解密暗物质分享 http://blog.sciencenet.cn/u/zyntiger 暗物质是连接宏观世界与微观世界的纽带,也是低速物理通向高速物理的桥梁,更是跨越经典物理与现代物理巨大鸿沟的有效工具!

博文

暗光子是什么,是暗物质吗?究竟是什么,有内部结构吗?

已有 1474 次阅读 2022-9-6 21:46 |个人分类:暗物质|系统分类:科研笔记

张延年 - 暗物质与宇宙模型.pdf



1 粒子分类

粒子的存在状态包括显现态和隐身态。只有对称的正反粒子偶极子才能处于隐身态,这是由于垂直于正反粒子偶极子偶极方向辐射最强,而平行正反粒子偶极子偶极方向辐射为零。如果把振动电子视为偶极,则在反射光方向辐射为零。也就是说,具有高度对称性的正反粒子偶极子只能向前传递电磁波,无法反射电磁波。因此,对称性完好的正反粒子偶极子可被称为隐态粒子场态粒子

实际上,暗物质是由隐态粒子构成的,而这些隐态粒子能够形成各种场。而这些粒子之所以能够成为隐态粒子主要由于对称性,而这些粒子实际上就是正反粒子对,而我们通常谈论的电偶极子实际上就是正反粒子偶极子,即:

暗物质=隐态粒子=场态粒子=对称粒子=正反粒子偶极子=电偶极子

除正反粒子偶极子以外的其他任何非对称粒子一定处于显现态,这是由于粒子的对称性破缺可以使电磁波反射,因此,对称性破缺的粒子可被称为显态粒子

光子是一种电磁相互作用的媒介粒子,实际上是粒子间相互诱导力,粒子通过相互诱导传递能量,主要表现形式是电磁波。锁定场态粒子、半锁定场态粒子和自由场态粒子均可以传递电磁波。

胶子是强相互作用的媒介粒子,实际上是粒子中锁定场态粒子传递的电磁相互作用。由于电磁力同时存在吸引力和排斥力,在平衡位置吸引力和排斥力平衡,形成所谓的渐近自由;当大于平衡间距时,吸引力显著大于排斥力,进而形成禁闭现象。

WZ玻色子是弱相互作用的媒介粒子,实际上是粒子间的半锁定场态粒子间传递的电磁相互作用,而半锁定场态粒子是弱相互作用粒子的组成部分,因此半锁定场态粒子不仅可以传递电磁相互作用,也可以相互传递粒子。

粒子共分为场态粒子、显态粒子和虚拟粒子3类。

场态粒子又称隐态粒子,场态粒子包括所有正反粒子偶极子,是一种对称粒子。场态粒子包括锁定场态粒子、半锁定场态粒子和自由场态粒子。

显态粒子是除正反粒子偶极子以外的其他任何非对称粒子。属于对称性破缺粒子。对称性破缺包括电荷对称性破缺、质量对称性破缺、运动状态对称性破缺等。

虚拟粒子是相互作用的媒介粒子,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,也可以理解为粒子间的能量交换。

虚拟粒子本质上是粒子间的相互作用,长期以来被称为粒子,这是为了衔接现有理论而提出的。虚拟粒子对于粒子的动力学研究至关重要,但物质与相互作用有着本质区别,虚拟粒子的概念将会被逐渐弱化,相互作用的概念会逐渐被强化并取代虚拟粒子而成为规范性描述词语。

2 量子场论的物质基础

在过去,大部分人认为正反粒子相遇便化为乌有,或凭空产生正反粒子对,这是由于他们不了解暗物质的本质。实际上,粒子是相互转化的,仅仅是一种物质转化为另外一种物质而已,物质并没有产生或消灭。

“场”这个名词是物理学家认识物质的历史产物,过去一直认为电荷间相互作用是由电磁场产生。光子是一种虚拟粒子,是粒子间相互作用的媒介粒子,是粒子间某种状态的相互作用,同时通过相互作用交换能量。量子电动力学就是采用这一思想建立起来的。量子点动力学采用光子交换来解释电荷间的相互作用,这就将显态粒子、场态粒子、虚拟粒子和场的概念统一起来。

然而,关于重力场的产生原因,至今没有得到本质解释。也有人提出重力场是由于物质间交换重力子所致,而重力子是否存在,尚无法肯定。

粒子间交换的光子实际上是通过粒子间的相互作用而交换的能量,而重力子本质上也是粒子间相互作用而交换的能量,只是由于场态粒子空间分布密度的梯度,致使场态粒子的空间对称性破缺,由于密度对称性破缺致使相互作用即交换能量产生差异,进而产生了差值。在这种意义上,重力子也是一种虚拟粒子,且是一种作用状态或能量交换的差值。

总之,场是粒子的表现形式,即场是粒子产生的,场的本身是粒子间伴随能量(光子)交换的作用传递。严格地说,尝试不同类型粒子的对称性破缺而产生的伴随能量(光子)交换的作用传递。由此可见,场论就是研究粒子的理论,场论的具体研究内容包括:

①研究粒子(包括场态粒子和显态粒子)的性质;

②研究粒子运动规律;

③研究粒子(包括场态粒子和显态粒子)间伴随能量(虚拟粒子或称光子)交换的相互作用;

④研究粒子(包括场态粒子和显态粒子)间相互转化的概率。

实际上,量子电动力学就是研究场态粒子、显态粒子通过交换虚拟粒子相互作用和相互转化的学问,是场论的重要内容。量子点动力学获得辉煌成就,它能够定量说明场态粒子、显态粒子和虚拟粒子的许多现象,特别是用量子点动力学的理论计算出来的电子附加磁矩和氢光谱能级,得到了实验的精确验证。但早期的量子电动力学还存在严重的缺点,就是用量子电动力学的理论计算出的电子自能,电子本身的质量、电荷等是无限大的,只能采用重整化消除这种无限大。而重整化的假设并没有包含在量子点动力学的原始理论和原始方程式中,因此破坏了逻辑的完整性。

量子场论为描述多粒子系统,尤其是包含粒子产生和湮灭过程的系统,提供了有效的描述框架。粒子产生和湮灭过程本质上就是场态粒子和显态粒子的相互转化过程。

实际上,量子场论是经典场论的自然推广,它能够解释所谓的粒子诞生与湮灭,而这些过程在量子力学中并不存在,而且量子场论能够“神奇地”解决量子力学中的因果问题。量子场论中最为简单实用的是量子电磁学。本质上场态粒子不断被激发而不断是正反粒子创生与湮灭。

在量子场论中,人类认为是粒子的物质其实是量子场自身的激发。实际上,是暗物质粒子,是正反粒子偶极子,是场态粒子,本质上就是场物质。

最被熟悉的电场和磁场,就是场态粒子之间伴随不断能量交换的作用传递。而这种能量传递以电磁波的形式交换传递,而这种以电磁波传递的能量是被熟知的光子,是一种虚拟粒子。

量子场是个复杂的体系。原因一部分在于其涵盖了物理学所有领域:量子场能够描述大量粒子以各种不同方式进行相互作用。另一个原因是量子场论的深奥。

海森伯测不准关系意味着量子场并不是静止的。相反,它会产生泡沫并沸腾,就像是由粒子和反粒子形成的一锅沸腾的汤,不断产生与毁灭。量子场论深奥之处就源于这一过程的复杂性,即便是理解量子场论中的虚无都十分困难。随着向真空中添加粒子,它会以各种有趣方式扭曲。大部分有关量子场论研究的目标在弄明白这种扭曲、弄明白扭曲是如何引起粒子间相互作用的,以及最终,粒子的相互作用又是如何形成各种美丽自然现象。这些理解过程并非易事。尽管距离量子场论的发现已经过去了几十年,想要理解量子场论中所有的精妙之处,前方仍有漫漫长路。

物质既不消灭,也不创生,其量总是守恒的,这就是所谓的物质守恒原理。物理变化中不论物体的形状、状态、位置如何变化,所蕴含的质量不变;物体分裂成几个部分时,各部分质量之和等于原物体质量。在孤立系统中,不论发生何种变化或过程,其总质量保持不变。质量守恒定律是自然界普遍存在的基本定律之一。它表明质量既不会被创生,也不会被消灭,而只会从一种物质转移到为另一种物质,总量保持不变。

物理变化质量守恒:物理变化中不论物体的形状、状态、位置如何变化,所蕴含的质量不变;物体分裂成几个部分时,各部分质量之和等于原物体质量。即使当物体加减速运动时,动质量也不会变化,动质量恒定等于静止质量。

化学反应质量守恒:化学反应因没有原子变化,质量总是守恒的。化学反应中的质量守恒包括原子守恒、电荷守恒、元素守恒等几个方面。

核反应的质量守恒:由于锁定场态粒子、半锁定场态粒子与自由场态粒子相互转化,锁定场态粒子和半锁定场态粒子位于显态粒子之中,这里存在着场态粒子和显态粒子的相互转化,表面上看,显态粒子的质量发生了变化,但本质上,仅仅是场态粒子和显态粒子的相互转化,质量仍守恒。

量子场论认为粒子可以凭空产生和消失,从此认为物质守恒定律被打破。而实际上,并不是粒子真的凭空产生或消失,而是场态粒子的对称性破缺与恢复的往复变化过程,也就是量子场论中场的基态和激发态的往复变化过程。场态粒子的对称性破缺而形成显态粒子,而对称性恢复又形成了场态粒子。量子场论认为的粒子凭空产生和消失本质上是场态粒子和显态粒子的相互转化,仅仅是粒子存在状态的变化,物质没有创生,也没有消灭。实际上,场态粒子是量子场论的物质基础。

3 场的本质

没有显态粒子(可见物质)或场态粒子(暗物质),就不会有场。只有场态粒子时,场态粒子通过相互作用而不断交换能量,这种相互作用而交换的能量为虚拟粒子。若不存在显态粒子,场态粒子处于均匀分布状态,场态粒子会保持良好的对称性,场态粒子的各种相互作用也是相对对称的,因此不会表现为场的特性。但场态粒子与周围的场态粒子不断相互作用交换能量,这种相互交换的能量只能通过微波背景辐射的形式表现出来。

虚拟粒子是场的表现形式,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,这种作用即包括显态粒子间的相互作用,也包括场态粒子间的相互作用,更包括显态粒子和场态粒子间的相互作用。总之,虚拟粒子是各种粒子间的相互作用,但这种相互作用在量子层级上主要通过交换能量来表现,而宏观上主要表现为场,即表现为显态粒子与显态粒子的“超距”相互作用。所有的场都是通过场态粒子以不同的作用形式传递的,因此,显态粒子的相互作用是不能超距的,只能通过场态粒子以不同场的形式传递。

当显态粒子出现在场态粒子中,由于显态粒子的不均匀分布、电荷的不均匀分布以及运动状态的不均匀,场态粒子存在的对称性破缺,进而产生不同势能,并形成各种场,即各种场是场态粒子的不同势能。

当场态粒子中出现显态粒子时,显态粒子一旦出现电荷对称性破缺,就会引起场态粒子规律性地电荷对称性破缺,场态粒子出现规律极化,进而产生电势能,并形成电场。场态粒子由于显态粒子的电荷运动状态出现对称性破缺,场态粒子内部电荷轨道偏转,进而产生磁势能,并形成磁场。场态粒子或显态粒子的势能变化一定伴随着粒子的相互作用,即虚拟粒子参与粒子间的相互作用,进一步地,如果没有虚拟粒子(相互作用或能量交换),粒子的运动状态或能量状态不会改变,场的状态也不会发生改变。由于电荷对称性破缺而进行的能量交换以电磁波的形式传递,光子就成为了相互作用而传递能量的虚拟粒子。

显态粒子质量对称性破缺,就会引起场态粒子规律性质量对称性破缺,进而产生场态粒子整体密度对称性破缺,场态粒子密度变化产生引力势能,并形成引力场。引力场也是通过场态粒子通过相互作用交换能量的电磁波传递,但由于场态粒子的密度分部不均匀,密度梯度引起受力不均匀,即引力场是密度分部不均匀形成的差值,而这个差值与密度梯度相关,因此引力远远小于电场力和磁场力。一般情况下,场态粒子密度梯度较小,场态粒子通过密度规律性变化传递引力波。由于场态粒子密度变化很少突变,且密度变化传递的电磁波差值是体波,能量衰减更快,因此,引力波很难探测到。

显态粒子一旦出现运动状态对称性破缺,就会引起场态粒子规律性运动状态对称性破缺,形成惯性势能。场态粒子粒子惯性势能的规律性变化传递惯性波。

场态粒子和显态粒子的作用都是通过虚拟粒子传递的,虚拟粒子本质上是各种粒子间相互作用交换能量,总体上是以电磁波的形式传递力和能量,即粒子间的相互作用可以采用波的形式进行描述。

4 粒子与场辩证统一

确认能够以自由状态存在的各种最小物质统称为粒子。电子、中子、质子等是最早认识的一批粒子,陆续发现了大量的粒子的数目达数百种,粒子是物质存在的一种基本形式。

场是物质存在的另一种形式,这主要在于各种正反粒子偶极子是弥散于全空间并形成各种不同的场,它们互相渗透和相互作用着。正反粒子偶极子的不同势能对应不同形式的场,场的激发表现为正反粒子偶极子电离或粒子对显现,不同激发态表现为粒子的数目和状态不同。场的退激发表现为粒子对结合或正反粒子偶极子隐身。场的相互作用可以引起激发态的改变,表现为粒子的各种反应过程,也就是说场是物质存在的另一种基本形式。

而物质处于显现态时主要表现为粒子性,处于隐身态时主要表现为场的特征。因此,物质的粒子和场是辩证统一的。

场态粒子内部的对称粒子时刻运动,偶极矩不断变化,产生各种不同的瞬时偶极。另外,场态粒子之间的瞬时偶极也会相互诱导,粒子间也会产生诱导偶极。场态粒子的各种运动状态的概率相同,因此整体上具有良好的对称性。

当只有场态粒子时,场态粒子电荷、质量、密度、状态等都是均匀的,具有良好的对称性。在没有显态粒子时,场态粒子对称性不会自发破缺。

当场态粒子中出现显态粒子时,显态粒子一旦出现电荷对称性破缺,就会引起场态粒子规律性地电荷对称性破缺,形成电磁场。即电磁场是由于显态粒子电荷对称性破缺引起场态粒子规律性电荷对称性破缺产生的。

显态粒子质量对称性破缺,就会引起场态粒子规律性质量对称性破缺,进而产生场态粒子整体密度对称性破缺,形成引力场。即引力场是由于显态粒子质量对称性破缺引起场态粒子规律性质量对称性破缺产生的。

当显态粒子一旦出现运动状态对称性破缺,就会引起场态粒子规律性运动状态对称性破缺,形成惯性场。即惯性场是由于显态粒子运动状态对称性破缺引起场态粒子运动状态对称性破缺产生的。

只有显态粒子或只有场态粒子都不会形成场,只有显态粒子和场态粒子不断地相互作用才能产生场。场是场态粒子和显态粒子相互作用形成的,粒子和场是辩证统一的。有的时候我们专注于粒子的粒子性,有的时候我们专注于粒子的场的特性,但二者是无法分割的,因此场具有粒子的一切特征,包括质量、动量和能量。

5 小结

(1) 宇宙之所以有序运转,一切皆因万有引力。如果失去万有引力,宇宙将陷于极度混沌状态,更不会有生命的存在。因此,要了解宇宙的过去、现在与未来,首先要了解万有引力规律。

(2) 暗物质粒子是连接星系与行星的谱带,暗物质具有传递能量的粒子效应。暗物质可以与不同可见物质相互作用,是物质间万有引力的传递桥梁,并能够合理解释万有引力超距作用。

(3) 已经有大量的实验研究表明在真空中可以生成电子对,且电子对可以湮灭消失,暗物质粒子是稳定的正反粒子偶极子粒子,但主要成分为电子偶极子。

(4) 建立暗物质正反粒子偶极子模型,一个正反粒子偶极子中含有一对正反粒子,正反粒子相互作用,不停地围绕共同的中心做圆周运动,在一般的情况下,正反粒子偶极子既不显电性也不显磁性。

(5) 正反粒子偶极子是一种能量较低的稳定粒子,在一定条件下吸收足够的能量电离成电子对;而电子对在一定的条件下释放出能量,形成较稳定的正反粒子偶极子。

(6) 正反粒子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力,均同时存在吸引力和推斥力。当正反粒子偶极子处于任何一个稳定的平衡状态时,吸引力与推斥力平衡,此时间距为平衡间距;当正反粒子偶极子间距小于平衡间距时,吸引力与推斥力均提高,而推斥力提高较快;当正反粒子偶极子间距大于平衡间距时,吸引力与推斥力均减小,而推斥力降低较快。而这里的平衡态,都是暂时的,一旦边界条件或内部条件变化,都会形成一个新的平衡态。

(7) 可见物质与正反粒子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力,均同时表现为吸引力和推斥力。因此,可见物质与正反粒子偶极子之间的作用力主要表现为吸引力和推斥力。随着间距增大而减小,随着间距减小而增大。在一定距离内,瞬时取向力和瞬时诱导力主要表现为相互吸引力,总会吸引一定数量的正反粒子偶极子在可见物质周围,因此二者有变密的趋势。当密度逐渐增大,使正反粒子偶极子有压缩变形的趋势,使推斥力增加较多,正反粒子偶极子在一定密度时,吸引力和推斥力达到平衡状态。

(8) 正反粒子偶极子遍布整个宇宙。如果没有可见物质,正反粒子偶极子将均匀分布。当空间存在可见物质,正反粒子偶极子的密度提高,可见物质质量越大,正反粒子偶极子的密度提高越多。正反粒子偶极子的密度具有一定的梯度,随着距离增加而密度降低。

(9) 电场是由正反粒子偶极子规律极化产生的,可采用正反粒子偶极子的极化来表示电场,采用正反粒子偶极子的极化强度可表示电场强度。采用正反粒子偶极子的极化表示电场反映电场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。用正反粒子偶极子的极化强度计算能够准确反映电场强度。

(10) 由于电流存在,是正反粒子偶极子内的正反粒子轨道发生偏转,此时,正反粒子偶极子内的正反粒子的轨道不在一个平面内运动,而是分别在两个交叉的平面内运动,如果稳定的电流,会致使正反粒子偶极子内的正反粒子的运行平面发生偏转,形成稳定的磁场。磁场是正反粒子偶极子内的正反粒子的运动平面发生规律偏转产生的,可采用正反粒子偶极子的偏转来表示磁场,采用正反粒子偶极子的偏转率表示磁场强度。采用正反粒子偶极子的偏转表示磁场反映磁场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。正反粒子偶极子偏转强度计算能够准确反映磁场强度。

(11) 电磁波是正反粒子偶极子震荡传递的,震荡正反粒子偶极子本质上是微观震荡电偶极子,也是电磁波传递机理背后的物理原因。采用正反粒子偶极子的振荡频率区分电磁波种类,这反映电磁波本质上是暗(实体)物质的相互作用规律,使暗(实体)物质与(电磁)场物质合理统一。

(12) 引力场是由正反粒子偶极子密度规律变化产生的,可采用正反粒子偶极子的密度变化表示引力场,采用正反粒子偶极子的密度变化率表示引力场强度。引力始终指向正反粒子偶极子密度梯度增加最大方向是可见物之间只存在引力而不存在斥力的物理原因,并且是引力场超距作用的根本原因。因此正反粒子偶极子引力不仅具有合理的理论基础,更具有坚实的物质基础。正反粒子偶极子无处不在地存在使引力这种梯度力能够伸向无穷远。采用正反粒子偶极子的密度变化表示引力场反映引力场本质上是暗(实体)物质的规律变化,使暗(实体)物质与(引力)场物质得到合理统一。正反粒子偶极子密度变化计算和正反粒子偶极子吸引强度计算均能够准确反映引力场强度。

(13) 采用正反粒子偶极子模型可以很好地解释电场、磁场、电磁波和引力场,实现了场论的统一。暗物质正反粒子偶极子理论建立在暗物质极化、定向偏转、震荡感应和密度变化的基础上,放弃了物质引起时空变形的弯曲时空理论。通过进一步的正反粒子偶极子模型研究,可以逐渐取代场论的概念,使场具有实体物质的物理含义。

(14) 暗物质和可见物质在本质上没有区别,且二者可以相互转化;唯一的区别是暗物质粒子是对称粒子组成,而可见物质粒子是不对称的。

(15) 粒子的存在状态包括显现态和隐身态。只有对称的正反粒子偶极子才能处于隐身态,这是由于垂直于正反粒子偶极子偶极方向辐射最强,而平行正反粒子偶极子偶极方向辐射为零。如果把振动电子视为偶极,则在反射光方向辐射为零。场态粒子包括所有正反粒子偶极子,是一种对称粒子,暗物质=隐态粒子=场态粒子=对称粒子=正反粒子偶极子=电偶极子。

(16) 显态粒子是除正反粒子偶极子以外的其他任何非对称粒子,属于对称性破缺粒子。虚拟粒子是相互作用的媒介粒子,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,也可以理解为粒子间的能量交换。虚拟粒子本质上是粒子间的相互作用,长期以来被称为粒子,这是为了衔接现有理论而提出的。虚拟粒子对于粒子的动力学研究至关重要,但物质与相互作用有着本质区别,虚拟粒子的概念将会被逐渐弱化,相互作用的概念会逐渐被强化并取代虚拟粒子而成为规范性描述词语。

(17) 只有显态粒子或只有场态粒子都不会形成场,只有显态粒子和场态粒子不断地相互作用才能产生场。场是场态粒子和显态粒子相互作用形成的,粒子和场是辩证统一的。没有可见物质影响时,暗物质本身不能形成场。当受到外界物质影响时,产生不同的势能,并形成各种场,即各种场是场态粒子的不同势能。

(18) 量子场论认为的粒子凭空产生和消失本质上是场态粒子和显态粒子的相互转化,仅仅是粒子存在状态的变化,物质没有创生,也没有消灭。实际上,场态粒子是量子场论的物质基础。



暗物质是当今物理学前沿的基本问题之一。物理学家提出了多种暗物质模型,本文将介绍其中一种——暗光子。它是一种矢量规范玻色子,有着与光子类似的特性,并且其质量范围较广。暗光子首先是作为连接可见物质世界和暗物质世界的媒介粒子,同时也可以作为暗物质粒子本身。目前多项实验给出了暗光子和可见物质耦合限制,包括加速器实验、天体物理观测实验等,尽管还未直接探测到暗光子,但该领域仍有广阔的探索空间。暗光子或许是开启暗物质世界的一枚钥匙。

如何通过可见物质寻找暗物质是当今粒子物理的前沿热点问题。暗光子是理论学家构建的沟通可见物质世界和暗物质世界的媒介粒子之一,它是一个矢量规范玻色粒子粒子,同时它的相互作用与光子基本类似,只和带电荷的粒子进行相互作用,故而被称为暗光子。它可能是通往暗物质世界的桥梁,亦或是暗物质本身。

1

提出暗光子的物理动机

我们的可见物质世界由各种不同的基本粒子构成:组成物质的三代费米子,传递电磁、弱和强相互作用力的矢量规范玻色粒子,以及给予基本粒子质量的希格斯粒子。不同的基本粒子构成各种各样的复合粒子,例如强子(质子和中子等)和介子。最后,多个强子构成原子核,形成了今天丰富多彩的可见物质世界。根据PLANCK卫星天文观测结果显示,暗物质构成宇宙丰度的26%。相比于标准模型可见物质的宇宙丰度 5%,暗物质所占的宇宙能量密度比可见物质大了5倍[1]。因此,人们有理由相信暗物质世界具有丰富的物质结构和多种多样的粒子。但是直到今天,粒子物理的各种实验仍然没有找到暗物质。一种理论认为存在连接暗物质世界和可见物质世界的媒介粒子[2, 3],这种媒介粒子在暗物质世界的耦合强度和标准模型常见的耦合强度相当,但是它和可见世界的耦合强度很小,因此我们至今没有直接探测到暗物质。这种媒介粒子可能是轴子、类轴子、希格斯粒子或者暗光子等玻色粒子。今天我们主要介绍暗光子的物理模型,它可以提供暗物质世界的规范相互作用。同时,如果暗光子自身的质量低于2倍电子质量的时候,它不能衰变到质量最轻的带电粒子电子。此时,它可以通过圈图衰变到3个光子。结合其微弱的相互作用系数,它的寿命可以超过宇宙的年龄,成为一种暗物质候选者[4-6]。现在大家引用最多的暗光子模型是由1986年由加拿大多伦多大学的Bob Holdom教授提出的,最早的文献可以追溯到19世纪60年代的苏联物理学家Lev Borisovich Okun教授的相关文章。

2

暗光子的质量和相互作用

为了更清楚地了解暗光子,我们先介绍标准模型中的电中性的规范玻色子。标准模型的成功之一是通过规范相互作用描述了强、弱和电磁相互作用力。这三种相互作用通过数学上的规范群SU(3)C, SU(2)L,和U(1)Y的引入来实现。因为强相互作用群不与其他两个规范群混合,一般也不与暗光子混合,所以这里我们着重介绍左手相互作用群(SU(2)L)和超荷相互作用群(U(1)Y)。

20世纪50年代中期,杨振宁先生和李政道先生提出弱相互作用可能会破坏宇称,很快地,吴健雄先生于1957年通过钴60的实验发现弱相互作用确实宇称不守恒。因此杨振宁先生和李政道先生于1957年获得诺贝尔物理学奖。理论学家根据弱相互作用的宇称不守恒性质提出只有左手手征的费米子参与弱相互作用,所以由W玻色子传播的带电流弱相互作用对应标准模型中SU(2)L场。

另外,实验学家发现电中性流的弱相互作用的宇称破坏程度比带电流小,因此说明Z粒子不止与左手费米子相互作用,同时也与右手费米子相互作用。这对应标准模型中SU(2)L和U(1)Y的场(

)混合得到电中性的、传播弱相互作用和电磁相互作用的本征态Z玻色子和光子 (γ) ,而费米子作为SU(2)L和U(1)Y的本征态,从而实现电中性流的弱相互作用的宇称部分破坏。

暗光子(A')是相对标准模型里的光子而命名的。假设暗物质世界也存在一个暗规范群U(1)D,那么暗光子将和对应的暗物质带电流耦合。由于阿贝尔规范群的场强自身是规范不变的,因此我们可以写下规范不变的4维的U(1)D和U(1)EM场强耦合项,其耦合强度记为ϵ [7]。另外,暗光子本身可以通过希格斯机制或者斯特科贝尔克机制获得质量,因此整个理论有两个参数,一个是暗光子质量mA',另一个是耦合强度ϵ。上述场强耦合项也可以通过完整的紫外粒子模型来获得。例如有非常重的费米子同时带有U(1)D和U(1)EM,在一圈图的水平上可以产生场强耦合项。另外,由于场强耦合项是4维的边缘算符,其耦合强度对数依赖于重费米子的质量,因此即使新粒子的质量很重依然会影响到红外端的物理现象。在通过适当的转动和重定义粒子场可以消除场强耦合项,使得暗光子和标准模型光子同时正则化。在这个基里面,暗光子会耦合到可见世界的电磁流,其耦合强度为ϵe,正好比普通光子小ϵ倍。因此,暗光子本身可以连接可见世界的电磁流和暗物质世界的暗电磁流。这种通过场强耦合项进行相互作用的有质量粒子被称为“动力学混合的暗光子”[8]。如果标准模型的电磁相互作用流为Jμ,暗光子的相互作用流为J'μ,那么我们可以有效的表示出暗光子相关的相互作用拉适量

更一般地,如果场强耦合场是包括U(1)D和U(1)Y,在消除耦合项时需要把Z规范玻色子也同时正则化。如果暗光子质量远低于Z玻色子质量时,相互作用拉适量与上式相同。

除开此类暗光子,如果暗光子是无质量的,那么场强耦合项可以导致标准模型光子 (γ) 耦合到暗规范群U(1)D的对应流,耦合强度为ϵe',这类模型被称为毫电荷 (Milli-charged) 模型。最后一种情况是,暗光子直接耦合到标准模型的费米子,例如重子数减去轻子数作为荷的U(1)B-L模型,或者不同轻子代数之差作为荷的U(1)Li-Lj模型[9]。我们下面将主要介绍动力学混合的暗光子。

3

暗光子的衰变和产生

对于有质量的暗光子,其质量的参数空间很大,一般的以2倍的电子质量作为一个分水岭(电子是标准模型中质量最小的带电费米子)。大于2倍电子质量的暗光子通过与标准模型光子或者Z玻色子的混合可以衰变到标准模型的各种粒子。小于2倍电子质量的暗光子只能衰变到三个光子,并且衰变宽度受到极大压低,因此极低质量的暗光子可以作为暗物质的候选者。除此以外,如果暗光子的质量大于暗物质世界相互作用流J'μ里面的暗物质质量,那么暗光子衰变到暗物质,对于可见世界是不可见的。

由于迄今为止实验只可观测标准模型粒子,所以文献上一般给出暗光子衰变到可见物质的分之比(

)。如图1所示,暗光子总的衰变宽度

正比于暗光子质量。当暗光子质量

,它的衰变分支比与暗光子的质量有关。因为不同的质量的衰变道有所不同。当暗物质质量

,暗光子将会衰变到夸克和轻子,而不再是介子。此时,暗光子的各种分支比接近常数,不再随暗光子质量发生大的变化,除非有新的标准模型粒子衰变道打开。图1:动力学混合的暗光子衰变到标准模型粒子的分支比[10]。

有质量的暗光子可以在高能粒子碰撞和对撞实验里面产生。根据暗光子和标准模型的相互作用以及不同的实验初态的不同,其在探测器上主要涉及的产生过程包括:1)轫致辐射;2)正负电子湮灭;3)介子衰变;以及 4)Drell-Yan过程。

1)轫致辐射过程:高能电子打击固定靶,可以辐射出暗光子,

2)正负电子湮灭:高能正负电子对湮灭,可以得到暗光子和伴随产生的光子,

3)介子衰变:质量大于暗光子的介子可以衰变到暗光子和光子(一般可以是π0,η等中性介子),

4)Drell-Yan过程:一对正反夸克可以产生一个在壳或者非在壳暗光子,随后暗光子衰变到标准模型粒子,

4

暗光子作为可见世界和暗物质世界的媒介粒子

一般,无论是有质量还是无质量的暗光子,都可以作为连接暗物质和可见世界的媒介粒子。所以,有可能通过该媒介粒子实现暗物质的宇宙丰度,根据暗物质和暗光子的质量关系,暗物质可以湮灭到标准模型粒子或者暗光子,如图2所示。图2:暗物质通过暗光子的湮灭费曼图

上述湮灭过程属于热退耦合型暗物质湮灭。其暗物质的宇宙丰度和湮灭截面的关系可以简单的表示为:

如果暗物质质量较大,那么暗物质主要湮灭到一对暗光子(图2的左图),该湮灭截面主要依赖于暗物质质量

和暗物质与暗光子的相互作用强度:

。即使暗物质和可见物质的耦合系数ϵ比较小,暗物质丰度只和暗物质与暗光子的相互作用强度αD有关,因不受ϵ影响。通常,由于αD可以比较大,该湮灭道足以提供暗物质需要的湮灭截面。而媒介粒子与可见世界的耦合强度ϵ很小,因而直接探测实验的信号非常的小。所以人们可以解释暗物质直接探测实验的零结果。此类模型成为隐匿的暗物质湮灭模型[11]。

当暗物质质量低于暗光子质量时,暗物质可以通过暗光子湮灭到标准模型费米子对。其湮灭截面可以近似的表示为

这种情况下,如果湮灭截面大到足以解释暗物质宇宙丰度,它通常意味着暗物质直接探测实验中较大的暗物质散射截面。在这种情况下,大部分的参数空间已经被当前暗物质实验XENONnT和我国的PandaX-4T、CDEX等实验排除了。一个可能的存活区间是暗光子质量正好是暗物质质量的2倍,这样湮灭截面存在共振增强,使得较小的耦合系数也能满足宇宙丰度要求,进而减小了暗物质与可见物质散射截面。

5

暗光子的探测现状

由于暗光子和可见物质有耦合,我们可以直接通过可见物质世界来搜寻暗光子。

5.1 暗光子质量大于2倍电子质量

当暗光子质量大于2倍电子质量时,其可见物质衰变分支比是确定的。该质量区间的暗光子理论计算和实验探测已经有相当多的研究。根据暗光子在不同探测器上的产生和衰变过程,可以将实验探测分为(a)对撞机实验和(b)固定靶实验。图3显示了当前各种实验对高质量暗光子的耦合系数大小的限制。

(a)对撞机实验:这一类实验是寻找暗光子衰变到

的末态,通过不变质量谱来寻找暗光子的信号。不同的实验暗光子的产生机制不同:KLEO、BaBar、BESIII实验室通过正负电子湮灭得到暗光子。在质子-质子对撞机上(例如,LHCb和CMS),根据暗光子质量的不同,可以通过介子衰变(当暗光子质量很轻时),轫致辐射和Drell-Yan过程产生暗光子,并探测其衰变的轻子对。图3:质量大于2me,全部衰变到可见物质的暗光子现有实验限制结果[8]和未来实验的灵敏度[12]。

(b)固定靶实验:这一类实验是通过高能电子或质子打击固定靶材料来产生暗光子,主要过程也可以包括轫致辐射、介子衰变和Drell-Yan过程。实验示意图如图4所示。暗光子产生之后不会立刻衰变。在移动一段距离后,它衰变为一对带电粒子从而在探测器上留下信号。所以一般的固定靶实验探测的都是长寿命的基本粒子,适用于暗光子的相互作用强度很小的情况。图3中的E141,NA64,E137,SLAC和E774实验使用的是电子束流,而CHARM实验使用的是质子束流。图4:固定靶实验示意图

除开暗光子的可见衰变,它也可以通过暗物质世界相互作用流J'μ衰变,因而是不可见的。对撞机实验可以通过探测末态的丢失能动量来限制暗光子的耦合系数。我国的北京正负电子谱仪可以通过正负电子湮灭过程

来探测A'。由于A'不可见,实验信号表现为一个单能的光子,有明显的能动量丢失。对于此类信号,人们通常假设其不可见分支比为100%,来对信号进行限制,实验限制结果见图5。图5:全部衰变到不可见物质的暗光子实验限制[13]。图6:低质量暗光子实验探测现状[14]。

5.2 暗光子质量小于2倍电子质量

当暗光子质量小于2倍电子质量,它将不再衰变到标准模型费米子,而是衰变到三个光子,并且寿命相对较长。另外,由于其极低的质量,需要通过其它的非加速器实验来寻找该类暗光子。主要的实验探测方式有以下几种:图7:激光穿墙实验示意图。

(1)激光穿墙实验,也称为光子再生实验(Light Shining through Wall, 图6中标记为LSW)。由于光子和暗光子之间有振荡,所以光子在传播过程中有一定的几率转换为暗光子。实验从左边提供强激光,由一道墙体去除原来的光子之后,只有振荡成为暗光子才可以穿过墙体,并且再次转换为光子。最后,实验上就可以通过光子探测探测器来限制光子和暗光子的耦合系数ϵ。图8:太阳暗光子直接探测实验示意图[15]。

(2)第二类实验将天体行星作为实验室[Stars as Laboratories for Fundamental Physics, 这是一本书]。它的主要思想是利用了天体行星内部的致密热环境,其内部的高能光子可以转化为暗光子。由于暗光子与可见物质的相互作用很小,它可以逃离致密的天体行星环境。因此,每一个天体行星都可以看作一个暗光子的源。

对于太阳来说,我们可以根据其耦合系数ϵ来计算来自太阳的暗光子单位面积流强代表实验为欧洲核子中心太阳轴子望远镜 (CERN Axion Solar Telescope),图6中标记为CAST。CAST实验采取了主动直接探测的办法。

另外,也可以采取被动的方式来限制暗光子。由于暗光子的逃逸,带走了天体行星的能量,因此会扰乱天体行星的正常演化。一个简单的标准是暗光子带来的能量流失速率要低于天体行星本身通过光子的散热速率(亮度)。人们使用太阳、水平支恒星、红巨星等天体来限制暗光子的耦合系数强度,在图6中标记为Solar、HB、RG[14]。

(3)库仑力实验(图中标记为Cavendish-Coulomb):暗光子的存在可以修改我们熟知的库仑定律,其中第二项是有质量的暗光子带来的汤川势能修正。因此,实验可以通过原子核实验对库仑定律的测量来限制暗光子的质量和混合系数[16]。

(4)早期宇宙限制:在早期宇宙中,光子存在几率振荡转化为暗光子A',然后暗光子逃逸进而改变了可见部分光子谱,在图6中标记为COBE/FIRAS[17]。尤其是随着早期宇宙宇宙膨胀过程,等离子体的密度随时间而减小。当等离子激元(plasmon)的质量和暗光子质量相等时,振荡会有共振增强。

现有的实验观测已经排除了很大部分暗光子参数空间。暗光子模型是一类具有良好物理动机的连接可见世界和暗物质世界的媒介粒子。因此,探测暗光子是探索暗物质世界的一种重要手段。粒子物理理论家和实验家也提出各种提议,进一步在更大的参数空间搜寻暗光子。

6

暗光子自身作为暗物质

当暗光子质量很低的时候,它的标准模型衰变道为A'→3γ。该过程是一圈过程,受到高阶的结构精细常数α和电子质量me的压低。如果选取较小的ϵ(见图6中的白实线和白虚线),可以使得暗光子的寿命长于宇宙寿命,因此可以作为暗物质的候选者。由于其非常低的质量,暗光子的宇宙丰度获取机制与暗物质热退耦合机制完全不同。通常,暗光子暗物质需要通过另外的机制来获得正确的宇宙丰度,例如增强的错位机制、宇宙弦衰变、暴涨涨落等。

上一节我们介绍了几种主要的暗光子实验限制。然而,上述限制并不要求暗光子是暗物质。前面暗光子不是暗物质的情况中,我们需要暗光子的源,不论是实验室主动产生或者是天体作为热源产生。而在暗光子作为暗物质的情况,暗光子有一个宇宙学上给定的能量密度。实际上,暗光子作为暗物质之后,通常实验对其耦合系数的限制还会变得更强。其原因是暗光子暗物质的存在,会通过它对电磁相互作用流的耦合,影响我们的可见物质世界。暗光子暗物质对可见物质的影响,相当于一个广泛存在于空间中暗电磁场。暗电磁场的能量密度等于暗光子暗物质的能量密度,它对可见物质的影响与普通振荡电磁场类似,振荡频率与暗光子的德布罗意频率相同,但是相互作用强度受到耦合系数的压低。对于暗光子暗物质,有以下几类主要的实验限制:

(1)暗光子暗物质对星际物质的加热(图6中标记为DPDM heating):星系里的物质、气体云等含有被电离的自由电子,它们在暗光子暗物质的等效振荡电磁场中被加热,会影响其自身的散热曲线。天文学对星际物质的加热和散热曲线的观测研究,可以限制暗光子暗物质的耦合系数。

(2)暗光子暗物质对宇宙微波背景辐射的影响(图6中标记为DPDM):在宇宙早期,暗光子暗物质可以发生振荡A'→γ,成为可见物质世界的光子。因此,额外光子的注入将会破坏宇宙微波背景谱的形状,受到PLANCK卫星实验观测的限制。

(3)暗物质直接探测中的电信号事件:在暗光子暗物质的质量为10-105电子伏特的范围时,当暗光子暗物质进入到直接探测实验探测器内,探测物质的原子核中的电子可以吸收暗光子然后被电离,然后产生电信号事件。因此,暗物质直接探测实验如我国的PandaX、CDEX等均可以限制暗光子暗物质。

(4)实验室谐振腔共振探测(图6中的ADMX、HAYSTAC等):目前实验室通常使用高品质因数的谐振腔,在添加强磁场后用来探测理论上预言的轴子粒子。该类实验也可以用于暗光子暗物质,而且不需要添加磁场。实验通过调整谐振腔的共振频率,对不同质量的暗光子暗物质进行扫描,常见的扫描频率在GHz附近。

(5)实验室宽频谱搜寻(图6中WISPDMX、Dark E-field等):此类实验使用偶极天线或是高品质谐振腔,但是它记录一个带宽约为500MHz的数据。它可以同时搜寻在此带宽中的共振信号和非共振信号,探测范围在10MHz—GHz的微波波段。

(6)天文射电望远镜探测(图6中FAST):本文作者之一和合作者曾提出利用天文学微波望远镜的数据来限制暗光子暗物质的耦合系数。第一种方法是,在太阳的日冕层中,等离子体密度随着远离太阳而下降,因此其中的等离子激元的质量也在下降。暗光子暗物质广泛存在于太阳周围。对于固定质量的暗光子,它在某个半径时,自身质量等于等离子激元的质量,因此可以共振转化为单频光子。天文射电望远镜,可以观测来自太阳的单频光来限制暗光子暗物质的耦合系数[18]。

第二种方法是,暗光子暗物质会导致天文射电望远镜的反射镜面上或者天线阵列中的自由电子发生振荡,产生对应频率的电磁波信号。它等效于天文射电望远镜自身吸收了暗光子,并将其转化为可见光子。我们计算了我国的五百米口径球面射电望远镜FAST(天眼)对暗光子暗物质的限制,填补了GHz之上的空白[19]。未来,我国参与的平方公里阵列射电望远镜SKA将会有更强的灵敏度。

7

总 结

天文学已经证实暗物质的存在,但是如何找到暗物质,乃至打开暗物质世界的大门仍然是粒子物理的科学前沿问题。暗光子理论提供了从可见世界通往暗物质世界的桥梁,其意义远超过发现一个新粒子。暗光子不一定是唯一的通往暗物质世界的桥梁,但是其简洁的理论形式为实验搜寻该类媒介粒子,提供了一个优秀的范本。迄今为止,已有很多粒子物理学家在暗光子方向上付出了相当多的努力,当前的实验限制能够横跨10-20eV到TeV的暗光子质量。由于暗光子质量范围广阔,单个实验不可能覆盖所有区域。因此,不同物理学科的实验协同和互补,以及物理学家的交流和沟通至关重要。当前,有更多的实验正在规划和建造,理论上也有更多的思考和探索,希望在未来能够找到真正通往暗物质秘密的钥匙。




https://m.sciencenet.cn/blog-225458-1354266.html

上一篇:量子谐振子的物理意义!
下一篇:暗光子是什么,有质量吗?是载力物质吗?

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-12 00:35

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部