
OFFPRINT

Solving the cold-start problem in recommender
systems with social tags

Zi-Ke Zhang, Chuang Liu, Yi-Cheng Zhang and Tao Zhou

EPL, 92 (2010) 28002

Please visit the new website
www.epljournal.org



TARGET YOUR RESEARCH

WITH EPL

Sign up to receive the free EPL table of
contents alert.

www.epljournal.org/alerts



October 2010

EPL, 92 (2010) 28002 www.epljournal.org

doi: 10.1209/0295-5075/92/28002

Solving the cold-start problem in recommender systems

with social tags

Zi-Ke Zhang1,2, Chuang Liu3,4, Yi-Cheng Zhang1,2(a) and Tao Zhou1,5

1Web Sciences Center, University of Electronic Science and Technology of China - Chengdu 610054, PRC
2Department of Physics, University of Fribourg - Chemin du Musée 3, 1700 Fribourg, Switzerland
3 School of Business, East China University of Science and Technology - Shanghai 200237, PRC
4 Engineering Research Center of Process Systems Engineering (Ministry of Education), East China University
of Science and Technology - Shanghai 200237, PRC
5Department of Modern Physics, University of Science and Technology of China - Hefei 230026, PRC

received 13 June 2010; accepted in final form 28 September 2010
published online 15 November 2010

PACS 89.20.Ff – Computer science and technology
PACS 89.75.Hc – Networks and genealogical trees
PACS 89.65.-s – Social and economic systems

Abstract – Based on the user-tag-object tripartite graphs, we propose a recommendation
algorithm that makes use of social tags. Besides its low cost of computational time, the
experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it
can enhance the algorithmic accuracy and diversity. Especially, it provides more personalized
recommendation when the assigned tags belong to more diverse topics. The proposed algorithm
is particularly effective for small-degree objects, which reminds us of the well-known cold-start
problem in recommender systems. Further empirical study shows that the proposed algorithm can
significantly solve this problem in social tagging systems with heterogeneous object degree.
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Introduction. – Many complex systems can be well
described by networks where nodes represent individuals,
and edges denote the relations among them [1–5].
Recently, the design of recommender systems has
attracted increasing attention from physical communi-
ties [6–22], which aims at finding objects (e.g. books,
webpages, music, etc.) that are most likely to be collected
by users. For example, classical information retrieval
can be viewed as recommending documents with given
words [23], and the process of link prediction can be
considered as a recommendation problem in unipartite
networks [24–27]. The core techniques embedded in
most recommender systems are twofold: estimating
taste similarity based on the historical records of user
activities [28,29] and utilizing accessorial information
(e.g., object attributes) to efficiently filter out irrelevant
objects. However, the accurate descriptions of objects for
the latter task is largely limited by the attribute vocabu-
lary and they are usually simply classified into a few
system-designed categories that are less helpful to dig out
personalized preferences.

(a)E-mail: yi-cheng.zhang@unifr.ch

Recently, the advent of Web2.0 techniques brings a new
paradigm named social tagging systems (or collaborative
tagging systems) for users’ participations. A social tagging
system allows users to freely assign tags to annotate their
collections, requires no specific skills for users to partici-
pate in, broadens the semantic relations among users
and objects, and thus has attracted much attention from
the scientific community. Golder et al. studied its usage
patterns and classified seven kinds of tag functions [30].
Similar to the tagging functions, the statistics of keywords
and PACS numbers are utilized to help characterizing the
structure of co-authorship and citation networks [31,32].
Furthermore, many efforts have been done to explain the
emergent properties of social tagging systems. Cattuto
et al. [33] proposed a memory-based Yule-Simon model
to describe the aging effects and occurrence frequencies
of tags. Zhang and Liu [34] proposed an evolutionary
hypergraph model, where users assign tags to relevant
objects and retrieve objects via relevant tags.
Besides, social tagging systems have already found

wide applications in Recommender Systems. By conside-
ring the tag frequency as weight, Szomszor et al. [35]
proposed an improved movie recommendation algorithm.
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Schenkel et al. [36] proposed an incremental threshold
algorithm taking into account both the social ties among
users and semantic relations of different tags, which
performs remarkably better than the algorithm without
tag expansion. Zhang et al. [37] and Shang et al. [38]
proposed tag-aware diffusion-based methods to obtain
better recommendations. Shang and Zhang [39] considered
the tag usage frequency as edge weight in a user-object
bipartite network and accordingly designed an improved
recommendation algorithm.
In this letter, we propose a diffusion-based recommen-

dation algorithm which treats tags as a bridge connect-
ing users and objects, namely users can efficiently find
relevant objects via tags. In particular, we consider the
usage frequencies of tags as users’ personal preference,
while the semantic relations between tags and objects as
global information. Experimental results show that the
present algorithm can considerably improve the recom-
mendation accuracy, especially for the objects collected
by few users, which reminds us of the well-known cold-
start problem [40,41]. Since tags can build up relations
between existent objects and the new ones, the incorpo-
rating of tags can remarkably help users in finding the new
(or less popular) yet interesting objects, and thus enhance
the overall accuracy. In addition, we employ entropy-based
and Hamming-distance–based methods to measure the
inner- and inter-diversity of tag usage patterns, respec-
tively. Experimental results show that there are different
tag usage patterns in the two datasets: users assign more
diverse tags in Del.icio.us than MovieLens, and it might
shed lights on the understanding of why the improvement
of algorithmic performance for Del.icio.us is remarkably
higher than for MovieLens.

Data. – The empirical data used in this paper include:
i) Del.icio.us —one of the most popular social bookmark-
ing web sites, which allows users not only to store and
organize personal bookmarks (URLs), but also to look into
other users’ collections and find what they might be inter-
ested in by simply keeping track of the baskets with social
tags; ii) MovieLens —a movie rating system, where each
user votes movies in five discrete ratings 1–5. A tagging
function is added in from January 2006. In both data sets,
we remove the isolated nodes and guarantee that each user
has collected at least one object, each object has been
collected by at least two users, assigned by at least two
tags, and each tag is used by at least two users, and each
tag is used at least twice by every adjacent user. Table 1
summarizes the basic statistics of the purified data sets.
Every data set consists of many entries, and each follows

the form F= {user, object, tag1, tag2, . . . , tagt}, where t is
the number of tags assigned to this object by this user.
Each data set is randomly divided into two parts: the
training set is treated as known information, while the
testing set is used for testing. In this letter, the training
set always contains 90% of entries and the remaining 10%
of entries constitute the testing set.

Table 1: Basic statistics of the two data sets, Del.icio.us (Del.)
and MovieLens (Mov.). n, m, r are the total numbers of users,
objects and tags, respectively. 〈k〉, 〈k′〉 and 〈k′′〉 denote the
average number of objects collected by a user, tags assigned by
an object and tags adopted by a user, respectively.

Data n m r 〈k〉 〈k′〉 〈k′′〉
Del. 4902 36224 10584 43.85 38.82 286.86
Mov. 648 1590 1382 15.04 19.89 22.89

Algorithms. – A recommender system considered
here consists of three sets, respectively of users U =
{U1, U2, . . . , Un}, objects O= {O1, O2, . . . , Om}, and tags
T = {T1, T2, . . . , Tr}. The tripartite graph representation
can be described by three matrices, A, A′ and A′′ for
user-object, object-tag and user-tag relations. If Ui has
collected Oj , we set aij = 1, otherwise aij = 0. Analog-
ously, we set a′jk = 1, if Oj has been assigned by the
tag Tk, and a

′
jk = 0, otherwise. Furthermore, the users’

preferences on tags can be represented by a weighted
matrix A′′, where a′′ik is the number of times that Ui has
adopted Tk.
We firstly introduce two baseline algorithms: user-object

diffusion [11] (I); user-object-tag diffusion [37] (II), and
then propose a new algorithm: user-tag-object diffusion
(III). Given a target user Ui, the above three algorithms
will generate final score of each object, fj , for her/him
according to following rules:

(I) Supposing that a kind of resource is initially located
on objects. Each object averagely distributes its
resource to all neighboring users, and then each
user redistributes the received resource to all his/her
collected objects. The final resource vector for the
target user Ui, �f , after the two-step diffusion is

fj =

n
∑

l=1

m
∑

s=1

aljalsais

k(Ul)k(Os)
, j = 1, 2, . . . ,m, (1)

where k(Ul) =
∑m

j=1 alj is the number of collected

objects for user Ul, and k(Os) =
∑n

i=1 ais is the
number of neighboring users for object Os.

(II) The initial resources are set as same as I), but
each object equally distributes its resource to all
neighboring tags, and then each tag redistributes the
received resource to all its neighboring objects. Thus,
the final resource vector, �f ′, is

f ′j =

r
∑

l=1

m
∑

s=1

a′jla
′
lsais

k′(Tl)k′(Os)
j = 1, 2, . . . ,m, (2)

where k′(Tl) =
∑m

j=1 a
′
jl is the number of neighboring

objects for tag Tl, k
′(Os) =

∑r

l=1 a
′
sl is the number of

neighboring tags for object Os.
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(III) Different from (I) and (II), here, the initial resources
are located on tags according to their frequencies used
by the target user Ui. Then each tag distributes the
initial resource directly to all its neighboring objects.
Thus, the final resource vector, �f ′′, reads

f ′′j =

r
∑

l=1

a′jla
′′
il

k′(Tl)
. (3)

After we obtain the final score of objects, all the objects
having not been collected by the target user Ui are ranked
in a descending order, and the top L objects will be
recommended to Ui.
Comparing with algorithms I and II, the advantages

of algorithm III are threefold. Firstly, since social tags
highly reflect users’ personal preferences, algorithm III
is promisingly expected to generate more personalized
recommendation. Secondly, the one-step diffusion can
clearly save computational time especially for large-scale
data. Thirdly, algorithm III reveals the essential role
of tags: helping users retrieve and organize collections
without the limit of hierarchial structure and vocabulary
of words.

Metrics. – To give solid and comprehensive evaluation
of the proposed algorithm, we employ three different
metrics that characterize the accuracy and diversity of
recommendations.

1) Ranking Score (RS) [11]. In the present case, for
each entry in the testing set (i.e. a user-object pair),
RS is defined as the rank of the object, divided
by the number of all uncollected objects for the
corresponding user. Apparently, the less the RS, the
higher accuracy the algorithm is. 〈RS〉 is given by
averaging over all entries in the testing set.

2) Inter Diversity (InterD) [11,42]. InterD measures
the differences of different users’ recommendation
lists, thus can be understood as the inter-user diver-
sity. Denote OiR the set of recommended objects for
user Ui, then

InterD=
2

n(n− 1)
∑

i�=j

(

1− |O
i
R ∩O

j
R|

L

)

, (4)

where L= |OiR| is the length of recommendation
list. In average, greater or smaller InterD mean,
respectively, greater or smaller personalization of
users’ recommendation lists.

3) Inner Diversity (InnerD) [42]. InnerD measures the
differences of objects within a user’s recommendation
list, thus can be considered as the inner-user diversity.
It reads,

InnerD= 1− 2

nL(L− 1)

n
∑

i=1

∑

j �=l,j,l∈Oi
R

Sjl, (5)

Table 2: Algorithmic accuracy for Del.icio.us. 〈RS〉ko�10 is the
average ranking score over objects with degree equal to or less
than 10, and 〈RS〉ko>10 is the average ranking scores over
objects with degree greater than 10. Each value is obtained
by averaging over 50 realizations, each of which corresponds to
an independent division of training set and testing set.

Algorithms 〈RS〉 〈RS〉ko�10 〈RS 〉ko>10
I 0.276 0.369 0.054
II 0.209 0.275 0.049
III 0.196 0.249 0.068

Table 3: Algorithmic accuracy for MovieLens.

Algorithms 〈RS〉 〈RS〉ko�10 〈RS〉ko>10
I 0.207 0.307 0.039
II 0.130 0.168 0.055
III 0.123 0.146 0.070

where Sjl =
|ΓOj ∩ΓOl |√
|ΓOj |×|ΓOl |

is the cosine similarity

between objects Oj and Ol, where ΓOj denotes the
set of users having collected object Oj . In average,
greater or smaller InnerD suggests, respectively,
greater or smaller topic diversification of users’
recommendation lists.

Results. – To make the role of tags clear, a microscopic
picture of algorithmic accuracy is very helpful. Especially,
since tags are used to describe the objects, we would
like to see the dependence of accuracy on object degree,
namely the number of users collecting it. Given an object
degree ko, the degree-dependent average ranking score,
denoted by 〈RS〉ko , is defined as the mean positions
averaged over all the entries in the testing set with
object degree equal to ko. In table 2 and table 3 we
give the overall 〈RS〉 of the three algorithms for the
observed data sets, showing that 〈RS〉 is significantly
enhanced by the present algorithm. Figure 1 reports
the correlation between accuracy and object degree. The
ranking score decays with the increasing ko for all the three
algorithms. In addition, the three curves intersect around
ko = 10, which is a relatively small value considering the
heterogeneous object-degree distribution shown in fig. 2,
yet the majority of objects are of degree ko � 10 (90.04%
and 69.35% in Del.icio.us and MovieLens, respectively).
From fig. 1, it is seen that the algorithmic accuracy of
algorithm III is better than that of algorithms I or II
for ko � 10, but worse when ko > 10 (see also table 2 and
table 3), which reminds us of the well-known cold-start
problem in recommender systems: how to recommend the
unpopular and/or new objects to users? It is very difficult
for a user to be aware of these cold objects by random
surfing since they are not hot items, and for a system to
recommend them to right places since there are usually
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Fig. 1: (Color online) Object-degree–dependent ranking score
for the three algorithms in Del.icio.us and MovieLens. Each
data point is obtained by averaging over 50 realizations, each
of which corresponds to an independent division of training set
and testing set.

Fig. 2: Object degree distributions of the two data sets. The
insets show the accumulative distributions.

insufficient information about them. Comparing with the
algorithms I and II, the present one can effectively help
users find those cold objects via tags.

Fig. 3: (Color online) 〈InterD〉 as a function of the length of
the recommendation list for the three algorithms in Del.icio.us
and MovieLens.

Fig. 4: (Color online) 〈InnerD〉 as a function of the length of
the recommendation list for the three algorithms in Del.icio.us
and MovieLens.

Figures 3 and 4 show the experimental results of
〈InterD〉 and 〈InnerD〉, respectively. In fig. 3, 〈InterD〉
is enhanced only for Del.icio.us. The reason for small
〈InterD〉 of algorithm III in MovieLens is that there are
only movies in that data set, and thus a comparatively
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Fig. 5: (Color online) 〈OR〉 as a function of g for the two
data sets. The black squares and red circles represent 〈OR〉
for objects and tags, respectively.

small number of tags are used with huge overlapping.
The overlapping ratio of tags, ORj , for user pairs with
g commonly collected objects is defined as

ORg =
1

Ng

∑

i�=j,G(i,j)=g

OR(i, j), (6)

where Ng is the number of user pairs (i, j) such that i �= j,
and G(i, j) = g denotes the number of common objects
collected by users i and j. OR(i, j) is defined as the times
the same tags are assigned to the same objects. Similar
definition can also be used to quantity the overlapping
ratio of objects collected by users with the same tags.
Clearly, larger OR indicates smaller diversity, and vice
versa. Figure 5 shows the correlation between 〈OR〉g and
g. One can see that the 〈OR〉g of tags is smaller than
that of objects in Del.icio.us, while it is not the case for
MovieLens. In a word, social tags can help generate more
diverse recommendation only if the tags are themselves
used in a diverse way.
Figure 4 shows that 〈InnerD〉 is generally improved by

our proposed algorithm, indicating that it can help users
broaden their horizons. Recently, the Shannon entropy is
widely used to quantify network diversity in social sharing
networks [43] and social economics [44]. In this letter, we
also employ it to measure individual usage pattern of tags:

E (Ui) =−
∑

t

pi;t ln(pi;t), (7)

where pi;t is the ratio of the occurrence frequency of tag t
to the total occurrence times of all Ui’s tags. Then the

Fig. 6: (Color online) (a) 〈E〉 as a function of the user degree;
(b) 〈E〉 as a function of the object degree.

dependence of entropy on user degree, 〈E〉k, is given by
averaging all the E(Ui) with k(Ui) = k. Similar definition
can be used to quantify the dependence of entropy for
objects. Clearly, larger 〈E〉k means that the users are more
willing to use diverse topics of tags, or the objects are more
likely to be assigned to more diverse tags, and vice versa.
Figure 6 shows that 〈E〉k of Del.icio.us is higher than that
of MovieLens, indicating that Del.icio.us is a more diverse
system than MovieLens, and further giving a reasonable
explanation why algorithm III can obtain better InnerD
in Del.icio.us than MovieLens.

Conclusion and discussion. – We proposed a recom-
mendation algorithm making use of social tags, which
considers the frequencies of tags as user preferences on
different topics and tag-object links as semantical rela-
tions between them. Experimental results demonstrated
that the proposed algorithm outperforms the two baseline
algorithms in both accuracy and diversity.
Of particular importance, the present algorithm out-

performs others especially for the objects with small
degrees (ko � 10), which constitute the majority of objects.
Therefore, the incorporating of social tags could be, to
some extent, helpful in solving the long-standing cold-start
problem of recommender systems.
Recently, besides the accuracy, the significance of diver-

sity has attracted more and more attention in information
filtering [21]. Experimental results in this letter demon-
strated that a wide-range adoption of social tags can
enhance the diversity of recommendation. Therefore, we
strongly encourage recommender systems to add tagging
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functions and users to organize their collections by using
tags. However, despite the significant role of tags, the
polysemy and synonymy problems [30] might result in
coarse and inaccurate performance, the tag clustering
technique [45] is hopefully to provide a promising way
to generate multi-scale recommendations and eventually
obtain the best performance.
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