大毛忽洞分享 http://blog.sciencenet.cn/u/大毛忽洞 自留地是桃花源,只种颜色不耕田。 点击 【博文】 看分类目录 邮箱: lishchlishch@163.com;lishchlishch@gmail.com

博文

中国创新的软肋:买刀的欺负造刀的 精选

已有 13247 次阅读 2008-3-18 10:08 |个人分类:背景和内涵|系统分类:观点评述|关键词:学者

一个国家创新的龙头是科技(第一生产力),仪器设备又是龙头的大脑。
问题是:创造仪器的比不上仿造仪器的,仿造仪器的又比不上买商品仪器的。用他的仪器不如用你的仪器,用你的仪器不如我也买一台仪器。最后的结果是:
中国有30座Modis卫星系统,据说还要建设 50 ,实现一个科研组一座(这似乎有点土匪的味道,一个山头一座)。
参考文献:
中国科技界,涌现出了一批买刀人,他们既不会造刀,也不会(像关羽那样)使刀。他们唯一擅长的工作能力就是用手中的科研经费去买刀。30座Modis卫星系统就证明了这一点。
在古代,造刀人和用刀人,各有各的本事。
      《三国演义》里,关羽的武器是青龙偃月刀,刀与人如影随行,人与刀完全融为一体。
关羽是善于使用青龙偃月刀的天下第一人。
传说中,天下第一铁匠选月圆之夜打造了青龙偃月刀。
造刀的人,只会造刀,而不会用刀;用刀的人,只会用刀,而不会造刀。
这就是古代的分工:英雄关羽只会用刀,而不会造刀。英雄铁匠只会造刀,而不会用刀。
 
现在的情况不一样了,真正善于用刀的人,也都是善于造刀的人。
Ernst Ruska是第一次使用电子显微镜的人,Gerd Binnig Heinrich Rohrer是第一次使用STM的人。因为他们要制造的东西,在世界上还不存在。因此,他们必须一边设计,一边制造,同时还要一边使用。
他们不是铁匠,但是必须要亲自动手制造;他们不是将军,但是必须能够亲自拿起自己造的“武器”,还要“表演”的得心应手。
现在,他们设计的电子显微镜已经是非常普通的商品,只要有钱就能买到,而且是要多少有多少。
 
如果是造一台世界上还不存在的仪器设备,这种制造过程就是100%的创新过程。我们最缺少的就是这种过程,看看周围实验室的仪器设备,就知道了。如果都是清一色的进口的商品仪器设备,这个实验室的主要任务就是炒菜,唯一的能体现创新点的地方就是配方(recipe)和处理工艺(procedure),其成果的载体往往是文章的篇数(只统计文章的篇数)。
    未商业包装了的新仪器设备,可以实现“造刀人”的新思想。下面的“造刀人”在“造刀”的过程中,走的就是一条创新的道路。等把这些仪器设备商业化包装之后,好几年过去了,因此,有钱不一定就能买到新的东西。

Sketch of a synthesis reactor with a continuous CO2 laser device
Sketch of an electric arc reactor
Schematic of an e-beam deposition system
First commercialized version of the Nanogen Molecular Biology Workstation. This includes the controller and fluorescent detection component ((a) upper left) and the loader system ((b) upper right) which can be used to address four 100-test site cartridges with DNA samples or DNA probes. The cartridge component containing the a 100-test site chip is shown in the lower left (b), and the 100-test site chip is show in the lower right (c)
Electromagnetically actuated microvalves: (a) schematic illustration and (b) photograph of the electromagnetically actuated microvalve as a part of lab-on-a-chip
Generation of compound drops through coaxial flow generated in a microfluidic device. Parameters such as the shell thickness, the internal droplet number and the sizes of the internal droplets could be individually controlled.
Principles of operation of  a commercial smallsample AFM/FFM
Principles of operation ofa large-sample AFM/FFM
Schematics of a commercial AFM/FFM made by Digital Instruments Inc. (a) Front view
Schematics of a commercial AFM/FFM made by Digital Instruments Inc. (b) side
Schematics of a commercial AFM/FFM made by Digital Instruments Inc. (c) base, and (d) cantilever substrate mounted on cantilever mount (not to scale)
One-chamber UHV system with variable-temperature STM based on a flow cryostat design. (Courtesy of RHKTechnology, USA)
Three-chamber UHV and bath cryostat system for scanning force microscopy, front view
Dynamic AFM operated in the self-excitation mode, where the oscillation signal is directly fed back to the excitation piezo. The detector signal is amplified with the variable gain G and phase shifted by phase ?. The frequency demodulator detects the frequency shift due to tip–sample interactions, which serves as the control signal for the probe–sample distance
Schematics (a) of a commercial small-sample atomic force microscope/friction force microscope (AFM/FFM)
Schematics (b) of a large-sample AFM/FFM
Asurface forces apparatus (SFA)where the intermolecular forces between two macroscopic, cylindrical surfaces of local radius R can be directly measured as a function of surface separation over a large distance regime from tenths of a nanometer to micrometers. Local or transient surface deformations can be detected optically. Various attachments for moving one surface laterally with respect to the other have been developed for friction measurements in different regimes of sliding velocity and sliding distance
Schematic showingmodifications made to a commercial AFM set-up using the single-axis piezo stage, and a cross-sectional view showing constructional details of the piezo stage. The integrated capacitive sensors are used as feedback sensors to drive the piezo. The piezo stage is mounted on the standard motorizedAFMbase and operated using independent amplifier and controller units driven by a frequency generator
Schematic of the reciprocating tribometer. Normal load is applied by lowering the x–z stage (mounted on a laboratory jack). Normal and friction forces are measured by semiconductor strain gauges mounted on a crossed-I-beam structure
Schematic showing the details of a nanoscale bending test using an AFM. The AFM tip is brought to the center of the nanobeam and the piezo is extended over a known distance. By measuring the tip displacement, a load displacement curve of the nanobeam can be obtained
Experimental arrangement for the computer-controlled stroboscopic interferometer. This interferometric measurement is capable of resolving motions as small as a few nm for out-of-plane deflections. (MO: microscope objective, HWP: half-wave plate, QWP: quarter-wave plate, PS: piezoelectric stage, PBS: polarizing beam-splitter cube, POL: linear polarizer).
Laser Doppler vibrometer with integrated microscope system for MEMS testing.
图片来自 Springer Handbook of Nanotechnology, 2007年版


https://m.sciencenet.cn/blog-2321-18606.html

上一篇:仿生管理学:教师定级和昆虫分类
下一篇:Gazing at the distant road vanishing into the horizon

0

发表评论 评论 (11 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-2 13:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部