Nuclear Science and Techniques分享 http://blog.sciencenet.cn/u/sunhua189 NST报道核科学与技术研究领域的科学发现、技术创新和重要成果

博文

利用时间分辨 X 射线铁磁共振方法研究自旋动力学问题

已有 448 次阅读 2023-12-12 23:52 |系统分类:论文交流

中国科学院上海高等研究院王勇研究员课题组成果

Article title: Picosecond time-resolved X-ray ferromagnetic resonance measurements at Shanghai synchrotron radiation facility

文章标题:上海光源皮秒级时间分辨X射线铁磁共振测量

DOI: 10.1007/s41365-022-01037-7

One sentence summary:

一句话概要:

This pioneering research introduces a picosecond time-resolved X-ray ferromagnetic resonance apparatus, revolutionizing spintronics by providing unprecedented insights into spin dynamics and offering potential for major advances in the global semiconductor industry.

这项研究工作搭建了皮秒级时间分辨 X 射线铁磁共振实验装置,对自旋进动等自旋动力学问题进行了研究,为半导体领域的科学研究提供了新的途径。

2023_NST_Article_01_v1 (1)科学网.jpg

Keywords:

关键词:

Ferromagnetic resonance; Time resolution; Pump-probe; Synchrotron radiation

铁磁共振; 时间分辨; 泵浦探针; 同步辐射

The Novelty (What)  

创新性(主要内容)

Achieving a remarkable breakthrough in spintronics, the research team at the Shanghai Synchrotron Radiation Facility (SSRF) has successfully developed and demonstrated a pioneering picosecond time-resolved X-ray ferromagnetic resonance (TR-XFMR) apparatus. This novel technology offers a time resolution of 13 ps (RMS) or 31 ps (FWHM) and has detected the spin precession of the Ni magnetic moment in the Ni81Fe19 sample at 2 GHz. The method uses pump-probe detection and X-ray magnetic circular dichroism (XMCD) spectroscopy, delivering a powerful enhancement to the conventional Ferromagnetic Resonance (FMR). Looking ahead, the successful implementation of picosecond TR-XFMR opens up exciting possibilities for in-depth investigation of spin dynamics and magnetic interactions. Furthermore, the research output offers a pathway to new breakthroughs in magnetic materials and spin-based electronic devices.

上海同步辐射光源研究团队在自旋电子学领域取得进展,成功研发并展示了一种皮秒级时间分辨X射线铁磁共振装置(TR-XFMR)。这项新技术的时间分辨率达到13皮秒(RMS)或31皮秒(FWHM),并成功探测到Ni81Fe19样品中的Ni元素在2 GHz微波的作用下产生的电子自旋进动。该研究采用了泵浦-探测技术和X射线磁圆二色技术,为传统的铁磁共振技术带来了提升。展望未来, TR-XFMR装置的搭建和时间分辨技术的发展,能为深入研究自旋动力学和磁性相互作用问题提供新的支撑。

The Background (Why)

研究背景(主要原因)

Spintronics is a field of study that explores how electron properties, specifically charge and spin, can carry information. The realm of spintronics began its journey with the discovery of the Giant Magnetoresistance effect (GMR) in 1988. Conventional Ferromagnetic Resonance (FMR) has been the primary method for examining the basic parameters of thin magnetic films, an integral part of functional materials and spin-based electronic devices. However, traditional FMR comes with its limitations: it can only observe the static response of a multilayer film structure and struggles to provide clear information on alloy sublattices or resolve spin dynamics in multilayer samples. Thus, this study developed the picosecond time-resolved X-ray ferromagnetic resonance (TR-XFMR) as a solution. By leveraging the unique capabilities of the SSRF, this novel method can effectively measure spin dynamical processes and element-specific magnetization dynamics, promising a more comprehensive and detailed analysis of magnetic materials and devices.

自旋电子学是一门研究电子性质,特别是电荷和自旋如何传递信息的学科。这一领域自1988年巨磁电阻效应(GMR)的发现开始兴起。传统的铁磁共振(FMR)一直是研究磁性薄膜基本参数的主要方法。磁性薄膜是功能材料和基于自旋的电子设备的关键组成部分,但是,传统的FMR有其局限性:它只能观测多层膜结构的静态响应,并且难以提供关于合金子晶格的明确信息或解析多层样品中的自旋动态。因此,这项研究发展了皮秒级时间分辨X射线铁磁共振(TR-XFMR)技术,利用上海同步辐射光源(SSRF)的独特性能,这种新方法可以测量特定元素的磁化动力学过程,为磁性材料和自旋电子学器件的研究提供新的途径。

The SDG impact (Big Why)

SDG影响力(研究意义)

The rise of semiconductor technology, which is at the heart of digital transformation, has driven unprecedented progress in the global digital economy. As per the World Semiconductor Trade Statistics, the global semiconductor market reached $430 billion in 2020. The time-resolved method introduced in this study has the potential to revolutionize our understanding of spin waves or magnons, a cornerstone for future semiconductor development. Hence, this study contributes to the UNSDG 9 (Industry, Innovation and Infrastructure), by driving innovation in semiconductor technology, and in turn, fostering sustainable industrialization.

半导体技术的崛起,作为数字化转型的核心,推动了全球数字经济的前所未有的进步。根据世界半导体贸易统计数据,2020年全球半导体市场达到了4300亿美元。本研究中引入的时间分辨方法有潜力改变我们对自旋波的理解,为新型半导体的研究提供帮助。因此,这项研究为联合国可持续发展目标9(产业、创新和基础设施)做出了贡献,通过推动半导体技术的创新,从而促进可持续的工业化。

 






https://m.sciencenet.cn/blog-3474219-1413604.html

上一篇:使用轻粒子解决质子与中子的有效质量差异
下一篇:上海质子治疗:癌症治疗的巨大跨越

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-28 15:03

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部