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AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH DIRICHLET BOUNDARY

CONDITIONS

ZUJIN ZHANG

ABSTRACT. In this paper, we show the existence of a solution to the stationary

compressible Navier-Stokes equations under Dirichlet boundary conditions. This

is [1, Page 121], and is delivered on Dec. 4th, 2010.

pp. 43-48

Theorem 1. (Existence/Dirichlet BVP). Let vy = 5/3, N = 3, p € (1,2). Then A a

continuum C (c LinWh,1<qg< 2) of solutions of

div (ou) = 0, ,
n Q
div (pu ® u) — uAu — EVdiv u + aVp? = pf + g,
such that

1. Cn{(p,u,M); 0 < M <R} is bounded in L* x H), ¥ R > 0;

2. (0,up) € C where uy satisfies
—uAuy — EVdiv ug = g, in Q,
up =0, on 0Q;

3.VM>0,3 (p,u)eCsuchthatfp”:M.

Q

Proof. Step I: Bounds for solution of the approximate problems:

ap” +div (pu) = agg;,
apPu + div (pu @ u) — uAu — EVdiv u + aVp’ = pf + g,

1. fp”:M;
Q

in Q.

(2)
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2. lullgr < C(l + ||p||6/5), llll, < C(l + ||u||3/2) which follows form the energy iden-

tity:
M |uf® uf  aay 1
B e QLI Y — ho?
‘ﬁ{%ﬁ|2 ap’ S+ e =)
+;1|Du|2+§|divu|2—pu-f—u~g}:0,

3. llpll, < C, lullmn < C.

Direct computations show

py—fpy +IQI”’J[;07
Q r Q

CIIVo|ly-1, + C + C ||u||5/2

IA

o711,

IA

IA

C+C|pluP|, +Clul)?

IA

C + Cllpll,,

ﬂl A+ Clull?

IA

C+CWMIMk+CWW”ﬁhW=%7—D=2)
Thus

llolly < € (1 + llolly IVal} + 11l

ol < € (1 +llolles) -

To proceed further, we split into two cases.
(a) When 6/5 < p <2, llpllgs < 1917/ |jpll,, < C.
(b) Incase 1 < p < 6/5, llpllg;s < lloll,” lloll; with

S_1-9 8 _ o 6-5p |1
6 p 2 _3(2p)3'

Step II: The second approximation scheme and continuum.

We approximate (3) further by

ap? + div (ou) — eAp = IQI’

G5+ 3pu- Vu+apPs + 5div (ou ® u) in Q,

(4)
—uAu — EVdAiv u + aVp” + 6Vp* = pf + g,

%:O’ u =0, on 0L,
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where ¢,6 € (0, 1]. Here we add viscosity and artificial pressure.

We shall next establish the existence of a continuum (parameterized by M) of
solutions of (4), and by taking & — 0., then § — 0,, then & — 0., in the next step,
to conclude the proof of Theorem 1.

Before invoking Leray-Schauder’s fixed point theorem to show such a solution
continuum, we first establish some a priori estimates, which shall be useful later
on.

1. fp”:M.
Q

2. Energy identity:
1
f {%h |ul* + 5a,ol’ lul? + u |Dul + &|div ul* + eayp” % |Vpl* + 26 |Vpl?
Q

a9y (pV“’_] - hpy_l) + 26a (,oer1 - hp) = f lou-f+u-g}.
y-1 Q
3. llpll; < C, llully < C, independent of € € (0, 1].

Notice that the improved regularity of p comes from the artificial pressure:

>

-2

, 22— 3.

We now show the existence of a solution continuum C3° to (4) by invoking the

following

Theorem 2. (Leray-Schauder). Let X be a Banach space, and T : X x [0,1] — X be

compact. Assume

1. T(x,0) =x,Yx e X;
2.AM>0, st.x=T(x,0), o €[0,1] = ||x]| < M.

Then T(-, 1) has a fixed point.

The Banach space we live is chosen to be X = Whee x (Wl"”)N; and [0, 1] is rescaled

to be [0, M]. The compact mapping is defined as

T(M7 @, V) = (p’ l/t) - (07 I/l()) »



46 ZUJIN ZHANG

where (p, u) satisfy

- _aM

ap? +div (pv) — eAp = i inQ.
T—éf%+pv-Vv+%sApv—,uAu—§VdiVu+an7+6Vp2:pf+g,

¥ -0, u=0, on Q.

an =
Notice that the compactness follows from the fact that N << W24 s W, and
the uniform bounds in Condition 2 of Theorem 2 follows readily from the classical
elliptic estimates in W29, 1 < g < co and a bootstrap argument.
Step III: Passage to limits.

Before passing to limit ¢ — 0., then 6 — 0., then @ — 0,, we recall

Lemma 3. ([1, Appendix D]). Let (E,d) be a complete metric space and {C,} be a
sequence of continua (closed, connected subsets) in E X [0, o) with

(A1) C, is unbounded in E X R;

(A2) Axy € E, s.t.(x9,0) € C,;

(A3) C, N (E X [0,R]) C Kg, Kg compactin E X R, ¥ R > 0; or equivalently

(A3’) C, N (E N[0, R]) is compact:

(X4, 1,) € Cy, t, bounded = x, relatively compact in E.
Then the limit continuum
C={(x,t) € Ex[0,00); A {m}, Ax,, = x, A1y, = 1, (X, 1) € Cp )}

satisfies

(C1) C is unbounded in E X R:
V>0, dx€E, st. (x,1) e C,

(C2) (x9,0) € C;
(C3)CN(ExX[0,R))cKgr, YR >R>0.

We now commence our passage to limits, £ — 0., then 6 — 0,, then a — 0., by

invoking Lemma 3 to construct

Co =, C° —5Cy —4 C (this C being what we pursue).
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1. ¢ - 0,, for a,6 € (0, 1] fixed.
The underlying E = L% x (WWZ)N, 1<q <3,1<q,<2.
(A1) holds since f pl =M.
(A2) holds since (Og,2 ug) € C2%.
(A3)LetO <&, = 0,0 <M, = M, (p,, u,) € C3*". We show the compactness
of (o,,u,) in E as

pp—=p>0inL%u, = uin H',u, » uin L(1 < p < 6), u, - u a.e.;

\Y {div Uy — ﬁpiﬁ - /%fp%} + -zeurl curl u

= (pu-V)u+--- bounded in (L3-L6)~L2C71(l

0
=V {div y — —— 3 — p,zl} , Veurl u, bounded in H'
H+& H+&
= div u, - ——p3 - Lpz compact in L’ (1 <s< g)'curl u, compactin L'(1 < r <2)
p+&E" p+éET 2 B

= p, = pin LY(1 < g, < 3)

= div u,, curl ,, and thus Du, — div u, curl u, Duin L”(1 < g, < 2), respectively.

Thus we have a continuum C? of solutions of
ap? + div (ou) = X,
apPu + div (pu ® u) — uAu — EVAiv u +aVp®? + 6Vp? = pf + g

satisfying (C1), (C2), (C3) in Lemma 3 and
C° N {(p,u,M); 0 <M < R} isbounded in L* x H) x R, ¥V R > 0,

and the energy inequality

1
f gh lul* + —ap” Jul? + u |Dul* + &|div u|2 + aay (p7+p—1 _ hpy—l) 4250 (pp+1 _ hp)

aM

Sf{pu~f+u~g}, v (p,u,M)eCi (h:—).
Q Q|

2. 6 - 0,, fora € (0, 1] fixed.
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The space we live now is £ = L7 X (Wl’q )N, 1 < g < 2. And the crucial key
point is the compact assertion (A3’), which is proved as

\Y {div U, — lffpf/ 3} + yiﬂfcurl curl u,

= (Outy - V) U, + - - - bounded in (L2 : L6) -L? ¢ HO (by Step I)

ptE
curl u, compactin L'(1 < r < 2)

6/7  6/5

div u, — 0. compactin L*(1 < s < & 3 3
= P P ( 5) (—1 )

= pp—opinli(l1<g<?2)
= div u,, curl ,, and thus Du, compact in L/(1 < g < 2).
Thus we find a continuum of solutions of (3) satisfying (C1), (C2), (C3) and

CoN{(o,u,M); 0 <M <R}

is bounded in L™ *P**3 x HI x R, ¥ R > 0,

and the energy inequality

f ShluP + SpP P + wDuf + E1div uf’ + (077 + o)
012 2 y_1

Sf{pu-f+u-g}, Y (o,u,M) € C, (h:%).
Q 1|

3. @ — 0, finally.
The space we work in now is E = L? X (Wl”’ )N, 1 < p < 2. The details
being exactly the same as the passage to limit 6 — 0,. And we conclude the

existence of such a continuum C of solutions of (1) stated in Theorem 1.
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