AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

ZUJIN ZHANG

ABSTRACT. In this paper, we show the existence of a solution to the stationary compressible Navier-Stokes equations under Dirichlet boundary conditions. This is [1, Page 121], and is delivered on Dec. 4th, 2010.

Theorem 1. (Existence/Dirichlet BVP). Let $\gamma = 5/3$, N = 3, $p \in (1,2)$. Then $\exists a$ continuum $C(\subset L^q \cap W^{1,q}, 1 \leq q < 2)$ of solutions of

$$\begin{cases} div (\rho u) = 0, & in \Omega \\ div (\rho u \otimes u) - \mu \Delta u - \xi \nabla div u + a \nabla \rho^{\gamma} = \rho f + g, \end{cases}$$
 (1)

such that

- 1. $C \cap \{(\rho, u, M); 0 \le M \le R\}$ is bounded in $L^2 \times H^1_{0}, \forall R > 0$;
- 2. $(0, u_0) \in C$ where u_0 satisfies

$$\begin{cases} -\mu \Delta u_0 - \xi \nabla div \ u_0 = g, & in \ \Omega, \\ u_0 = 0, & on \ \partial \Omega; \end{cases}$$
 (2)

3.
$$\forall M > 0, \exists (\rho, u) \in C \text{ such that } \int_{\Omega} \rho^p = M.$$

Proof. Step I: Bounds for solution of the approximate problems:

$$\begin{cases} \alpha \rho^{p} + \operatorname{div}(\rho u) = \alpha \frac{M}{|\Omega|}, \\ \alpha \rho^{p} u + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, \end{cases}$$
 in Ω . (3)

1.
$$\int_{\Omega} \rho^p = M;$$

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, Dirichlet boundary value problem.

2. $||u||_{H^1} \le C(1 + ||\rho||_{6/5})$, $||\rho||_{\gamma} \le C(1 + ||u||_{H^1}^{3/2})$; which follows form the energy identity:

$$\int_{\Omega} \left\{ \alpha \frac{M}{|\Omega|} \frac{|u|^2}{2} + \alpha \rho^p \frac{|u|^2}{2} + \frac{a\alpha\gamma}{\gamma - 1} \left(\rho^{\gamma} - h\rho^{\gamma - 1} \right) + \mu |Du|^2 + \xi |\operatorname{div} u|^2 - \rho u \cdot f - u \cdot g \right\} = 0.$$

3. $\|\rho\|_2 \le C$, $\|u\|_{H^1} \le C$.

Direct computations show

$$\begin{split} \|\rho^{\gamma}\|_{r} & \leq \left\| \rho^{\gamma} - \int_{\Omega} \rho^{\gamma} \right\|_{r} + |\Omega|^{1/r} \int_{\Omega} \rho^{\gamma} \\ & \leq C \|\nabla \rho^{\gamma}\|_{W^{-1,r}} + C + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho \|u\|_{r}^{2} + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho\|_{\gamma r} \|u\|^{2} \|_{\frac{\gamma}{\gamma-1}r} + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho\|_{\gamma r} \|u\|_{6}^{2} + C \|u\|_{H^{1}}^{5/2} \quad \text{(if } \gamma r = 3(\gamma - 1) = 2) \,. \end{split}$$

Thus

$$\|\rho\|_{2}^{\gamma} \le C \left(1 + \|\rho\|_{2} \|\nabla u\|_{2}^{2} + \|u\|_{H^{1}}^{5/2}\right),$$

$$\|\rho\|_{2}^{1/3} \le C \left(1 + \|\rho\|_{6/5}\right).$$

To proceed further, we split into two cases.

- (a) When $6/5 \le p < 2$, $\|\rho\|_{6/5} \le |\Omega|^{1/p-5/6} \|\rho\|_p \le C$.
- (b) In case $1 , <math>\|\rho\|_{6/5} \le \|\rho\|_p^{1-\vartheta} \|\rho\|_2^{\vartheta}$ with $\frac{5}{6} = \frac{1-\vartheta}{p} + \frac{\vartheta}{2} \Rightarrow \vartheta = \frac{6-5p}{3(2-p)} < \frac{1}{3}.$

Step II: The second approximation scheme and continuum.

We approximate (3) further by

$$\alpha \rho^{p} + \operatorname{div} (\rho u) - \varepsilon \Delta \rho = \frac{\alpha M}{|\Omega|},$$

$$\frac{\alpha M}{|\Omega|} \frac{u}{2} + \frac{1}{2} \rho u \cdot \nabla u + \alpha \rho^{p} \frac{u}{2} + \frac{1}{2} \operatorname{div} (\rho u \otimes u)$$

$$-\mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} + \delta \nabla \rho^{2} = \rho f + g,$$

$$\frac{\partial \rho}{\partial n} = 0, \quad u = 0,$$
on $\partial \Omega$,

where $\varepsilon, \delta \in (0, 1]$. Here we add **viscosity and artificial pressure**.

We shall next establish the existence of a continuum (parameterized by M) of solutions of (4), and by taking $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, in the next step, to conclude the proof of Theorem 1.

Before invoking Leray-Schauder's fixed point theorem to show such a solution continuum, we first establish some a priori estimates, which shall be useful later on.

1.
$$\int_{\Omega} \rho^p = M.$$

2. Energy identity:

$$\int_{\Omega} \left\{ \frac{\alpha}{2} h |u|^2 + \frac{1}{2} \alpha \rho^p |u|^2 + \mu |Du|^2 + \xi |\operatorname{div} u|^2 + \varepsilon a \gamma \rho^{\gamma - 2} |\nabla \rho|^2 + 2\varepsilon \delta |\nabla \rho|^2 \right.$$
$$\left. \frac{a \alpha \gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} - h \rho^{\gamma - 1} \right) + 2\delta \alpha \left(\rho^{p + 1} - h \rho \right) \right\} = \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}.$$

3. $\|\rho\|_3 \le C$, $\|u\|_{H^1} \le C$, independent of $\varepsilon \in (0, 1]$.

Notice that the improved regularity of ρ comes from the artificial pressure:

$$\frac{5}{3} \rightarrow 2$$
, $2 \rightarrow 3$.

We now show the existence of a solution continuum $C_{\alpha}^{\delta,\varepsilon}$ to (4) by invoking the following

Theorem 2. (Leray-Schauder). Let X be a Banach space, and $T: X \times [0,1] \to X$ be compact. Assume

- 1. $T(x,0) = x, \forall x \in X;$
- 2. $\exists M > 0$, s.t. $x = T(x, \sigma)$, $\sigma \in [0, 1] \Rightarrow ||x|| \le M$.

Then $T(\cdot, 1)$ has a fixed point.

The Banach space we live is chosen to be $X = W^{1,\infty} \times (W^{1,\infty})^N$; and [0,1] is rescaled to be [0,M]. The compact mapping is defined as

$$T(M, \varphi, v) = (\rho, u) - (0, u_0)$$

where (ρ, u) satisfy

$$\begin{array}{l} \alpha \rho^p + \operatorname{div} \; (\rho v) - \varepsilon \Delta \rho = \frac{\alpha M}{|\Omega|}, \\ \frac{\alpha M}{|\Omega|} \frac{u}{2} + \rho v \cdot \nabla v + \frac{1}{2} \varepsilon \Delta \rho v - \mu \Delta u - \xi \nabla \operatorname{div} \; u + a \nabla \rho^{\gamma} + \delta \nabla \rho^2 = \rho f + g, \\ \frac{\partial \rho}{\partial n} = 0, \quad u = 0, \end{array} \qquad \text{on } \partial \Omega.$$

Notice that the compactness follows from the fact that $\bigcap_{1 \leq q < \infty} W^{2,q} \hookrightarrow \hookrightarrow W^{1,\infty}$, and the uniform bounds in Condition 2 of Theorem 2 follows readily from the classical elliptic estimates in $W^{2,q}$, $1 \leq q < \infty$ and a bootstrap argument.

Step III: Passage to limits.

Before passing to limit $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, we recall

Lemma 3. ([1, Appendix D]). Let (E,d) be a complete metric space and $\{C_n\}$ be a sequence of continua (closed, connected subsets) in $E \times [0, \infty)$ with

- (A1) C_n is unbounded in $E \times \mathbf{R}$;
- $(A2) \exists x_0 \in E, s.t. (x_0, 0) \in C_n;$
- (A3) $C_n \cap (E \times [0, R]) \subset K_R$, K_R compact in $E \times \mathbb{R}$, $\forall R > 0$; or equivalently
- (A3') $C_n \cap (E \cap [0, R])$ is compact:

$$(x_n, t_n) \in C_n$$
, t_n bounded $\Rightarrow x_n$ relatively compact in E .

Then the limit continuum

$$C = \{(x, t) \in E \times [0, \infty); \exists \{n_k\}, \exists x_{n_k} \to x, \exists t_{n_k} \to t, (x_{n_k}, t_{n_k}) \in C_{n_k}\}$$

satisfies

(C1) C is unbounded in $E \times \mathbf{R}$:

$$\forall t \ge 0, \exists x \in E, s.t. (x, t) \in C;$$

- $(C2)(x_0,0) \in C$;
- (C3) $C \cap (E \times [0, R]) \subset K_{R'}, \forall R' > R \ge 0.$

We now commence our passage to limits, $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, by invoking Lemma 3 to construct

$$C_{\alpha}^{\delta,\varepsilon} \to_{\varepsilon} C_{\alpha}^{\delta} \to_{\delta} C_{\alpha} \to_{\alpha} C$$
 (this *C* being what we pursue).

1. $\varepsilon \to 0_+$, for $\alpha, \delta \in (0, 1]$ fixed.

The underlying $E = L^{q_1} \times (W^{1,q_2})^N$, $1 \le q_1 < 3$, $1 \le q_2 < 2$.

- (A1) holds since $\int_{\Omega} \rho^p = M$.
- (A2) holds since $(0, u_0) \in C_{\alpha}^{\delta, \varepsilon}$.
- (A3') Let $0 < \varepsilon_n \to 0$, $0 \le M_n \to M$, $(\rho_n, u_n) \in C_\alpha^{\delta, \varepsilon_n}$. We show the compactness of (ρ_n, u_n) in E as

$$\rho_n \rightharpoonup \rho \ge 0$$
 in L^3 ; $u_n \rightharpoonup u$ in H^1 , $u_n \rightarrow u$ in $L^p(1 \le p < 6)$, $u_n \rightarrow u$ a.e.;

$$\nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2 \right\} + \frac{\mu}{\mu + \xi} \text{curl curl } u$$

$$= (\rho u \cdot \nabla) u + \cdots \text{ bounded in } \left(L^3 \cdot L^6 \right) \cdot L^2 \subset \mathcal{H}^1$$

$$\Rightarrow \nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2 \right\}, \nabla \text{curl } u_n \text{ bounded in } \mathcal{H}^1$$

$$\Rightarrow$$
 div $u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2$ compact in $L^s \left(1 \le s < \frac{3}{2} \right)$; curl u_n compact in $L^r (1 \le r < 2)$

- $\Rightarrow \rho_n \to \rho \text{ in } L^{q_1}(1 \le q_1 < 3)$
- \Rightarrow div u_n , curl u_n , and thus $Du_n \rightarrow$ div u, curl u, Du in $L^{q_2}(1 \le q_2 < 2)$, respectively.

Thus we have a continuum C^{δ}_{α} of solutions of

$$\begin{split} &\alpha \rho^p + \text{div } (\rho u) = \frac{\alpha M}{|\Omega|}, \\ &\alpha \rho^p u + \text{div } (\rho u \otimes u) - \mu \Delta u - \xi \nabla \text{div } u + a \nabla \rho^{5/3} + \delta \nabla \rho^2 = \rho f + g \end{split} \right\} \text{in } \Omega$$

satisfying (C1), (C2), (C3) in Lemma 3 and

$$C_{\alpha}^{\delta} \cap \{(\rho, u, M); 0 \le M \le R\}$$
 is bounded in $L^{3} \times H_{0}^{1} \times \mathbf{R}, \forall R > 0$,

and the energy inequality

$$\begin{split} &\int_{\Omega} \left\{ \frac{\alpha}{2} h \left| u \right|^2 + \frac{1}{2} \alpha \rho^p \left| u \right|^2 + \mu \left| D u \right|^2 + \xi \left| \operatorname{div} \, u \right|^2 + \frac{a \alpha \gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} - h \rho^{\gamma - 1} \right) + 2 \delta \alpha \left(\rho^{p + 1} - h \rho \right) \right\} \\ &\leq \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}, \,\, \forall \,\, \left(\rho, u, M \right) \in C_{\alpha}^{\delta} \left(h = \frac{\alpha M}{|\Omega|} \right). \end{split}$$

2. $\delta \rightarrow 0_+$, for $\alpha \in (0, 1]$ fixed.

The space we live now is $E = L^q \times (W^{1,q})^N$, $1 \le q < 2$. And the crucial key point is the compact assertion (A3'), which is proved as

$$\nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} \right\} + \frac{\mu}{\mu + \xi} \text{curl curl } u_n$$

$$= (\rho_n u_n \cdot \nabla) u_n + \cdots \text{ bounded in } \left(L^2 \cdot L^6 \right) \cdot L^2 \subset \mathcal{H}^{6/7} \text{ (by Step I)}$$

$$\Rightarrow \begin{cases} \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} \text{ compact in } L^s \left(1 \le s < \frac{6}{5} \right) \\ \text{curl } u_n \text{ compact in } L^r (1 \le r < 2) \end{cases} \left(-1 + \frac{3}{6/7} = \frac{3}{6/5} \right)$$

$$\Rightarrow \rho_n \to \rho \text{ in } L^q (1 \le q < 2)$$

 \Rightarrow div u_n , curl u_n , and thus Du_n compact in $L^q(1 \le q < 2)$.

Thus we find a continuum of solutions of (3) satisfying (C1), (C2), (C3) and

$$C_{\alpha} \cap \{(\rho, u, M); 0 \le M \le R\}$$
 is bounded in $L^{\max\{2, p+2/3\}} \times H_0^1 \times \mathbb{R}, \ \forall \ R > 0$,

and the energy inequality

$$\int_{\Omega} \left\{ \frac{\alpha}{2} h |u|^{2} + \frac{\alpha}{2} \rho^{p} |u|^{2} + \mu |Du|^{2} + \xi |\operatorname{div} u|^{2} + \frac{a\alpha\gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} + h \rho^{\gamma - 1} \right) \right\}$$

$$\leq \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}, \ \forall \ (\rho, u, M) \in C_{\alpha} \left(h = \frac{\alpha M}{|\Omega|} \right).$$

3. $\alpha \rightarrow 0_+$ finally.

The space we work in now is $E = L^p \times (W^{1,p})^N$, $1 \le p < 2$. The details being exactly the same as the passage to limit $\delta \to 0_+$. And we conclude the existence of such a continuum C of solutions of (1) stated in Theorem 1.

REFERENCES

[1] P.L. Lions, *Mathematical topics in fluid mechanics*. Vol. 2. Compressible models. The Clarendon Press, Oxford University Press, New York, 1998.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA *E-mail address*: uia.china@gmail.com