# Statistical Mechanics of Information Systems

#### Information Filtering on Complex Networks

### Tao Zhou

Department of Physics, University of Fribourg, Switzerland

Email Address: <u>zhutou@ustc.edu</u>; <u>zhutouster@gmail.com</u> Homepage: <u>http://sites.google.com/site/zhutouster/</u>

# Content

- Motivation and Background
- Ranking
- Predicting
- Recommending (Main Part)
- Social filtering
- Looking into the future
- Summary of Scientific Achievement

# Interdisciplinary Research of Statistical Physics

- **Biophysics**: using the methods of physics and physical chemistry to study biological systems.
- Econophysics: applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics.
- **Sociophysics**: aiming at a statistical physics modeling of large scale social phenomena, like opinion formation, cultural dissemination, the origin and evolution of language, crowd behavior, social contagion.
- Infophysics???

# Main Topics in Infophysics

- Organization and evolution of information systems (Structures)
- Physical dynamics taking place on information systems (Functions)
- Statistical analysis on internet-relevant activities (Internet-Web-Object-User)
- Information filtering: ranking, predicting
  and recommending

# Motivation & Background

- Explosive growth of information asks for advanced theories and techniques to automatically find out the objects we like
- Internet and WWW are typical many-body systems that are favored by statistical physicists
- Physical concepts and approaches have already been successfully applied in uncovering important regularities and solving challenges in information science
- Information filtering shifts from finding out what you want to what you like, from centralized to decentralized, from population-based to personlized.

# Ranking

| Objects                               | Methods / Metrics                     |
|---------------------------------------|---------------------------------------|
| Simple Graph                          | Centralities                          |
| Directed Graph                        | PageRank, Random Walk<br>with Restart |
| Nodes with Mixing Roles               | HITS                                  |
| <b>Bipartite Rating Systems</b>       | <b>Reputation Systems</b>             |
| Collaboration Graph with<br>Citations | CiteRank, SARA                        |
|                                       |                                       |

Core Method: Iterative Refinement !!

#### Ranking Based on the Diffusion of Scientific Credits



#### F. Radicchi *et al.*, PRE 80 (2009) 056103

# Building Reputation Systems for Better Ranking



L.-L. Jiang, M. Medo, J. R. Wakeling, Y.-C. Zhang, T. Zhou, arXiv: 1001.2186

# Link Prediction

- It aims at estimating the likelihood of the existence of a link between two nodes.
- It can help in understanding the factors underlying network evolution.
- It can help in evaluating various measurements of node similarity.
- For biological networks, it may reduce the experimental costs.
- For online social networks, it can generate good recommendations.
- It can be applied in solving the link classification problem in partially labeled networks
  - A. Clauset, C. Moore, M. E. J. Newman, Nature 453 (2008) 98
  - S. Render, Nature 453 (2008) 47
  - R. Guimera, M. Sales-Pardo, PNAS 106 (2009) 22073

# Main Methods

- Attribute-Aware and Content-Based Algorithms
- Relational Models
- Markov Chain
- Hierarchical Model
- Maximum Likelihood Methods
- Similarity-Based Methods
  - \* Straightforward Comparison
  - \* Collaboration Filtering

# Local Similarity Indices

| Measures | PPI   | NS    | Grid  | PB    | INT   | USAir |
|----------|-------|-------|-------|-------|-------|-------|
| CN       | 0.889 | 0.933 | 0.590 | 0.925 | 0.559 | 0.937 |
| Salton   | 0.869 | 0.911 | 0.585 | 0.874 | 0.552 | 0.898 |
| Jaccard  | 0.888 | 0.933 | 0.590 | 0.882 | 0.559 | 0.901 |
| Sørensen | 0.888 | 0.933 | 0.590 | 0.881 | 0.559 | 0.902 |
| HPI      | 0.868 | 0.911 | 0.585 | 0.852 | 0.552 | 0.857 |
| HDI      | 0.888 | 0.933 | 0.590 | 0.877 | 0.559 | 0.895 |
| LHN1     | 0.866 | 0.911 | 0.585 | 0.772 | 0.552 | 0.758 |
| PA       | 0.828 | 0.623 | 0.446 | 0.907 | 0.464 | 0.886 |
| AA       | 0.888 | 0.932 | 0.590 | 0.922 | 0.559 | 0.925 |
| RA       | 0.890 | 0.933 | 0.590 | 0.931 | 0.559 | 0.955 |
| LP       | 0.939 | 0.938 | 0.639 | 0.936 | 0.632 | 0.945 |

#### RA>AA>CN

T. Zhou, L. Lü, Y.-C. Zhang, EPJB 71 (2009) 623

#### **Quasi-Local and Global Similarity Indices**

| AUC                                                | CN                                         | RA                                         | LP                                         | ACT                                         | RWR                                         | HSM                                         | LRW                                                     | SRW                                                     |
|----------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| USAir                                              | 0.9542                                     | 0.9723                                     | 0.9524                                     | 0.9012                                      | 0.9765                                      | 0.9038                                      | 0.9723(2)                                               | 0.9782(3)                                               |
| NetScience                                         | 0.9784                                     | 0.9825                                     | 0.9855                                     | 0.9338                                      | 0.9928                                      | 0.9295                                      | 0.9893(4)                                               | 0.9917(3)                                               |
| Power                                              | 0.6257                                     | 0.6258                                     | 0.6974                                     | 0.8948                                      | 0.7599                                      | 0.5025                                      | 0.9532(16)                                              | <b>0.9631</b> (16)                                      |
| Yeast                                              | 0.9151                                     | 0.9163                                     | 0.9700                                     | 0.8997                                      | 0.9782                                      | 0.6720                                      | 0.9744(7)                                               | <b>0.9801</b> (8)                                       |
| C.elegans                                          | 0.8492                                     | 0.8705                                     | 0.8672                                     | 0.7470                                      | 0.8888                                      | 0.8082                                      | 0.8986(3)                                               | 0.9062(3)                                               |
| <b>D</b>                                           | 012 F                                      |                                            |                                            | 1                                           |                                             |                                             |                                                         |                                                         |
| Precision                                          | CN                                         | RA                                         | LP                                         | ACT                                         | RWR                                         | HSM                                         | LRW                                                     | SRW                                                     |
| USAir                                              | CN<br>0.5907                               | RA<br>0.6350                               | LP<br>0.6078                               | ACT<br>0.4887                               | RWR<br>0.6519                               | HSM<br>0.2764                               | LRW<br>0.6435(3)                                        | SRW<br>0.6724(3)                                        |
| Precision      USAir      NetScience               | CN<br>0.5907<br>0.2618                     | RA<br>0.6350<br>0.5442                     | LP<br>0.6078<br>0.3007                     | ACT<br>0.4887<br>0.1911                     | RWR<br>0.6519<br>0.5485                     | HSM<br>0.2764<br>0.2502                     | LRW<br>0.6435(3)<br>0.5442(2)                           | SRW<br>0.6724(3)<br>0.5442(2)                           |
| Precision<br>USAir<br>NetScience<br>Power          | CN<br>0.5907<br>0.2618<br>0.1121           | RA<br>0.6350<br>0.5442<br>0.0806           | LP<br>0.6078<br>0.3007<br>0.1284           | ACT<br>0.4887<br>0.1911<br>0.0813           | RWR<br>0.6519<br>0.5485<br>0.0863           | HSM<br>0.2764<br>0.2502<br>0.0040           | LRW<br>0.6435(3)<br>0.5442(2)<br>0.0806(2)              | SRW<br>0.6724(3)<br>0.5442(2)<br>0.1140(3)              |
| Precision<br>USAir<br>NetScience<br>Power<br>Yeast | CN<br>0.5907<br>0.2618<br>0.1121<br>0.6707 | RA<br>0.6350<br>0.5442<br>0.0806<br>0.4949 | LP<br>0.6078<br>0.3007<br>0.1284<br>0.6823 | ACT<br>0.4887<br>0.1911<br>0.0813<br>0.5680 | RWR<br>0.6519<br>0.5485<br>0.0863<br>0.5217 | HSM<br>0.2764<br>0.2502<br>0.0040<br>0.8408 | LRW<br>0.6435(3)<br>0.5442(2)<br>0.0806(2)<br>0.8591(3) | SRW<br>0.6724(3)<br>0.5442(2)<br>0.1140(3)<br>0.7268(9) |

L. Lü, C.-H. Jin, T. Zhou, PRE 80 (2009) 046122; W.-P. Liu, L. Lü, EPL (submitted)

## **Hierarchical Model**



This method is slow, less accurate, yet can give some structural insights of networks organization.

A. Clauset, C. Moore, M. E. J. Newman, Nature 453 (2008) 98

## Link Prediction in Weighted Networks

—Role of Weak Ties



Similar Observation for Weighted Katz Index: D. Liben-Nowell, J. Kleinberg, JASIST 58 (2007) 1019 Local Weighted Indices: T. Murata, S. Moriyasu, IEEE/WIC/ACM Intl. Conf. Web Intell. 2007 Weak Ties Analysis: L. Lü, T. Zhou, Europhys. Lett. 89 (2010) 18001

# Personalized Recommendation

- Personalized recommender systems use the personal information of a user (the historical record of his activities and possibly his profile) to uncover his habits and to consider them in the recommendation.
- Personalized recommender systems provide a promising way to solve the information overload problem.
- Personalized recommender systems have already been successfully applied in many e-commerce web sites, such as *Amazon.com*.

# **Problem Description**

Known information: the record of interactions between users and objects, the users' profiles, the objects' attributes, the content, the time stamps, the user-user relationships, etc.

Required information: whether a targer user will like an unselected object, and if so, to what extent he/she likes it. Basically, a personalized recommender system should provide an ordered list of unselected objects to every target user.



Target user: *i* 

## Main Methods

- Collaborative filtering -
- Iterative refinement
- Diffusion/Local Diffusion
- Principle component analysis
- Latent semantic model
- Content-based analysis —
- Latent Dirichlet allocation
- Hybrid algorithm and ensemble approach
- Matrix factorization ——



# Our Work

- How to evaluate algorithmic performance
- Local diffusion methods: energy/mass and heat
- Accuracy of local diffusion methods
- Improved Algorithms: two examples
- Hybrid algorithm: solving the accuracy-diversity dilemma
- Adaptive algorithm: real-time response to changing data

# **Evaluating Algorithmic Performance**

#### Accuracy

\*\* Overall Ranking: AUC, Ranking Score

\*\* Top Recommended Objects: Precision, Recall, F-Measure

## • Diversity

\*\* Intra-Similarity: Recommendations to a user are diverse

\*\* Inter-Similarity Recommendations to different users are diverse

### Novelty

- \*\* Popularity
- \*\* Self-information
  - J. L. Herlocker et al., ACM Trans. Inf. Syst. 22 (2004) 5
  - T. Zhou et al., EPL 81 (2008) 58004
  - T. Zhou et al., NJP 11 (2009) 123008
  - T. Zhou et al., PNAS (Accepted, March 2010)

#### Basic idea on local diffusion



T. Zhou et al., PRE 76 (2007) 046115; PNAS (Accepted)

For Global Diffusion, see:

Y.-C. Zhang, et al., PRL 99 (2007) 154301; EPL 80 (2007) 68003

# Accuracy of Mass Diffusion and Heat Conduction



Heat Conduction is even less accurate than the collaborative filtering (CF) and global ranking method (GRM). Order of accuracy: MD > CF > GRM > HC.

#### Improved Algorithm I: Initial Resource Depends on the Degree



T. Zhou et al., EPL 81 (2008) 58004

#### Improved Algorithm II: Depressing Higher-Order Correlation to Eliminate redundancy



T. Zhou et al., NJP 11 (2009) 123008

Hybrid Method: 
$$w_{ij} = \frac{1}{d_i^{1-\lambda} d_j^{\lambda}} \sum_{l=1}^{N} \frac{a_{li} a_{lj}}{k_l}$$

| Data                 | Ν     | Μ      | Sparsity | $\operatorname{GRM}$ | $\mathbf{CF}$ | MD    | HC    | Hybrid | $\lambda^*$ |
|----------------------|-------|--------|----------|----------------------|---------------|-------|-------|--------|-------------|
| Netflix              | 10000 | 6000   | 0.0117   | 0.057                | 0.051         | 0.045 | 0.102 | 0.040  | 0.23        |
| $\operatorname{RYM}$ | 33786 | 5381   | 0.00337  | 0.119                | 0.087         | 0.071 | 0.085 | 0.066  | 0.41        |
| Delicious            | 10000 | 232657 | 0.00053  | 0.314                | 0.223         | 0.210 | 0.271 | 0.207  | 0.66        |



RYM







#### Adaptive Algorithm: Real-Time Response to Changing Data



C.-H. Jin, J.-G. Liu, Y.-C. Zhang, T. Zhou, arXiv: 0911.4910

# **Social Filtering**

- Most of the current recommender systems still adopt the centralized way where the systems analyze the data and decide which should be recommended to whom.
- Such a paradigm is challenged by the fact that the social influence plays a more important role than similarity of past activities, and the recommendations made by a system is less preferred than by a friend.
- The fast development of online social communities make the social filtering techniques a promising tool in the next-generation recommender systems.
- Users could receive additional value by social recommendations.

Lai et al., Proc. 5th Intl. Conf. E-Commerce (ACM Press, 2003) Pon et al., ACM SIGKDD 2007; Ahn et al., WWW 2007

#### Adaptive Model for News Recommendation

A leader-follower network with identical in-degree is built, where news can only flow from leaders to followers.





M. Medo, Y.-C. Zhang, T. Zhou, EPL 88 (2009) 38005

#### Scale-Free Leadership Structure



# Look into the future

# What about the next-generation information filtering techniques ?

- Static -> Adaptive
- Centralized -> Decentralized
- Design Algorithm -> Guide Users
- Personalized Recommendation -> Personalized Algorithms
- Accuracy Only -> Comprehensive Evaluation
- Spam-Sensitive -> Spam-Robust
- Predict -> Drive and Control

#### 10 Selected Publications During the PhD Study

- **T. Zhou**, J. Ren, M. Medo, Y.-C. Zhang, "Bipartite network projection and personal recommendation", *Phys. Rev. E* **76**, 046115 (2007)
- Y.-C. Zhang, M. Medo, J. Ren, **T. Zhou**, T. Li, F. Yang, "Recommendation model based on opinion diffusion", *EPL* **80**, 68003 (2007)
- **T. Zhou**, L.-L. Jiang, R.-Q. Su, Y.-C. Zhang, "Effect of initial configuration on networkbased recommendation", *EPL* **81**, 58004 (2008)
- T. Zhou, H.-A. T. Kiet, B. J. Kim, B.-H. Wang, P. Holme, "Role of Activity in Human Dynamics", *EPL* 82, 28002 (2008)
- J. Ren, **T. Zhou**, Y.-C. Zhang, "Information Filtering via Self-Consistent Refinement", *EPL* **82**, 58007 (2008)
- **T. Zhou**, L. Lü, Y.-C. Zhang, "Predicting missing links via local information", *Eur. Phys. J. B***71**, 623 (2009)
- M. Medo, Y.-C. Zhang, **T. Zhou**, "Adaptive model for recommendation of news", *EPL* **88**, 38005 (2009)
- T. Zhou, R.-Q. Su, R.-R. Liu, L.-L. Jiang, B.-H. Wang, Y.-C. Zhang, "Accurate and diverse recommendations via eliminating redundant correlations", New J. Phys. 11, 123008 (2009)
- L. Lü, **T. Zhou**, "Link Prediction in Weighted Networks: The Role of Weak Ties", *EPL* **89**, 18001 (2010)
- **T. Zhou**, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, Y.-C. Zhang, "Solving the apparent diversity-accuracy dilemma of recommender systems", *PNAS* (March 2010)

### **10 Highly Cited Papers**

- G. Yan, **T. Zhou**, B. Hu, Z.-Q. Fu, B.-H. Wang, "Efficient Routing on Complex Networks", *Phys. Rev. E* **73**: 046108 (2006) **Time Cited 85**
- T. Zhou, G. Yan, B.-H. Wang, "Maximal planar networks with large clustering coefficient and power-law degree distribution", *Phys. Rev. E* 71, 046141 (2005) Time Cited 80
- W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, **T. Zhou**, "Traffic dynamcis based on local routing protocol on scale-free networks", *Phys. Rev. E* **73**: 026111 (2006) **Time Cited 66**
- G. Yan, **T. Zhou,** J. Wang, Z.-Q. Fu, B.-H. Wang "Epidemic spread in weighted sacle-free networks", *Chin. Phys. Lett.* **22**, 510-513 (2005) **Time Cited 53**
- M. Zhao, T. Zhou, B.-H. Wang, W.-X. Wang, "Enhance synchronizability by structural perturbations", *Phys. Rev. E* 72, 057102 (2005) Time Cited 43
- C.-Y. Yin, B.-H. Wang, W.-X. Wang, **T. Zhou**, H.-J. Yang, "Efficient routing on scale-free networks based on local information", *Phys. Lett. A* **351**, 220 (2006) **Time Cited 38**
- P.-P. Zhang, K. Chen, Y. He, T. Zhou, B.-B. Su, Y.-D. Jin, H. Chang, Y.-P. Zhou, L.-C. Sun, B.-H. Wang, D.-R. He, "Model and empirical study on some collaboration networks", *Physica A* 360, 599 (2006) Time Cited 36
- W.-X. Wang, B. Hu, **T. Zhou**, B.-H. Wang, Y.-B. Xie, "A mutual selection model for weighted networks", *Phys. Rev. E* **72**, 046140 (2005) **Time Cited 33**
- T. Zhou, J.-G. Liu, W.-J. Bai, G.-R. Chen, B.-H. Wang, "Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity", *Phys. Rev. E* 74, 056109 (2006)
  Time Cited 32

T. Zhou, B.-H. Wang, "Catastrophes in scale-free networks", *Chin. Phys. Lett.* 22, 1072 (2005) Time Cited 29

#### Statistics on All Publications: Total Citations=1082,H-Index=18

#### **Full Publications**

1. Physical Review E (28)

71 (2005) 046135; 71 (2005) 046141; 72 (2005) 016702; 72 (2005) 046139; 72 (2005) 046140; 72 (2005) 057102; 72 (2005) 066702; 73 (2006) 026111; 73 (2006) 037101; 73 (2006) 046108; 73 (2006) 058102; 74 (2006) 046103; 74 (2006) 056109; 75 (2007) 021102; 75 (2007) 036106; 76 (2007) 037102; 76 (2007) 046115; 76 (2007) 057103; 76 (2007) 061903; 77 (2008) 021920; 78 (2008) 066109; 79 (2009) 016113; 79 (2009) 026113; 79 (2009) 052102; 80 (2009) 017101; 80 (2009) 031144; 80 (2009) 046108; 80 (2009) 046122.

2. Physica A (25)

354 (2005) 505; 360 (2006) 599; 367 (2006) 337; 367 (2006) 613; 368 (2006) 607; 371 (2006) 773; 371 (2006) 814; 371 (2006) 861; 374 (2006) 864; 375 (2007) 355; 375 (2007) 687; 375 (2007) 709; 376 (2007) 215; 384 (2007) 656; 387 (2008) 1683; 387 (2008) 3025; 387 (2008) 6391; 388 (2009) 462; 388 (2009) 1237; 388 (2009) 1713; 388 (2009) 2949; 388 (2009) 4867; 389 (2010) 179; 389 (2010) 881; 389 (2010) 1259.

3. Europhysics Letters (11)

80 (2007) 68003; 81 (2008) 58004; 82 (2008) 28002; 82 (2008) 58007; 83 (2008) 40003; 86 (2009) 40011; 87 (2009) 68001; 87 (2009) 68002; 88 (2009) 38005; 88 (2009) 68008; 89 (2010) 18001.

4. European Physical Journal B (7)

47 (2005) 587; 53 (2006) 375; 60 (2007) 89; 62 (2008) 101; 65 (2008) 251; 66 (2008) 557; 71 (2009) 623.

5. Physics Letters A (6)

351 (2006) 220; 362 (2007) 115; 364 (2007) 189; 366 (2007) 14; 368 (2007) 431; 372 (2008) 1725.

6. New Journal of Physics (5)

10 (2008) 023006; 10 (2008) 073010; 10 (2008) 123027; 11 (2009) 103001; 11 (2009) 123008.

7. Others (5)

Prog. Nat. Sci. 16 (2006) 252; Chaos, Solitons & Fractals 31 (2007) 772; Ars Combinatoria 83 (2007) 289; IEEE Circuits and Systems Magazine (Feature Article) 2008(3) 67; PNAS (to be published in March 2010).

# Thanks for your attention!