2008RuntimeSystem

Yinliang Zhao 9

Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Common subexpression elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Common subexpression elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

Copy propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

Copy propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Dead code elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Compiler2008RuntimeSystem

Yinliang Zhao 10

Dead code elimination:
a := x * x

f := a + a
g := 6 * f

This is the final form

Peephole Optimizations on Assembly Code

The optimizations presented before work on
intermediate code

They are target independent
But they can be applied on assembly language
also

Peephole optimization is an effective technique for
improving assembly code窥孔优化

The “peephole” is a short sequence of (usually
contiguous) instructions
The optimizer replaces the sequence with
another equivalent (but faster) one

Peephole Optimizations (Cont.)

Write peephole optimizations as replacement rules
i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
Examples:

move $a $b, move $b $a → move $a $b
Works if move $b $a is not the target of a jump

addiu $a $b k, lw $c ($a) → lw $c k($b)
Works if $a not used later (is “dead”)

MIPS指令

addiu d,s,const
$d <-- s + const.
Const is 16-bit two's comp. sign-extended to 32
bits
when the addition is done. No overflow trap.

lw register_destination, RAM_source

#copy word (4 bytes) at source RAM location to
destination register.

Peephole Optimizations (Cont.)

Many (but not all) of the basic block optimizations
can be cast as peephole optimizations

Example: addiu $a $b 0 → move $a $b
Example: move $a $a →
These two together eliminate addiu $a $a 0

Just like for local optimizations, peephole
optimizations need to be applied repeatedly to get
maximum effect

Local Optimizations. Notes.

Intermediate code is helpful for many
optimizations
Many simple optimizations can still be applied on
assembly language

Compiler2008RuntimeSystem

Yinliang Zhao 11

Local Optimizations. Notes (II).

Serious problem: what to do with pointers?
*t may change even if local variable t does not:
Aliasing
Arrays are a special case (address calculation)

What to do about globals?
What to do about calls?

Not exactly jumps, because they (almost) always
return.
Can modify variables used by caller

Next: global optimizations

10.3 寄存器分配与指派

给目标程序中的具体值分配某些寄存器

如：基地址分配一组；算数运算一组；栈指针
分配一个固定寄存器等

全局寄存器分配

将寄存器分配给频繁使用的基本块间的活跃变
量

将循环中经常使用的值保存在固定的寄存器中

语言中的寄存器变量让程序员直接执行寄存器
分配操作

图染色法寄存器分配

Outline
What is register allocation
Webs
干涉图Interference Graphs
图着色Graph coloring
溢出Spilling
分裂Splitting
More optimizations (略)

本节内容来自 6.035 ©MIT Fall 1999

Storing values between def and use

Program computes with values
value definitions (where computed)
value uses (where read to compute new values)

Values must be stored between def and use
First Option

store each value in memory at definition
retrieve from memory at each use

Second Option
store each value in register at definition
retrieve value from register at each use

Issues

On a typical RISC architecture
All computation takes place in registers
Load instructions and store instructions transfer
values between memory and registers

Add two numbers, values in memory
load r1, 4(sp)
load r2, 8(sp)
add r3,r1,r2
store r3, 12(sp)

Issues

On a typical RISC architecture
All computation takes place in registers
Load instructions and store instructions transfer
values between memory and registers

Add two numbers, values in memory
load r1, 4(sp)
load r2, 8(sp)
add r3,r1,r2
store r3, 12(sp)

Compiler2008RuntimeSystem

Yinliang Zhao 12

Issues

On a typical RISC architecture
All computation takes place in registers
Load instructions and store instructions transfer
values between memory and registers

Add two numbers, values in registers
add r3,r1,r2

Issues

Fewer instructions when using registers
Most instructions are register-to-register
Additional instructions for memory accesses

Registers are faster than memory
wider gap in faster, newer processors
Factor of about 4 bandwidth, factor of about 3 latency
Could be bigger if program characteristics were
different

But only a small number of registers available
Usually 32 integer and 32 floating-point registers
Some of those registers have fixed users (r0, ra, sp, fp)

Register Allocation

Deciding which values to store in limited number of
registers
Register allocation has a direct impact on
performance

Affects almost every statement of the program
Eliminates expensive memory instructions
of instructions goes down due to direct
manipulation of registers (no need for load and
store instructions)
Probably is the optimization with the most impact!

What can be put in a register?

Values stored in compiler-generated temps
Language-level values

Values stored in local scalar variables
Big constants
Values stored in array elements and object fields

Issue: alias analysis
Register set depends on the data-type

floating-point values in floating point registers
integer and pointer values in integer registers

Web-Based Register Allocation

Determine live ranges for each value (web)
Determine overlapping ranges (interference)
Compute the benefit of keeping each web in a register
(spill cost)
Decide which webs get a register (allocation)
Split webs if needed (spilling and splitting)
Assign hard registers to webs (assignment)
Generate code including spills (code gen)

Webs

Starting Point: def-use chains (DU chains)
Connects definition to all reachable uses

Conditions for putting defs and uses into same web
Def and all reachable uses must be in same web
All defs that reach same use must be in same web

Use a union-find algorithm

Compiler2008RuntimeSystem

Yinliang Zhao 13

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

Compiler2008RuntimeSystem

Yinliang Zhao 14

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

S1

S3

S4

S2

Webs

Web is unit of register allocation
If web allocated to a given register R

All definitions computed into R
All uses read from R

If web allocated to a memory location M
All definitions computed into M
All uses read from M

Issue: instructions compute only from registers
Reserve some registers to hold memory values

Convex Sets and Live Ranges

Concept of convex set
A set S is convex if

A, B in S and C is on a path from A to B implies
C is in S

Concept of live range of a web
Minimal convex set of instructions that includes all
defs and uses in web
Intuitively, region in which web’s value is live

Interference

Two webs interfere if their live ranges overlap (have
a nonemtpy intersection)
If two webs interfere, values must be stored in
different registers or memory locations
If two webs do not interfere, can store values in same
register or memory location

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

S1

S3

S4

S2

def x
def y

use x
use y

def y

def x
use y

use x
def x

use x

S1

S3

S4

S2

Webs S1和S2干涉

Webs S2和S3干涉

Compiler2008RuntimeSystem

Yinliang Zhao 15

Interference Graph

Representation of webs and their interference
Nodes are the webs
An edge exists between two nodes if they interfere

S1 S2

S3 S4

Register Allocation Using Graph Coloring

Each web is allocated a register
each node gets a register (color)

If two webs interfere they cannot use the same register
if two nodes have an edge between them, they
cannot have the same color

Graph Coloring

Assign a color to each node in graph
Two nodes connected to same edge must have
different colors
Classic problem in graph theory
NP complete

But good heuristics exist for register allocation

例. 图着色

S1 S2

S3 S4

例. 图着色

1个颜色

S1 S2

S3 S4

例. 图着色

2个颜色

S1 S2

S3 S4

Compiler2008RuntimeSystem

Yinliang Zhao 16

例. 图着色

2个颜色

S1 S2

S3 S4

例. 图着色

2个颜色

S1 S2

S3 S4

例. 图着色

3个颜色

S1 S2

S3 S4

例. 图着色

3个颜色

S1 S2

S3 S4

溢出

Option 1
Pick a web and allocate value in memory
All defs go to memory, all uses come from memory

Option 2
Split the web into multiple webs

In either case, will retry the coloring

Which web to pick?

One with interference degree >= N
One with minimal spill cost (cost of placing value in
memory rather than in register)
What is spill cost?

Cost of extra load and store instructions

Compiler2008RuntimeSystem

Yinliang Zhao 17

Ideal and Useful Spill Costs

Ideal spill cost -dynamic cost of extra load and store
instructions. Can’t expect to compute this.

Don’t know which way branches resolve
Don’t know how many times loops execute
Actual cost may be different for different
executions

Solution: Use a static approximation
profiling can give instruction execution frequencies
or use heuristics based on structure of control flow
graph

One Way to Compute Spill Cost

Goal: give priority to values used in loops
So assume loops execute 10 or 8 times
Spill cost =

sum over all def sites of cost of a store instruction
times 10 to the loop nesting depth power, plus
sum over all use sites of cost of a load instruction
times 10 to the loop nesting depth power

Choose the web with the lowest spill cost

Spill Cost Example

Spill Cost For x
storeCost +loadCost

Spill Cost For y
9*storeCost +9*loadCost

With 1 Register, Which
Variable Gets Spilled?

def x
def y

use y
def y

use x
use y

Splitting Rather Than Spilling

Split the web
Split a web into multiple webs so that there will be
less interference in the interference graph making it
N-colorable
Spill the value to memory and load it back at the
points where the web is split

Splitting Example

def z
use z

def x
def y
use x
use x
use y

use z

x y z
Splitting Example

def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z

Compiler2008RuntimeSystem

Yinliang Zhao 18

Splitting Example

def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z1

z2

Splitting Example

def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z1

z2

2个颜色

Splitting Example

def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z1

z2

2个颜色

r1 r1

r1

r2

Splitting Example

def z
use z
str z

def x
def y
use x
use x
use y

ld z
use z

x y z

x y

z1

z2

2个颜色

r1 r1

r1

r2

Cost and benefit of splitting

Cost of splitting a node
Proportion to number of times splitted edge has to
be crossed dynamically
Estimate by its loop nesting

Benefit
Increase colorability of the nodes the splitted web
interferes with
Can approximate by its degree in the interference
graph

Greedy heuristic
pick the live-range with the highest benefit-to-cost
ration to spill

Control Flow Analysis

CFG，有向图，结点表示基本块，弧表示控制流

每个结点有一个直接前驱结点集，有一个直接后继
结点集

Compiler2008RuntimeSystem

Yinliang Zhao 19

Data Flow Analysis

令

in(bi) 为到达基本块bi时的活跃变量集

out(bi)为离开基本块bi时的活跃变量集

def (bi)为在基本块bi中定值（赋值）的变量集

use(bi)为在基本块bi中引用的变量集

def (bi) 和 use(bi) 与 in(bi) 和 out(bi) 的关系如下:

()

() () (() \ ()
() ()

i

i i i i

i
x succ b

in b use b out b def b
out b in x

∈

= ∪
= ∪

