meizaikexue的个人博客分享 http://blog.sciencenet.cn/u/meizaikexue

博文

数学第一性原理的进一步思考(上)

已有 2148 次阅读 2022-7-8 17:02 |系统分类:观点评述

        对于数学第一性原理的思考,源于一个深刻而有趣的问题:“五分钟如何让学生真正理解数学?”提出该问题的是著名物理学家、教育家、原中国海洋大学行远书院院长钱致榕先生。对于钱致榕之问的解答见之前的博文《关于数学第一性原理的思考(上、下)》。

        本文是对数学第一性原理的进一步思考,可看作是对前文的扩展和补充。由于没有了5分钟的限制,可以将数学第一性原理改写、扩充至如下8条。

一、公理化方法

        这无疑是延续两千多年数学理论的演绎范式,源头可以追溯到欧几里得的《几何原本》。在《几何原本》中,欧几里得通过23条定义、5条公理和5条公设,只凭借逻辑推理便得到了400多个命题,将从古埃及和古巴比伦时代流传下来的几何结论尽纳其中。

        欧几里得的公理化方法深深的影响了后世的数学家和科学家,比如:

        1. 牛顿在《自然哲学之数学原理》中,以牛顿三大定律,万有引力定律和绝对时空观为公理,以欧氏几何为工具建立经典力学体系,标志着近代物理学的开端。

        2. 希尔伯特在《几何基础》中改进了《几何原本》中过度依赖于直觉的部分,以5组20条公理把欧氏几何变成一个更加抽象严格的公理化系统。

        3. 爱因斯坦在《狭义与广义相对论浅说》中以相对性原理(惯性系平权)和光速不变原理为公理,以初等数学为工具建立了狭义相对论。以广义相对性原理(参考系平权)、等效原理、马赫原理和引力场方程为公理,建立了现代物理学的一大支柱——广义相对论。

        4. 量子力学的正统诠释——哥本哈根诠释以互补原理、对应原理、波函数的概率解释、不确定性原理和测量导致的波包塌缩为公理,建立了现代物理学的另一大支柱——量子力学。

二、算法系统

        《几何基础》的成功深深的震撼了希尔伯特,作为20世纪最伟大的数学家之一,他所追求的当然不是一城一地的得失,而是整个数学体系的和谐。这方面代表性的工作,除了在1900年第二届国际数学家大会上提出的23个数学问题,为20世纪数学的发展指明了方向外,希尔伯特还凭借他崇高的威望和哥廷根学派作为数学中心得天独厚的优势,掀起了一场轰轰烈烈的公理化运动。

        希尔伯特当初的设想是希望对数学的每一个分支,通过选取其中合适的几条公理,凭借逻辑推理把相应的数学体系构建出来。但后来我们知道,如果只借助于逻辑推理,根据哥德尔的不完备性定理,对于任一可容纳皮亚诺算术公理的数学系统,无论如何选择公理,总会有一些结论既不能被证明,也不能被否定,这说明人类的逻辑本身可能有某种缺陷。

        如何克服这种缺陷呢?也许中国传统数学中的算法思维是一个不错的选择。国家最高科学技术奖得主吴文俊院士曾预言,几百年之后,数学的主流范式可能会由公理系统转化为算法系统。他创立了数学机械化,希望像“蒸汽机把人手从体力劳动中解放出来那样,把人脑从脑力劳动中解放出来”。

       如果说整个数学大厦就像一个庞大的图,那么数学中概念、定理和猜想,以及它们的否命题就是图的节点,逻辑推演的过程,实际在图上连边。作为一个拥有海量节点和边的复杂网络,根据复杂网络的六度分离原理,任何两个顶点之间一定能够通过边来连接。

        但是如果把全体数学这个大图一部分遮盖住,只看其中的一部分子图的话,当然就会有一些代表命题和否命题的节点是孤立的。这就意味着这些孤立节点所代表的数学结论,在小的数学系统里既不能证明,也不能否定,这就是哥德尔不完备性定理用图的语言表达的版本。

        为了彻底揭开哥德尔的封印,我们必须考虑把所有数学概念、定理和猜想都容纳进去大数学体系,也就是完全数学图。但这个完全数学图太过于庞大,可能必须借由量子计算机才能完成,而且由于量子计算网络与人脑的神经网络非常相似,不但可以寻找最短路或局部最短路,甚至还可以构建新的数学节点,也就是提出新的数学概念,发明新的数学。

三、结构主义

        根据法国著名的布尔巴基学派的观点:数学是研究各种数学结构的学科,所谓的数学对象只不过是附加了各种数学结构的集合。基本的数学结构有三大类:代数结构、拓扑结构和序结构。布尔巴基学派的结构主义无疑是研究数学的内功心法,可以使我们从纷繁复杂的数学定义、定理和公式中梳理出问题的本质,比如以下的例子。

        1. 我们刚开始学习高等数学的时候,最早接触的是单变量微积分,研究定义域和值域都为实数的函数的连续性、可微性以及可积性。为什么从这里开始呢?因为实数本身具有代数、拓扑和序三大结构,结构非常丰富,因此得到结论的过程也相对简单,结论也非常丰富。

        2. 如果在集合上添加拓扑结构,就变成了一个拓扑空间,在此拓扑空间中添加微分结构,就变成了微分流形,在此微分流形上添加度量结构,就变成了黎曼流形。将度量结构按照一定的方式沿时间演化,就变成了佩雷尔曼最终解决庞加莱猜想的Ricci流。

        3. 如果在集合上添加线性结构,就变成了一个线性空间,在此线性空间中添加范数结构,就变成了赋范线性空间,特别的如果该范数还能满足平行四边形公式,则此赋范线性空间就可以诱导出内积结构,变成内积空间。

        结构主义的理念使得我们可以清楚的看懂数学发展的未来趋势。

        1. 将各种结构有机结合,研究结构交叉得到的新的数学对象,比如将微分结构和群结构结合得到的李群。

        2. 以问题和猜想为导向来构造新的结构,比如对丢番图方程的研究促进了对椭圆曲线的群结构与对应模形式的研究。

        3. 研究不同数学结构之间的关联和对应关系,比如被誉为“数学大统一理论”的朗兰兹纲领和菲尔兹奖得主孔涅的非交换几何。

四、线性化

        目前所接触到的较为成熟的数学体系大都是线性的,这也非常自然,毕竟人类大脑的思考方式就是线性的。比如微分学用切线来逼近曲线,而积分学用矩形面积来近似曲边梯形。事实上整个微积分就是通过“以直代曲”来线性化问题,而研究线性系统的利器就是线性代数。这也是为什么大学数学在学习《微积分》的同时还要学习《线性代数》的原因。

        微积分的源头可以追溯到古希腊时代的阿基米德,这位被誉为“数学之神”的天才在人类历史上第一次得到了正确的球体积公式,要知道这在古代中国是由三位伟大的数学家刘徽、祖冲之和祖暅联手才得到的。阿基米德他所用的方法本质上就是“微元法”,如果他能找到理想的传人把他的学说体系有效传承的话,也许在两千多年前人类就会发明微积分,数学和科学的发展无疑会更早的进入快车道。难怪数学的最高奖菲尔兹奖的金质奖章上,赫然印着阿基米德的头像。



https://m.sciencenet.cn/blog-3523670-1346437.html

上一篇:关于《高等代数》课程体系的思考
下一篇:数学第一性原理的进一步思考(下)

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-1 18:32

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部