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Abstract

This paper presents an easily implemented ®nite difference (FD) analysis method for calculating the deformations of multi-diameter

workpieces during turning. Finite difference models have been developed to describe the deformation of a workpiece when the turning

conditions such as the cutting force, the workpiece material as well as shape dimensions, and the clamping types are taken into account. The

proposed method has been veri®ed by comparing it with the theoretical results of a simple workpiece with uniform diameter. Based on the

results of calculation, a modi®ed correction method, which is used to compensate the de¯ections in order to achieve the required accuracy

of workpiece diameter, is also proposed for turning operations. # 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

One of the error sources that affects the diameter of a

workpiece machined on a lathe is caused by the elastic

deformation of the workpiece. It is well known that a slender

workpiece, which can be structurally represented as a simple

beam, will have a non-uniform ®nal shape from a long-

itudinal turning process as unequal de¯ections develop in the

radial direction due to cutting force [1±5]. However, when

the cross-section of a workpiece changes along its length as

shown in Fig. 1, frequently encountered in industry [6,7],

the deformations of the workpiece along the longitudinal

axis will be more complicated than those of a slender

workpiece. Therefore, deformations due to radial cutting

force and the ®nal shape of the workpiece are not easily

predicted.

In order to achieve a higher accuracy of dimension,

prediction of the ®nal shape of workpiece are required to

be made in advance. It is obvious that the better the knowl-

edge of the workpiece deformations, the easier and quicker it

would be to achieve the required dimension and therefore

the less cost. To achieve high machining accuracy, computer

controlled error correction systems have been broadly

studied [8±11], but the machining accuracy obtained in

practice proved not to be entirely satisfactory. The unsatis-

factory results may be explained by lack of suf®cient

deformation information to cover widely different types

of workpieces.

In the present paper, a ®nite difference method for calcu-

lating the workpiece deformations is presented. The FD

method for the calculation of workpiece de¯ections will

be particularly useful when the cross-section of the work-

piece changes along the longitudinal axis.

2. Mathematical models

A workpiece with a non-uniform diameter structure can

be regarded as a non-prismatic beam in mechanics. The

workpiece has to be mathematically divided into a series

of equally spaced intervals so that within each section

a constant moment of inertia is kept. Let the sequence

number of the different sections is denoted by i. The

joint points between sections can then be described by

{x[i], i�1, 2, . . . , N}. The de¯ections of workpiece are

accordingly denoted by {y[i], i�1, 2, . . . , N} (Fig. 2).

If the equation for the de¯ected curve of the workpiece is

taken to be y�f(x), then the ®rst derivation (dy/dx)x�x[i] is the

slope of the curve at position x[i]. Provided the space

interval h is small, then the slope can be approximately
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expressed by

dy

dx

� �
x�x�i�
� y�i� 1� ÿ y�iÿ 1�

2h
: (1)

The rate of change of the ®rst derivation, i.e. the rate of

change of the slope (d2y/d2x)x�x[i] is given in the same way

approximately as the slope to the right minus the slope to the

left at position x[i] divided by the interval between them.

Thus

d2y

d2x

� �
x�x�i�

� ��y�i� 1� ÿ y�i��=h� ÿ ��y�i� ÿ y�iÿ 1��=h�
h

� �1=h2��y�i� 1� ÿ 2y�i� � y�iÿ 1��: (2)

When the second-order derivation for the de¯ected curve

of the workpiece is denoted by (d2y/d2x)x�x[i], which is

approximately equal to the curvature [12], the curvature

equation for the workpiece can be represented as

M�i�
E�i�I�i�

� ÿ d2y

d2x

� �
x�x�i�

; (3)

where, M[i] is the moment, E[i] the modulus of elasticity of

the workpiece material, I[i] is the moment of inertia for the

described section depending on the geometry of the cross-

section of the workpiece. The workpiece in turning opera-

tions is circular in cross-section, and the moment of inertia is

given by

I�i� �
��D4

�i� ÿ d4
�i��

64
; (4)

where, D[i] is the outer diameter and d[i] is the inner diameter

at position x[i].

Inserting Eq. (2) into Eq. (3) gives the ®nite difference

equation

Fig. 1. Diagram for a complicated workpiece (dimensions: mm).

Fig. 2. FD analysis for the deflected curve of a workpiece.
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M�i�
E�i�I�i�

� �
x�x�i�
� ÿ 1

h2
�y�i� 1� ÿ 2y�i� � y�iÿ 1��: (5)

To use the ®nite difference mathematical model Eq. (5) to

calculate the deformations, it is necessary to know the

boundary conditions that are given by clamping types. There

are generally three basic types of workpiece clamping:

� workpiece is clamped in a chuck only,

� workpiece is supported between two centers, and

� workpiece is held in the chuck at one end and is simply

supported on a center at the tailstock at another end.

3. FD calculations of the deflections of a workpiece
clamped in a chuck

Workpiece clamped only in the chuck can be regarded as a

cantilever beam (Fig. 3). The maximum de¯ection occurs at

the free end of workpiece where the radial cutting force is

acted. The boundary conditions are given that both the

de¯ection and the slope at ®xed end point are zero

y�1� � 0; and
dy

dx

� �
x�x�1�
� y�2� ÿ y�0�

2h
� 0: (6)

When the workpiece is divided into Nÿ1 equal intervals,

there will be Nÿ1 unknown de¯ections {y[i], i�2, 3, . . . , N}

to be obtained. The ®nite difference equation (5) at positions

x[1], x[2], . . . , and x[Nÿ1] along the workpiece length

becomes

y�0� ÿ 2y�1� � y�2� � M�1�h2

E�1�I�1�
;

y�1� ÿ 2y�2� � y�3� � M�2�h2

E�2�I�2�
;

. . .

y�N ÿ 2� ÿ 2y�N ÿ 1� � y�N� � M�Nÿ1�h2

E�Nÿ1�I�Nÿ1�
:

(7)

When the radial cutting force is acted on the free end of

the workpiece, the moments at positions {x[i], i�1,2, . . . , N}

are given by

M�i� � F�x�i� ÿ l�; (8)

where, l is the workpiece cutting length.

In the ®rst of Eq. (7), there appears a ®ctitious de¯ection

y[0] located at an imaginary point to the left of the ®xed

point (Fig. 3). This ®ctitious de¯ection can be expressed in

terms of the real de¯ections by using the second of Eq. (6)

for the ®xed end point, namely, that the slope is zero. The

result is y[2]�y[0]. Using the conditions y[1]�0 and

y[2]�y[0], a solution for any of the de¯ection values

{y[i], i�2,3, . . . , N} can then be obtained by solving the

resulting simultaneous equation (7).

To verify the mathematical model, the calculations have

been performed for a simple workpiece with length of

200 mm, outer diameter of 40 mm, and inner diameter of

zero. The cutting force of 200 N is applied at the free end of

the workpiece. The modulus of elasticity is E�2.0�105 N/

mm2. The theoretical solution for the workpiece is given by

[12]

y � Fx2

6EI
�xÿ 3l�: (9)

The workpiece is divided into 40 sections with equal

spaced interval h�5 mm for applying ®nite difference equa-

tion (7). The results from ®nite difference calculation and

the theoretical solution are shown in Table 1. The theoretical

solution for the simple workpiece at the free end gives a

maximum de¯ection of 21.2207 mm, and again the FD

calculation result is 20.4514 mm, which shows that the

results from FD have a very small difference compared with

the theoretical results. Obviously, the higher the number of

sections divided (the smaller h), the greater the accuracy of

solution of FD. Thus, the comparisons give con®dence in the

FD mathematical model.

The FD method is also applied to calculate the de¯ections

for the workpiece with dimensions shown in Fig. 1. Other

conditions are E�2.0�105 N/mm2 and h�2.5 mm. The FD

calculation results are shown in Fig. 4. It is very dif®cult to

use theoretical method to calculate the deformations for this

complicated workpiece. Although it can be solved through

®nite element method (FEM), FD is easier to implement. FD

Fig. 3. Diagram of a workpiece clamped by a chuck in turning.

Fig. 4. Deflection curve of a workpiece clamped by a chuck in turning.
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method is more able to cope with the de¯ections for wide

variety of workpiece shapes.

4. Calculation of the deflections of a workpiece
supported between the two centers

A workpiece that is supported between two centers is

shown in Fig. 5, and the cutting force is acted on the

intermediate of the workpiece x[i]�a. The workpiece itself

has no de¯ections at the supporting two centers, so the

boundary conditions are given by

y�1� � 0; and y�N� � 0: (10)

The moment for a workpiece that is supported between

centers while the cutting force is acted on the intermediate of

the workpiece is expressed as

M�i� �
F�lÿ a�x�i�

l
; �0 � x�i� < a�;

Fa

l
�lÿ x�i��; �a � x�i� � l�:

8><>: (11)

The ®nite difference equation (5) can be rearranged as

y�iÿ 1� ÿ 2y�i� � y�i� 1� � ÿh2 M�i�
E�i�I�i�

� �
x�x�i�

;

�i � 2; 3; . . . ;N ÿ 1�: (12)

Let ÿh2 M�i�=E�i�I�i�
ÿ �

x�x�i�� C�i�; �i � 2; 3; . . . ;N ÿ 1�,
the series of simultaneous equation (13) is then expressed

as

ÿ2 1 0

1 ÿ2 1

. .
. . .

. . .
.

. .
. . .

.
1

0 1 ÿ2

�����������

�����������

y�2�
y�3�

..

.

y�N ÿ 1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

C�2�
C�3�

..

.

C�N ÿ 1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
:

(13)

Applying Gauss elimination method to the series of

simultaneous equation (13)

1 ÿ1=2

1 ÿ2=3 0

. .
. . .

.

1 ÿ�iÿ 1�=i

0 . .
. . .

.

1

����������������

����������������

y�2�
y�3�

..

.

y�i�
..
.

y�N ÿ 1�

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

�

D�2�
D�3�

..

.

D�i�
..
.

D�N ÿ 1�

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
; (14)

where, D[2], D[3],. . ., D[i],. . ., D[Nÿ1] are constants after

Gauss elimination

D�2� � ÿ 1

2
C�2�; D�i� � ÿ iÿ 1

i
�C�i� ÿ D�iÿ 1��;

�i � 3; 4 . . . ;N ÿ 1�: (15)

Then, a solution for de¯ection values {y[i], i�2,3, . . . , N}

can be obtained by solving the resulting simultaneous

equation (14) and using the boundary conditions (10).

Table 1

The results from FD compared with the theoretical solution

X[i] (mm) FD deflection of

workpiece (mm)

Theoretical

results (mm)

Absolute

difference (mm)

Relative

difference (%)

0 0 0 0 0

20 0.30239 0.3077 0.005305 1.754396

40 1.16183 1.18836 0.026526 2.283118

60 2.51465 2.57831 0.063662 2.531645

80 4.29719 4.4139 0.116715 2.71608

100 6.44578 6.63146 0.185683 2.880692

120 8.89677 9.16733 0.270567 3.041184

140 11.5865 11.9579 0.37136 3.205112

160 14.4513 14.9394 0.48808 3.377417

180 17.4275 18.0482 0.6207 3.561614

200 20.4514 21.2207 0.76924 3.7613

Fig. 5. Diagram of a workpiece supported between two centers.
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The results are

y�N� � 0;
y�N ÿ 1� � D�N ÿ 1�;
y�i� � D�i� � iÿ 1

i
y�i� 1�; �i � N ÿ 2;N ÿ 3; . . . ; 2�;

y�1� � 0:

(16)

However, the de¯ections of workpiece depend on the

position x[i]�a, where the cutting force is acted. When

cutting tool feeds along the length of the workpiece, i.e. the

cutting points x[i]�a that are from l to zero, there will be a

variation in de¯ections over the length. Trying different a,

the maximum displacement of the workpiece can be

obtained. From Eq. (11) to Eq. (16), the de¯ection shape

curve y[i] can be expressed as

y�i� � f �y�i�; a�jfx � ag; a��0; l�: (17)

When the workpiece in Fig. 1 is supported between two

centers, the de¯ection shape curve for the workpiece is

shown in Fig. 6. Other conditions are given by: cutting

force applied at a�20, 70, 120, 170, 220, 270 mm, respec-

tively, and h�2.5 mm, E�2.0�105 N/mm2.

5. Calculation of the deflections of a workpiece held
between the chuck and the tailstock

The workpiece that is held in the chuck at one end and

another is simply supported on the center at the tailstock can

be regarded as a beam with one ®xed end and another the

simply supported end (Fig. 7). The cutting force is applied to

the intermediate of the workpiece at position x[i]�a. The

boundary conditions for this kind of workpiece clamping

method are also given by Eq. (10).

The moment is expressed as

M�i� �
F�lÿ a�

2l3
f�lÿ a�2lÿ l3 � x�i���3l2 ÿ �lÿ a�2��g; �0 � x�i� < a�;

Fa

2l3
�3l2 ÿ 3lx�i� ÿ al� ax�i��; �a � x�i� � l�:

8><>:
(18)

The remaining analysis is the same as for the workpiece

which is supported between two centers. A solution for

de¯ection values {y[i], i�2,3,. . .,N} can be obtained by

solving Eqs. (18), (12), (13) and (14) and using the boundary

conditions (10).

The workpiece has the same shape dimensions and mate-

rial as in Section 4 but it is ®xedly held in the chuck at one

end, and another is simply supported on the center at the

tailstock, its de¯ection shape curve is shown in Fig. 8.

6. Discussion and recommendations

It can be seen from Fig. 6 to Fig. 8 that the de¯ection

shape curve of the workpiece is sensitive to the clamping

Fig. 6. Deflection curves of a workpiece held between two centers.

Fig. 7. Diagram of a workpiece held between a chuck and a tailstock.
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methods. It yields far bigger de¯ections when a workpiece is

held in a chuck only than when it is held between a chuck

and a tailstock as well as between two centers. This is more

important for workpieces with a greater length-to-diameter

ratio. However, such results are obtained on the assumption

that the clamping and supporting devices are absolutely

rigid. It is virtually impossible to achieve this absolute

rigidity. In practice, the de¯ections for the headstock, tail-

stock, and supporting centers from the reaction of the cutting

force should be considered. The diameter errors due to

workpiece de¯ection under the cutting force in turning

depend on the combined rigidity of the machine±tool±work-

piece system and the clamping devices [1±3,5,13].

Once the errors are determined, some means for the error

corrections must be developed to improve the accuracy of

the machined workpiece. To eliminate the workpiece errors,

the common and easy way on CNC machining centers is the

workpiece program modi®cations. The nominal depth of cut

ap nominal is modi®ed in turning operations. The modi®ed

depth of cut ap modi®ed in turning process is the sum of the

nominal depth of cut and the workpiece prediction de¯ec-

tions y[i] at every cutting point [14]. Since in practice, the

data for the CNC turning are introduced through the desired

®nal diameters Ddesired, the corrections can be achieved

through programming the lathe to modi®ed ®nal diameters

Dmodi®ed by subtracting twice the modi®ed depth of cut from

the diameter before cutting (Fig. 9):

Dmodified�Ddesiredÿ ap modified � Ddesiredÿ 2�ap nominal � y�i��:
(19)

The proposed correction method decreases the diameter

errors caused by workpiece de¯ection. However, de¯ection

of workpiece is not the only source of machining errors.

Wears in cutting tools, thermal deformations and geometric

errors of machine tools, error transmission effects due to

variations in the cutting force along the workpiece caused by

variations in dimensions of cut, and vibrations of the

machine±tool±workpiece system contribute to diameter

errors in turning, too. These causes should be considered

for a comprehensive solution to achieve the high precision of

workpiece.

7. Conclusions

It is very dif®cult to use theoretical method to calculate

the deformations for the workpieces with non-uniform

cross-section areas. This paper presented an easily imple-

mented ®nite difference (FD) analysis method to predict the

deformations of multi-diameter workpieces during turning

operations. The results from FD calculations compare well

with the theoretical results for a simple workpiece with

uniform diameter, which gives con®dence of the FD analysis

method. Finite difference models have been developed to

describe the deformation of a workpiece with complicate

geometries that is clamped only in chuck, held between

chuck and tailstock, or held between supporting centers. The

cutting force, the workpiece material as well as shape

parameters are also taken into account. The results from

the FD calculation show that the workpiece de¯ection is very

sensitive to the clamping methods when the clamping and

supporting device are far more rigid. Based on the results of

calculation, a modi®ed correction method to compensate for

the de¯ections is presented for turning operations.

Fig. 8. Deflection curves of a workpiece held between a chuck and a tailstock.

Fig. 9. The modified diameter in the correction program.
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